layer
¶
Classes¶
fastvideo.attention.layer.DistributedAttention
¶
DistributedAttention(num_heads: int, head_size: int, num_kv_heads: int | None = None, softmax_scale: float | None = None, causal: bool = False, supported_attention_backends: tuple[AttentionBackendEnum, ...] | None = None, prefix: str = '', **extra_impl_args)
Bases: Module
Distributed attention layer.
Source code in fastvideo/attention/layer.py
Functions¶
fastvideo.attention.layer.DistributedAttention.forward
¶
forward(q: Tensor, k: Tensor, v: Tensor, replicated_q: Tensor | None = None, replicated_k: Tensor | None = None, replicated_v: Tensor | None = None, freqs_cis: tuple[Tensor, Tensor] | None = None, attention_mask: Tensor | None = None) -> tuple[Tensor, Tensor | None]
Forward pass for distributed attention.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
q
|
Tensor
|
Query tensor [batch_size, seq_len, num_heads, head_dim] |
required |
k
|
Tensor
|
Key tensor [batch_size, seq_len, num_heads, head_dim] |
required |
v
|
Tensor
|
Value tensor [batch_size, seq_len, num_heads, head_dim] |
required |
replicated_q
|
Optional[Tensor]
|
Replicated query tensor, typically for text tokens |
None
|
replicated_k
|
Optional[Tensor]
|
Replicated key tensor |
None
|
replicated_v
|
Optional[Tensor]
|
Replicated value tensor |
None
|
attention_mask
|
Optional[Tensor]
|
Attention mask [batch_size, seq_len] |
None
|
Returns:
| Type | Description |
|---|---|
tuple[Tensor, Tensor | None]
|
Tuple[torch.Tensor, Optional[torch.Tensor]]: A tuple containing: - o (torch.Tensor): Output tensor after attention for the main sequence - replicated_o (Optional[torch.Tensor]): Output tensor for replicated tokens, if provided |
Source code in fastvideo/attention/layer.py
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 | |
fastvideo.attention.layer.DistributedAttention_VSA
¶
DistributedAttention_VSA(num_heads: int, head_size: int, num_kv_heads: int | None = None, softmax_scale: float | None = None, causal: bool = False, supported_attention_backends: tuple[AttentionBackendEnum, ...] | None = None, prefix: str = '', **extra_impl_args)
Bases: DistributedAttention
Distributed attention layer with VSA support.
Source code in fastvideo/attention/layer.py
Functions¶
fastvideo.attention.layer.DistributedAttention_VSA.forward
¶
forward(q: Tensor, k: Tensor, v: Tensor, replicated_q: Tensor | None = None, replicated_k: Tensor | None = None, replicated_v: Tensor | None = None, gate_compress: Tensor | None = None, freqs_cis: tuple[Tensor, Tensor] | None = None, attention_mask: Tensor | None = None) -> tuple[Tensor, Tensor | None]
Forward pass for distributed attention.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
q
|
Tensor
|
Query tensor [batch_size, seq_len, num_heads, head_dim] |
required |
k
|
Tensor
|
Key tensor [batch_size, seq_len, num_heads, head_dim] |
required |
v
|
Tensor
|
Value tensor [batch_size, seq_len, num_heads, head_dim] |
required |
gate_compress
|
Tensor
|
Gate compress tensor [batch_size, seq_len, num_heads, head_dim] |
None
|
replicated_q
|
Optional[Tensor]
|
Replicated query tensor, typically for text tokens |
None
|
replicated_k
|
Optional[Tensor]
|
Replicated key tensor |
None
|
replicated_v
|
Optional[Tensor]
|
Replicated value tensor |
None
|
attention_mask
|
Optional[Tensor]
|
Attention mask [batch_size, seq_len] |
None
|
Returns:
| Type | Description |
|---|---|
tuple[Tensor, Tensor | None]
|
Tuple[torch.Tensor, Optional[torch.Tensor]]: A tuple containing: - o (torch.Tensor): Output tensor after attention for the main sequence - replicated_o (Optional[torch.Tensor]): Output tensor for replicated tokens, if provided |
Source code in fastvideo/attention/layer.py
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 | |
fastvideo.attention.layer.LocalAttention
¶
LocalAttention(num_heads: int, head_size: int, num_kv_heads: int | None = None, softmax_scale: float | None = None, causal: bool = False, supported_attention_backends: tuple[AttentionBackendEnum, ...] | None = None, **extra_impl_args)
Bases: Module
Attention layer.
Source code in fastvideo/attention/layer.py
Functions¶
fastvideo.attention.layer.LocalAttention.forward
¶
forward(q: Tensor, k: Tensor, v: Tensor, freqs_cis: tuple[Tensor, Tensor] | None = None) -> Tensor
Apply local attention between query, key and value tensors.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
q
|
Tensor
|
Query tensor of shape [batch_size, seq_len, num_heads, head_dim] |
required |
k
|
Tensor
|
Key tensor of shape [batch_size, seq_len, num_heads, head_dim] |
required |
v
|
Tensor
|
Value tensor of shape [batch_size, seq_len, num_heads, head_dim] |
required |
Returns:
| Type | Description |
|---|---|
Tensor
|
torch.Tensor: Output tensor after local attention |