pipelines
¶
Classes¶
fastvideo.configs.pipelines.CosmosConfig
dataclass
¶
CosmosConfig(model_path: str = '', pipeline_config_path: str | None = None, embedded_cfg_scale: int = 6, flow_shift: float = 1.0, disable_autocast: bool = False, is_causal: bool = False, dit_config: DiTConfig = CosmosVideoConfig(), dit_precision: str = 'bf16', vae_config: VAEConfig = CosmosVAEConfig(), vae_precision: str = 'fp16', vae_tiling: bool = True, vae_sp: bool = True, image_encoder_config: EncoderConfig = EncoderConfig(), image_encoder_precision: str = 'fp32', text_encoder_configs: tuple[EncoderConfig, ...] = (lambda: (T5LargeConfig(),))(), text_encoder_precisions: tuple[str, ...] = (lambda: ('bf16',))(), preprocess_text_funcs: tuple[Callable[[str], str], ...] = (lambda: (preprocess_text,))(), postprocess_text_funcs: tuple[Callable[[BaseEncoderOutput], Tensor], ...] = (lambda: (t5_large_postprocess_text,))(), pos_magic: str | None = None, neg_magic: str | None = None, timesteps_scale: bool | None = None, mask_strategy_file_path: str | None = None, STA_mode: STA_Mode = STA_INFERENCE, skip_time_steps: int = 15, dmd_denoising_steps: list[int] | None = None, ti2v_task: bool = False, boundary_ratio: float | None = None, conditioning_strategy: str = 'frame_replace', min_num_conditional_frames: int = 1, max_num_conditional_frames: int = 2, sigma_conditional: float = 0.0001, sigma_data: float = 1.0, state_ch: int = 16, state_t: int = 24, text_encoder_class: str = 'T5')
fastvideo.configs.pipelines.FastHunyuanConfig
dataclass
¶
FastHunyuanConfig(model_path: str = '', pipeline_config_path: str | None = None, embedded_cfg_scale: int = 6, flow_shift: int = 17, disable_autocast: bool = False, is_causal: bool = False, dit_config: DiTConfig = HunyuanVideoConfig(), dit_precision: str = 'bf16', vae_config: VAEConfig = HunyuanVAEConfig(), vae_precision: str = 'fp16', vae_tiling: bool = True, vae_sp: bool = True, image_encoder_config: EncoderConfig = EncoderConfig(), image_encoder_precision: str = 'fp32', text_encoder_configs: tuple[EncoderConfig, ...] = (lambda: (LlamaConfig(), CLIPTextConfig()))(), text_encoder_precisions: tuple[str, ...] = (lambda: ('fp16', 'fp16'))(), preprocess_text_funcs: tuple[Callable[[str], str], ...] = (lambda: (llama_preprocess_text, clip_preprocess_text))(), postprocess_text_funcs: tuple[Callable[[BaseEncoderOutput], tensor], ...] = (lambda: (llama_postprocess_text, clip_postprocess_text))(), pos_magic: str | None = None, neg_magic: str | None = None, timesteps_scale: bool | None = None, mask_strategy_file_path: str | None = None, STA_mode: STA_Mode = STA_INFERENCE, skip_time_steps: int = 15, dmd_denoising_steps: list[int] | None = None, ti2v_task: bool = False, boundary_ratio: float | None = None)
fastvideo.configs.pipelines.Hunyuan15T2V480PConfig
dataclass
¶
Hunyuan15T2V480PConfig(model_path: str = '', pipeline_config_path: str | None = None, embedded_cfg_scale: float = 6.0, flow_shift: int = 5, disable_autocast: bool = False, is_causal: bool = False, dit_config: DiTConfig = HunyuanVideo15Config(), dit_precision: str = 'bf16', vae_config: VAEConfig = Hunyuan15VAEConfig(), vae_precision: str = 'fp16', vae_tiling: bool = True, vae_sp: bool = True, image_encoder_config: EncoderConfig = EncoderConfig(), image_encoder_precision: str = 'fp32', text_encoder_configs: tuple[EncoderConfig, ...] = (lambda: (Qwen2_5_VLConfig(), T5Config()))(), text_encoder_precisions: tuple[str, ...] = (lambda: ('bf16', 'fp32'))(), preprocess_text_funcs: tuple[Callable[[Any], Any], ...] = (lambda: (qwen_preprocess_text, byt5_preprocess_text))(), postprocess_text_funcs: tuple[Callable[..., Any], ...] = (lambda: (qwen_postprocess_text, byt5_postprocess_text))(), pos_magic: str | None = None, neg_magic: str | None = None, timesteps_scale: bool | None = None, mask_strategy_file_path: str | None = None, STA_mode: STA_Mode = STA_INFERENCE, skip_time_steps: int = 15, dmd_denoising_steps: list[int] | None = None, ti2v_task: bool = False, boundary_ratio: float | None = None, text_encoder_crop_start: int = PROMPT_TEMPLATE_TOKEN_LENGTH, text_encoder_max_lengths: tuple[int, ...] = (lambda: (1000 + PROMPT_TEMPLATE_TOKEN_LENGTH, 256))())
fastvideo.configs.pipelines.Hunyuan15T2V720PConfig
dataclass
¶
Hunyuan15T2V720PConfig(model_path: str = '', pipeline_config_path: str | None = None, embedded_cfg_scale: float = 6.0, flow_shift: int = 9, disable_autocast: bool = False, is_causal: bool = False, dit_config: DiTConfig = HunyuanVideo15Config(), dit_precision: str = 'bf16', vae_config: VAEConfig = Hunyuan15VAEConfig(), vae_precision: str = 'fp16', vae_tiling: bool = True, vae_sp: bool = True, image_encoder_config: EncoderConfig = EncoderConfig(), image_encoder_precision: str = 'fp32', text_encoder_configs: tuple[EncoderConfig, ...] = (lambda: (Qwen2_5_VLConfig(), T5Config()))(), text_encoder_precisions: tuple[str, ...] = (lambda: ('bf16', 'fp32'))(), preprocess_text_funcs: tuple[Callable[[Any], Any], ...] = (lambda: (qwen_preprocess_text, byt5_preprocess_text))(), postprocess_text_funcs: tuple[Callable[..., Any], ...] = (lambda: (qwen_postprocess_text, byt5_postprocess_text))(), pos_magic: str | None = None, neg_magic: str | None = None, timesteps_scale: bool | None = None, mask_strategy_file_path: str | None = None, STA_mode: STA_Mode = STA_INFERENCE, skip_time_steps: int = 15, dmd_denoising_steps: list[int] | None = None, ti2v_task: bool = False, boundary_ratio: float | None = None, text_encoder_crop_start: int = PROMPT_TEMPLATE_TOKEN_LENGTH, text_encoder_max_lengths: tuple[int, ...] = (lambda: (1000 + PROMPT_TEMPLATE_TOKEN_LENGTH, 256))())
fastvideo.configs.pipelines.HunyuanConfig
dataclass
¶
HunyuanConfig(model_path: str = '', pipeline_config_path: str | None = None, embedded_cfg_scale: int = 6, flow_shift: int = 7, disable_autocast: bool = False, is_causal: bool = False, dit_config: DiTConfig = HunyuanVideoConfig(), dit_precision: str = 'bf16', vae_config: VAEConfig = HunyuanVAEConfig(), vae_precision: str = 'fp16', vae_tiling: bool = True, vae_sp: bool = True, image_encoder_config: EncoderConfig = EncoderConfig(), image_encoder_precision: str = 'fp32', text_encoder_configs: tuple[EncoderConfig, ...] = (lambda: (LlamaConfig(), CLIPTextConfig()))(), text_encoder_precisions: tuple[str, ...] = (lambda: ('fp16', 'fp16'))(), preprocess_text_funcs: tuple[Callable[[str], str], ...] = (lambda: (llama_preprocess_text, clip_preprocess_text))(), postprocess_text_funcs: tuple[Callable[[BaseEncoderOutput], tensor], ...] = (lambda: (llama_postprocess_text, clip_postprocess_text))(), pos_magic: str | None = None, neg_magic: str | None = None, timesteps_scale: bool | None = None, mask_strategy_file_path: str | None = None, STA_mode: STA_Mode = STA_INFERENCE, skip_time_steps: int = 15, dmd_denoising_steps: list[int] | None = None, ti2v_task: bool = False, boundary_ratio: float | None = None)
fastvideo.configs.pipelines.PipelineConfig
dataclass
¶
PipelineConfig(model_path: str = '', pipeline_config_path: str | None = None, embedded_cfg_scale: float = 6.0, flow_shift: float | None = None, disable_autocast: bool = False, is_causal: bool = False, dit_config: DiTConfig = DiTConfig(), dit_precision: str = 'bf16', vae_config: VAEConfig = VAEConfig(), vae_precision: str = 'fp32', vae_tiling: bool = True, vae_sp: bool = True, image_encoder_config: EncoderConfig = EncoderConfig(), image_encoder_precision: str = 'fp32', text_encoder_configs: tuple[EncoderConfig, ...] = (lambda: (EncoderConfig(),))(), text_encoder_precisions: tuple[str, ...] = (lambda: ('fp32',))(), preprocess_text_funcs: tuple[Callable[[str], str], ...] = (lambda: (preprocess_text,))(), postprocess_text_funcs: tuple[Callable[[BaseEncoderOutput], tensor], ...] = (lambda: (postprocess_text,))(), pos_magic: str | None = None, neg_magic: str | None = None, timesteps_scale: bool | None = None, mask_strategy_file_path: str | None = None, STA_mode: STA_Mode = STA_INFERENCE, skip_time_steps: int = 15, dmd_denoising_steps: list[int] | None = None, ti2v_task: bool = False, boundary_ratio: float | None = None)
Base configuration for all pipeline architectures.
Functions¶
fastvideo.configs.pipelines.PipelineConfig.from_kwargs
classmethod
¶
from_kwargs(kwargs: dict[str, Any], config_cli_prefix: str = '') -> PipelineConfig
Load PipelineConfig from kwargs Dictionary. kwargs: dictionary of kwargs config_cli_prefix: prefix of CLI arguments for this PipelineConfig instance
Source code in fastvideo/configs/pipelines/base.py
fastvideo.configs.pipelines.PipelineConfig.from_pretrained
classmethod
¶
from_pretrained(model_path: str) -> PipelineConfig
use the pipeline class setting from model_path to match the pipeline config
Source code in fastvideo/configs/pipelines/base.py
fastvideo.configs.pipelines.SlidingTileAttnConfig
dataclass
¶
SlidingTileAttnConfig(model_path: str = '', pipeline_config_path: str | None = None, embedded_cfg_scale: float = 6.0, flow_shift: float | None = None, disable_autocast: bool = False, is_causal: bool = False, dit_config: DiTConfig = DiTConfig(), dit_precision: str = 'bf16', vae_config: VAEConfig = VAEConfig(), vae_precision: str = 'fp32', vae_tiling: bool = True, vae_sp: bool = True, image_encoder_config: EncoderConfig = EncoderConfig(), image_encoder_precision: str = 'fp32', text_encoder_configs: tuple[EncoderConfig, ...] = (lambda: (EncoderConfig(),))(), text_encoder_precisions: tuple[str, ...] = (lambda: ('fp32',))(), preprocess_text_funcs: tuple[Callable[[str], str], ...] = (lambda: (preprocess_text,))(), postprocess_text_funcs: tuple[Callable[[BaseEncoderOutput], tensor], ...] = (lambda: (postprocess_text,))(), pos_magic: str | None = None, neg_magic: str | None = None, timesteps_scale: bool | None = None, mask_strategy_file_path: str | None = None, STA_mode: STA_Mode = STA_INFERENCE, skip_time_steps: int = 15, dmd_denoising_steps: list[int] | None = None, ti2v_task: bool = False, boundary_ratio: float | None = None, window_size: int = 16, stride: int = 8, height: int = 576, width: int = 1024, pad_to_square: bool = False, use_overlap_optimization: bool = True)
fastvideo.configs.pipelines.StepVideoT2VConfig
dataclass
¶
StepVideoT2VConfig(model_path: str = '', pipeline_config_path: str | None = None, embedded_cfg_scale: float = 6.0, flow_shift: int = 13, disable_autocast: bool = False, is_causal: bool = False, dit_config: DiTConfig = StepVideoConfig(), dit_precision: str = 'bf16', vae_config: VAEConfig = StepVideoVAEConfig(), vae_precision: str = 'bf16', vae_tiling: bool = False, vae_sp: bool = False, image_encoder_config: EncoderConfig = EncoderConfig(), image_encoder_precision: str = 'fp32', text_encoder_configs: tuple[EncoderConfig, ...] = (lambda: (EncoderConfig(),))(), text_encoder_precisions: tuple[str, ...] = (lambda: ('fp32',))(), preprocess_text_funcs: tuple[Callable[[str], str], ...] = (lambda: (preprocess_text,))(), postprocess_text_funcs: tuple[Callable[[BaseEncoderOutput], tensor], ...] = (lambda: (postprocess_text,))(), pos_magic: str = '超高清、HDR 视频、环境光、杜比全景声、画面稳定、流畅动作、逼真的细节、专业级构图、超现实主义、自然、生动、超细节、清晰。', neg_magic: str = '画面暗、低分辨率、不良手、文本、缺少手指、多余的手指、裁剪、低质量、颗粒状、签名、水印、用户名、模糊。', timesteps_scale: bool = False, mask_strategy_file_path: str | None = None, STA_mode: STA_Mode = STA_INFERENCE, skip_time_steps: int = 15, dmd_denoising_steps: list[int] | None = None, ti2v_task: bool = False, boundary_ratio: float | None = None, precision: str = 'bf16')
fastvideo.configs.pipelines.WanI2V480PConfig
dataclass
¶
WanI2V480PConfig(model_path: str = '', pipeline_config_path: str | None = None, embedded_cfg_scale: float = 6.0, flow_shift: float | None = 3.0, disable_autocast: bool = False, is_causal: bool = False, dit_config: DiTConfig = WanVideoConfig(), dit_precision: str = 'bf16', vae_config: VAEConfig = WanVAEConfig(), vae_precision: str = 'fp32', vae_tiling: bool = False, vae_sp: bool = False, image_encoder_config: EncoderConfig = CLIPVisionConfig(), image_encoder_precision: str = 'fp32', text_encoder_configs: tuple[EncoderConfig, ...] = (lambda: (T5Config(),))(), text_encoder_precisions: tuple[str, ...] = (lambda: ('fp32',))(), preprocess_text_funcs: tuple[Callable[[str], str], ...] = (lambda: (preprocess_text,))(), postprocess_text_funcs: tuple[Callable[[BaseEncoderOutput], Tensor], ...] = (lambda: (t5_postprocess_text,))(), pos_magic: str | None = None, neg_magic: str | None = None, timesteps_scale: bool | None = None, mask_strategy_file_path: str | None = None, STA_mode: STA_Mode = STA_INFERENCE, skip_time_steps: int = 15, dmd_denoising_steps: list[int] | None = None, ti2v_task: bool = False, boundary_ratio: float | None = None, precision: str = 'bf16', warp_denoising_step: bool = True)
fastvideo.configs.pipelines.WanI2V720PConfig
dataclass
¶
WanI2V720PConfig(model_path: str = '', pipeline_config_path: str | None = None, embedded_cfg_scale: float = 6.0, flow_shift: float | None = 5.0, disable_autocast: bool = False, is_causal: bool = False, dit_config: DiTConfig = WanVideoConfig(), dit_precision: str = 'bf16', vae_config: VAEConfig = WanVAEConfig(), vae_precision: str = 'fp32', vae_tiling: bool = False, vae_sp: bool = False, image_encoder_config: EncoderConfig = CLIPVisionConfig(), image_encoder_precision: str = 'fp32', text_encoder_configs: tuple[EncoderConfig, ...] = (lambda: (T5Config(),))(), text_encoder_precisions: tuple[str, ...] = (lambda: ('fp32',))(), preprocess_text_funcs: tuple[Callable[[str], str], ...] = (lambda: (preprocess_text,))(), postprocess_text_funcs: tuple[Callable[[BaseEncoderOutput], Tensor], ...] = (lambda: (t5_postprocess_text,))(), pos_magic: str | None = None, neg_magic: str | None = None, timesteps_scale: bool | None = None, mask_strategy_file_path: str | None = None, STA_mode: STA_Mode = STA_INFERENCE, skip_time_steps: int = 15, dmd_denoising_steps: list[int] | None = None, ti2v_task: bool = False, boundary_ratio: float | None = None, precision: str = 'bf16', warp_denoising_step: bool = True)
fastvideo.configs.pipelines.WanT2V480PConfig
dataclass
¶
WanT2V480PConfig(model_path: str = '', pipeline_config_path: str | None = None, embedded_cfg_scale: float = 6.0, flow_shift: float | None = 3.0, disable_autocast: bool = False, is_causal: bool = False, dit_config: DiTConfig = WanVideoConfig(), dit_precision: str = 'bf16', vae_config: VAEConfig = WanVAEConfig(), vae_precision: str = 'fp32', vae_tiling: bool = False, vae_sp: bool = False, image_encoder_config: EncoderConfig = EncoderConfig(), image_encoder_precision: str = 'fp32', text_encoder_configs: tuple[EncoderConfig, ...] = (lambda: (T5Config(),))(), text_encoder_precisions: tuple[str, ...] = (lambda: ('fp32',))(), preprocess_text_funcs: tuple[Callable[[str], str], ...] = (lambda: (preprocess_text,))(), postprocess_text_funcs: tuple[Callable[[BaseEncoderOutput], Tensor], ...] = (lambda: (t5_postprocess_text,))(), pos_magic: str | None = None, neg_magic: str | None = None, timesteps_scale: bool | None = None, mask_strategy_file_path: str | None = None, STA_mode: STA_Mode = STA_INFERENCE, skip_time_steps: int = 15, dmd_denoising_steps: list[int] | None = None, ti2v_task: bool = False, boundary_ratio: float | None = None, precision: str = 'bf16', warp_denoising_step: bool = True)
fastvideo.configs.pipelines.WanT2V720PConfig
dataclass
¶
WanT2V720PConfig(model_path: str = '', pipeline_config_path: str | None = None, embedded_cfg_scale: float = 6.0, flow_shift: float | None = 5.0, disable_autocast: bool = False, is_causal: bool = False, dit_config: DiTConfig = WanVideoConfig(), dit_precision: str = 'bf16', vae_config: VAEConfig = WanVAEConfig(), vae_precision: str = 'fp32', vae_tiling: bool = False, vae_sp: bool = False, image_encoder_config: EncoderConfig = EncoderConfig(), image_encoder_precision: str = 'fp32', text_encoder_configs: tuple[EncoderConfig, ...] = (lambda: (T5Config(),))(), text_encoder_precisions: tuple[str, ...] = (lambda: ('fp32',))(), preprocess_text_funcs: tuple[Callable[[str], str], ...] = (lambda: (preprocess_text,))(), postprocess_text_funcs: tuple[Callable[[BaseEncoderOutput], Tensor], ...] = (lambda: (t5_postprocess_text,))(), pos_magic: str | None = None, neg_magic: str | None = None, timesteps_scale: bool | None = None, mask_strategy_file_path: str | None = None, STA_mode: STA_Mode = STA_INFERENCE, skip_time_steps: int = 15, dmd_denoising_steps: list[int] | None = None, ti2v_task: bool = False, boundary_ratio: float | None = None, precision: str = 'bf16', warp_denoising_step: bool = True)
Functions¶
fastvideo.configs.pipelines.get_pipeline_config_cls_from_name
¶
get_pipeline_config_cls_from_name(pipeline_name_or_path: str) -> type[PipelineConfig]
Get the appropriate configuration class for a given pipeline name or path.
This function implements a multi-step lookup process to find the most suitable configuration class for a given pipeline. It follows this order: 1. Exact match in the PIPE_NAME_TO_CONFIG 2. Partial match in the PIPE_NAME_TO_CONFIG 3. Fallback to class name in the model_index.json 4. else raise an error
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
pipeline_name_or_path
|
str
|
The name or path of the pipeline. This can be: - A registered model ID (e.g., "FastVideo/FastHunyuan-diffusers") - A local path to a model directory - A model ID that will be downloaded |
required |
Returns:
| Type | Description |
|---|---|
type[PipelineConfig]
|
Type[PipelineConfig]: The configuration class that best matches the pipeline. This will be one of: - A specific weight configuration class if an exact match is found - A fallback configuration class based on the pipeline architecture - The base PipelineConfig class if no matches are found |
Note
- For local paths, the function will verify the model configuration
- For remote models, it will attempt to download the model index
- Warning messages are logged when falling back to less specific configurations
Source code in fastvideo/configs/pipelines/registry.py
Modules¶
fastvideo.configs.pipelines.base
¶
Classes¶
fastvideo.configs.pipelines.base.PipelineConfig
dataclass
¶
PipelineConfig(model_path: str = '', pipeline_config_path: str | None = None, embedded_cfg_scale: float = 6.0, flow_shift: float | None = None, disable_autocast: bool = False, is_causal: bool = False, dit_config: DiTConfig = DiTConfig(), dit_precision: str = 'bf16', vae_config: VAEConfig = VAEConfig(), vae_precision: str = 'fp32', vae_tiling: bool = True, vae_sp: bool = True, image_encoder_config: EncoderConfig = EncoderConfig(), image_encoder_precision: str = 'fp32', text_encoder_configs: tuple[EncoderConfig, ...] = (lambda: (EncoderConfig(),))(), text_encoder_precisions: tuple[str, ...] = (lambda: ('fp32',))(), preprocess_text_funcs: tuple[Callable[[str], str], ...] = (lambda: (preprocess_text,))(), postprocess_text_funcs: tuple[Callable[[BaseEncoderOutput], tensor], ...] = (lambda: (postprocess_text,))(), pos_magic: str | None = None, neg_magic: str | None = None, timesteps_scale: bool | None = None, mask_strategy_file_path: str | None = None, STA_mode: STA_Mode = STA_INFERENCE, skip_time_steps: int = 15, dmd_denoising_steps: list[int] | None = None, ti2v_task: bool = False, boundary_ratio: float | None = None)
Base configuration for all pipeline architectures.
Functions¶
fastvideo.configs.pipelines.base.PipelineConfig.from_kwargs
classmethod
¶from_kwargs(kwargs: dict[str, Any], config_cli_prefix: str = '') -> PipelineConfig
Load PipelineConfig from kwargs Dictionary. kwargs: dictionary of kwargs config_cli_prefix: prefix of CLI arguments for this PipelineConfig instance
Source code in fastvideo/configs/pipelines/base.py
fastvideo.configs.pipelines.base.PipelineConfig.from_pretrained
classmethod
¶from_pretrained(model_path: str) -> PipelineConfig
use the pipeline class setting from model_path to match the pipeline config
Source code in fastvideo/configs/pipelines/base.py
fastvideo.configs.pipelines.base.SlidingTileAttnConfig
dataclass
¶
SlidingTileAttnConfig(model_path: str = '', pipeline_config_path: str | None = None, embedded_cfg_scale: float = 6.0, flow_shift: float | None = None, disable_autocast: bool = False, is_causal: bool = False, dit_config: DiTConfig = DiTConfig(), dit_precision: str = 'bf16', vae_config: VAEConfig = VAEConfig(), vae_precision: str = 'fp32', vae_tiling: bool = True, vae_sp: bool = True, image_encoder_config: EncoderConfig = EncoderConfig(), image_encoder_precision: str = 'fp32', text_encoder_configs: tuple[EncoderConfig, ...] = (lambda: (EncoderConfig(),))(), text_encoder_precisions: tuple[str, ...] = (lambda: ('fp32',))(), preprocess_text_funcs: tuple[Callable[[str], str], ...] = (lambda: (preprocess_text,))(), postprocess_text_funcs: tuple[Callable[[BaseEncoderOutput], tensor], ...] = (lambda: (postprocess_text,))(), pos_magic: str | None = None, neg_magic: str | None = None, timesteps_scale: bool | None = None, mask_strategy_file_path: str | None = None, STA_mode: STA_Mode = STA_INFERENCE, skip_time_steps: int = 15, dmd_denoising_steps: list[int] | None = None, ti2v_task: bool = False, boundary_ratio: float | None = None, window_size: int = 16, stride: int = 8, height: int = 576, width: int = 1024, pad_to_square: bool = False, use_overlap_optimization: bool = True)
Functions¶
fastvideo.configs.pipelines.base.parse_int_list
¶
Parse a comma-separated string of integers into a list.
fastvideo.configs.pipelines.cosmos
¶
Classes¶
fastvideo.configs.pipelines.cosmos.CosmosConfig
dataclass
¶
CosmosConfig(model_path: str = '', pipeline_config_path: str | None = None, embedded_cfg_scale: int = 6, flow_shift: float = 1.0, disable_autocast: bool = False, is_causal: bool = False, dit_config: DiTConfig = CosmosVideoConfig(), dit_precision: str = 'bf16', vae_config: VAEConfig = CosmosVAEConfig(), vae_precision: str = 'fp16', vae_tiling: bool = True, vae_sp: bool = True, image_encoder_config: EncoderConfig = EncoderConfig(), image_encoder_precision: str = 'fp32', text_encoder_configs: tuple[EncoderConfig, ...] = (lambda: (T5LargeConfig(),))(), text_encoder_precisions: tuple[str, ...] = (lambda: ('bf16',))(), preprocess_text_funcs: tuple[Callable[[str], str], ...] = (lambda: (preprocess_text,))(), postprocess_text_funcs: tuple[Callable[[BaseEncoderOutput], Tensor], ...] = (lambda: (t5_large_postprocess_text,))(), pos_magic: str | None = None, neg_magic: str | None = None, timesteps_scale: bool | None = None, mask_strategy_file_path: str | None = None, STA_mode: STA_Mode = STA_INFERENCE, skip_time_steps: int = 15, dmd_denoising_steps: list[int] | None = None, ti2v_task: bool = False, boundary_ratio: float | None = None, conditioning_strategy: str = 'frame_replace', min_num_conditional_frames: int = 1, max_num_conditional_frames: int = 2, sigma_conditional: float = 0.0001, sigma_data: float = 1.0, state_ch: int = 16, state_t: int = 24, text_encoder_class: str = 'T5')
Functions¶
fastvideo.configs.pipelines.cosmos.t5_large_postprocess_text
¶
Postprocess T5 Large text encoder outputs for Cosmos pipeline.
Return raw last_hidden_state without truncation/padding.
Source code in fastvideo/configs/pipelines/cosmos.py
fastvideo.configs.pipelines.hunyuan
¶
Classes¶
fastvideo.configs.pipelines.hunyuan.FastHunyuanConfig
dataclass
¶
FastHunyuanConfig(model_path: str = '', pipeline_config_path: str | None = None, embedded_cfg_scale: int = 6, flow_shift: int = 17, disable_autocast: bool = False, is_causal: bool = False, dit_config: DiTConfig = HunyuanVideoConfig(), dit_precision: str = 'bf16', vae_config: VAEConfig = HunyuanVAEConfig(), vae_precision: str = 'fp16', vae_tiling: bool = True, vae_sp: bool = True, image_encoder_config: EncoderConfig = EncoderConfig(), image_encoder_precision: str = 'fp32', text_encoder_configs: tuple[EncoderConfig, ...] = (lambda: (LlamaConfig(), CLIPTextConfig()))(), text_encoder_precisions: tuple[str, ...] = (lambda: ('fp16', 'fp16'))(), preprocess_text_funcs: tuple[Callable[[str], str], ...] = (lambda: (llama_preprocess_text, clip_preprocess_text))(), postprocess_text_funcs: tuple[Callable[[BaseEncoderOutput], tensor], ...] = (lambda: (llama_postprocess_text, clip_postprocess_text))(), pos_magic: str | None = None, neg_magic: str | None = None, timesteps_scale: bool | None = None, mask_strategy_file_path: str | None = None, STA_mode: STA_Mode = STA_INFERENCE, skip_time_steps: int = 15, dmd_denoising_steps: list[int] | None = None, ti2v_task: bool = False, boundary_ratio: float | None = None)
fastvideo.configs.pipelines.hunyuan.HunyuanConfig
dataclass
¶
HunyuanConfig(model_path: str = '', pipeline_config_path: str | None = None, embedded_cfg_scale: int = 6, flow_shift: int = 7, disable_autocast: bool = False, is_causal: bool = False, dit_config: DiTConfig = HunyuanVideoConfig(), dit_precision: str = 'bf16', vae_config: VAEConfig = HunyuanVAEConfig(), vae_precision: str = 'fp16', vae_tiling: bool = True, vae_sp: bool = True, image_encoder_config: EncoderConfig = EncoderConfig(), image_encoder_precision: str = 'fp32', text_encoder_configs: tuple[EncoderConfig, ...] = (lambda: (LlamaConfig(), CLIPTextConfig()))(), text_encoder_precisions: tuple[str, ...] = (lambda: ('fp16', 'fp16'))(), preprocess_text_funcs: tuple[Callable[[str], str], ...] = (lambda: (llama_preprocess_text, clip_preprocess_text))(), postprocess_text_funcs: tuple[Callable[[BaseEncoderOutput], tensor], ...] = (lambda: (llama_postprocess_text, clip_postprocess_text))(), pos_magic: str | None = None, neg_magic: str | None = None, timesteps_scale: bool | None = None, mask_strategy_file_path: str | None = None, STA_mode: STA_Mode = STA_INFERENCE, skip_time_steps: int = 15, dmd_denoising_steps: list[int] | None = None, ti2v_task: bool = False, boundary_ratio: float | None = None)
fastvideo.configs.pipelines.hunyuan15
¶
Classes¶
fastvideo.configs.pipelines.hunyuan15.Hunyuan15T2V480PConfig
dataclass
¶
Hunyuan15T2V480PConfig(model_path: str = '', pipeline_config_path: str | None = None, embedded_cfg_scale: float = 6.0, flow_shift: int = 5, disable_autocast: bool = False, is_causal: bool = False, dit_config: DiTConfig = HunyuanVideo15Config(), dit_precision: str = 'bf16', vae_config: VAEConfig = Hunyuan15VAEConfig(), vae_precision: str = 'fp16', vae_tiling: bool = True, vae_sp: bool = True, image_encoder_config: EncoderConfig = EncoderConfig(), image_encoder_precision: str = 'fp32', text_encoder_configs: tuple[EncoderConfig, ...] = (lambda: (Qwen2_5_VLConfig(), T5Config()))(), text_encoder_precisions: tuple[str, ...] = (lambda: ('bf16', 'fp32'))(), preprocess_text_funcs: tuple[Callable[[Any], Any], ...] = (lambda: (qwen_preprocess_text, byt5_preprocess_text))(), postprocess_text_funcs: tuple[Callable[..., Any], ...] = (lambda: (qwen_postprocess_text, byt5_postprocess_text))(), pos_magic: str | None = None, neg_magic: str | None = None, timesteps_scale: bool | None = None, mask_strategy_file_path: str | None = None, STA_mode: STA_Mode = STA_INFERENCE, skip_time_steps: int = 15, dmd_denoising_steps: list[int] | None = None, ti2v_task: bool = False, boundary_ratio: float | None = None, text_encoder_crop_start: int = PROMPT_TEMPLATE_TOKEN_LENGTH, text_encoder_max_lengths: tuple[int, ...] = (lambda: (1000 + PROMPT_TEMPLATE_TOKEN_LENGTH, 256))())
fastvideo.configs.pipelines.hunyuan15.Hunyuan15T2V720PConfig
dataclass
¶
Hunyuan15T2V720PConfig(model_path: str = '', pipeline_config_path: str | None = None, embedded_cfg_scale: float = 6.0, flow_shift: int = 9, disable_autocast: bool = False, is_causal: bool = False, dit_config: DiTConfig = HunyuanVideo15Config(), dit_precision: str = 'bf16', vae_config: VAEConfig = Hunyuan15VAEConfig(), vae_precision: str = 'fp16', vae_tiling: bool = True, vae_sp: bool = True, image_encoder_config: EncoderConfig = EncoderConfig(), image_encoder_precision: str = 'fp32', text_encoder_configs: tuple[EncoderConfig, ...] = (lambda: (Qwen2_5_VLConfig(), T5Config()))(), text_encoder_precisions: tuple[str, ...] = (lambda: ('bf16', 'fp32'))(), preprocess_text_funcs: tuple[Callable[[Any], Any], ...] = (lambda: (qwen_preprocess_text, byt5_preprocess_text))(), postprocess_text_funcs: tuple[Callable[..., Any], ...] = (lambda: (qwen_postprocess_text, byt5_postprocess_text))(), pos_magic: str | None = None, neg_magic: str | None = None, timesteps_scale: bool | None = None, mask_strategy_file_path: str | None = None, STA_mode: STA_Mode = STA_INFERENCE, skip_time_steps: int = 15, dmd_denoising_steps: list[int] | None = None, ti2v_task: bool = False, boundary_ratio: float | None = None, text_encoder_crop_start: int = PROMPT_TEMPLATE_TOKEN_LENGTH, text_encoder_max_lengths: tuple[int, ...] = (lambda: (1000 + PROMPT_TEMPLATE_TOKEN_LENGTH, 256))())
Functions¶
fastvideo.configs.pipelines.hunyuan15.extract_glyph_texts
¶
Extract glyph texts from prompt using regex pattern.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompt
|
str
|
Input prompt string |
required |
Returns:
| Type | Description |
|---|---|
str | None
|
List of extracted glyph texts |
Source code in fastvideo/configs/pipelines/hunyuan15.py
fastvideo.configs.pipelines.hunyuan15.format_text_input
¶
Apply text to template.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompt
|
List[str]
|
Input text. |
required |
system_message
|
str
|
System message. |
required |
Returns:
| Type | Description |
|---|---|
list[dict[str, Any]]
|
List[Dict[str, Any]]: List of chat conversation. |
Source code in fastvideo/configs/pipelines/hunyuan15.py
fastvideo.configs.pipelines.longcat
¶
Classes¶
fastvideo.configs.pipelines.longcat.LongCatDiTArchConfig
dataclass
¶
LongCatDiTArchConfig(stacked_params_mapping: list[tuple[str, str, str]] = list(), _fsdp_shard_conditions: list = list(), _compile_conditions: list = list(), param_names_mapping: dict = dict(), reverse_param_names_mapping: dict = dict(), lora_param_names_mapping: dict = dict(), _supported_attention_backends: tuple[AttentionBackendEnum, ...] = (SLIDING_TILE_ATTN, SAGE_ATTN, FLASH_ATTN, TORCH_SDPA, VIDEO_SPARSE_ATTN, VMOBA_ATTN, SAGE_ATTN_THREE), hidden_size: int = 0, num_attention_heads: int = 0, num_channels_latents: int = 0, in_channels: int = 16, out_channels: int = 16, exclude_lora_layers: list[str] = list(), boundary_ratio: float | None = None, adaln_tembed_dim: int = 512, caption_channels: int = 4096, depth: int = 48, enable_bsa: bool = False, enable_flashattn3: bool = False, enable_flashattn2: bool = True, enable_xformers: bool = False, frequency_embedding_size: int = 256, mlp_ratio: int = 4, num_heads: int = 32, text_tokens_zero_pad: bool = True, patch_size: list[int] = (lambda: [1, 2, 2])(), cp_split_hw: list[int] | None = None, bsa_params: dict | None = None)
Bases: DiTArchConfig
Extended DiTArchConfig with LongCat-specific fields.
NOTE: This is for Phase 1 wrapper compatibility. For native model (Phase 2), use LongCatVideoConfig from fastvideo.configs.models.dits.longcat instead.
fastvideo.configs.pipelines.longcat.LongCatT2V480PConfig
dataclass
¶
LongCatT2V480PConfig(model_path: str = '', pipeline_config_path: str | None = None, embedded_cfg_scale: float = 6.0, flow_shift: float | None = None, disable_autocast: bool = False, is_causal: bool = False, dit_config: DiTConfig = (lambda: DiTConfig(arch_config=LongCatDiTArchConfig()))(), dit_precision: str = 'bf16', vae_config: VAEConfig = WanVAEConfig(), vae_precision: str = 'bf16', vae_tiling: bool = False, vae_sp: bool = False, image_encoder_config: EncoderConfig = EncoderConfig(), image_encoder_precision: str = 'fp32', text_encoder_configs: tuple[T5Config, ...] = (lambda: (T5Config(),))(), text_encoder_precisions: tuple[str, ...] = (lambda: ('bf16',))(), preprocess_text_funcs: tuple[Callable[[str], str], ...] = (lambda: (longcat_preprocess_text,))(), postprocess_text_funcs: tuple[Callable[[BaseEncoderOutput], Tensor], ...] = (lambda: (umt5_postprocess_text,))(), pos_magic: str | None = None, neg_magic: str | None = None, timesteps_scale: bool | None = None, mask_strategy_file_path: str | None = None, STA_mode: STA_Mode = STA_INFERENCE, skip_time_steps: int = 15, dmd_denoising_steps: list[int] | None = None, ti2v_task: bool = False, boundary_ratio: float | None = None, enable_kv_cache: bool = True, offload_kv_cache: bool = False, enable_bsa: bool = False, use_distill: bool = False, enhance_hf: bool = False, bsa_params: dict | None = None, bsa_sparsity: float | None = None, bsa_cdf_threshold: float | None = None, bsa_chunk_q: list[int] | None = None, bsa_chunk_k: list[int] | None = None, t_thresh: float | None = None)
Bases: PipelineConfig
Configuration for LongCat pipeline (480p) aligned to LongCat-Video modules.
Components expected by loaders
- tokenizer: AutoTokenizer
- text_encoder: UMT5EncoderModel
- transformer: LongCatVideoTransformer3DModel (Phase 1 wrapper) OR LongCatTransformer3DModel (Phase 2 native)
- vae: AutoencoderKLWan (Wan VAE, 4x8 compression)
- scheduler: FlowMatchEulerDiscreteScheduler
fastvideo.configs.pipelines.longcat.LongCatT2V704PConfig
dataclass
¶
LongCatT2V704PConfig(model_path: str = '', pipeline_config_path: str | None = None, embedded_cfg_scale: float = 6.0, flow_shift: float | None = None, disable_autocast: bool = False, is_causal: bool = False, dit_config: DiTConfig = (lambda: DiTConfig(arch_config=LongCatDiTArchConfig()))(), dit_precision: str = 'bf16', vae_config: VAEConfig = WanVAEConfig(), vae_precision: str = 'bf16', vae_tiling: bool = False, vae_sp: bool = False, image_encoder_config: EncoderConfig = EncoderConfig(), image_encoder_precision: str = 'fp32', text_encoder_configs: tuple[T5Config, ...] = (lambda: (T5Config(),))(), text_encoder_precisions: tuple[str, ...] = (lambda: ('bf16',))(), preprocess_text_funcs: tuple[Callable[[str], str], ...] = (lambda: (longcat_preprocess_text,))(), postprocess_text_funcs: tuple[Callable[[BaseEncoderOutput], Tensor], ...] = (lambda: (umt5_postprocess_text,))(), pos_magic: str | None = None, neg_magic: str | None = None, timesteps_scale: bool | None = None, mask_strategy_file_path: str | None = None, STA_mode: STA_Mode = STA_INFERENCE, skip_time_steps: int = 15, dmd_denoising_steps: list[int] | None = None, ti2v_task: bool = False, boundary_ratio: float | None = None, enable_kv_cache: bool = True, offload_kv_cache: bool = False, enable_bsa: bool = True, use_distill: bool = False, enhance_hf: bool = False, bsa_params: dict | None = None, bsa_sparsity: float | None = None, bsa_cdf_threshold: float | None = None, bsa_chunk_q: list[int] | None = None, bsa_chunk_k: list[int] | None = None, t_thresh: float | None = None)
Bases: LongCatT2V480PConfig
Configuration for LongCat pipeline (704p) with BSA enabled by default.
Uses the same resolution and BSA parameters as original LongCat refinement stage.
BSA parameters configured in transformer config.json with chunk_3d_shape=[4,4,4]:
- Input: 704×1280×96
- VAE (8x): 88×160×96
- Patch [1,2,2]: 44×80×96
- chunk [4,4,4]: 96%4=0, 44%4=0, 80%4=0 ✅
This configuration matches the original LongCat refinement stage parameters.
Functions¶
fastvideo.configs.pipelines.longcat.longcat_preprocess_text
¶
Clean and preprocess text like original LongCat implementation.
This function applies the same text cleaning pipeline as the original LongCat-Video implementation to ensure identical tokenization results.
Steps: 1. basic_clean: Fix unicode issues and unescape HTML entities 2. whitespace_clean: Normalize whitespace to single spaces
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompt
|
str
|
Raw input text prompt |
required |
Returns:
| Type | Description |
|---|---|
str
|
Cleaned and normalized text prompt |
Source code in fastvideo/configs/pipelines/longcat.py
fastvideo.configs.pipelines.longcat.umt5_postprocess_text
¶
Postprocess UMT5/T5 encoder outputs to fixed length 512 embeddings.
Source code in fastvideo/configs/pipelines/longcat.py
fastvideo.configs.pipelines.registry
¶
Registry for pipeline weight-specific configurations.
Classes¶
Functions¶
fastvideo.configs.pipelines.registry.get_pipeline_config_cls_from_name
¶
get_pipeline_config_cls_from_name(pipeline_name_or_path: str) -> type[PipelineConfig]
Get the appropriate configuration class for a given pipeline name or path.
This function implements a multi-step lookup process to find the most suitable configuration class for a given pipeline. It follows this order: 1. Exact match in the PIPE_NAME_TO_CONFIG 2. Partial match in the PIPE_NAME_TO_CONFIG 3. Fallback to class name in the model_index.json 4. else raise an error
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
pipeline_name_or_path
|
str
|
The name or path of the pipeline. This can be: - A registered model ID (e.g., "FastVideo/FastHunyuan-diffusers") - A local path to a model directory - A model ID that will be downloaded |
required |
Returns:
| Type | Description |
|---|---|
type[PipelineConfig]
|
Type[PipelineConfig]: The configuration class that best matches the pipeline. This will be one of: - A specific weight configuration class if an exact match is found - A fallback configuration class based on the pipeline architecture - The base PipelineConfig class if no matches are found |
Note
- For local paths, the function will verify the model configuration
- For remote models, it will attempt to download the model index
- Warning messages are logged when falling back to less specific configurations
Source code in fastvideo/configs/pipelines/registry.py
fastvideo.configs.pipelines.stepvideo
¶
Classes¶
fastvideo.configs.pipelines.stepvideo.StepVideoT2VConfig
dataclass
¶
StepVideoT2VConfig(model_path: str = '', pipeline_config_path: str | None = None, embedded_cfg_scale: float = 6.0, flow_shift: int = 13, disable_autocast: bool = False, is_causal: bool = False, dit_config: DiTConfig = StepVideoConfig(), dit_precision: str = 'bf16', vae_config: VAEConfig = StepVideoVAEConfig(), vae_precision: str = 'bf16', vae_tiling: bool = False, vae_sp: bool = False, image_encoder_config: EncoderConfig = EncoderConfig(), image_encoder_precision: str = 'fp32', text_encoder_configs: tuple[EncoderConfig, ...] = (lambda: (EncoderConfig(),))(), text_encoder_precisions: tuple[str, ...] = (lambda: ('fp32',))(), preprocess_text_funcs: tuple[Callable[[str], str], ...] = (lambda: (preprocess_text,))(), postprocess_text_funcs: tuple[Callable[[BaseEncoderOutput], tensor], ...] = (lambda: (postprocess_text,))(), pos_magic: str = '超高清、HDR 视频、环境光、杜比全景声、画面稳定、流畅动作、逼真的细节、专业级构图、超现实主义、自然、生动、超细节、清晰。', neg_magic: str = '画面暗、低分辨率、不良手、文本、缺少手指、多余的手指、裁剪、低质量、颗粒状、签名、水印、用户名、模糊。', timesteps_scale: bool = False, mask_strategy_file_path: str | None = None, STA_mode: STA_Mode = STA_INFERENCE, skip_time_steps: int = 15, dmd_denoising_steps: list[int] | None = None, ti2v_task: bool = False, boundary_ratio: float | None = None, precision: str = 'bf16')
fastvideo.configs.pipelines.wan
¶
Classes¶
fastvideo.configs.pipelines.wan.FastWan2_1_T2V_480P_Config
dataclass
¶
FastWan2_1_T2V_480P_Config(model_path: str = '', pipeline_config_path: str | None = None, embedded_cfg_scale: float = 6.0, flow_shift: float | None = 8.0, disable_autocast: bool = False, is_causal: bool = False, dit_config: DiTConfig = WanVideoConfig(), dit_precision: str = 'bf16', vae_config: VAEConfig = WanVAEConfig(), vae_precision: str = 'fp32', vae_tiling: bool = False, vae_sp: bool = False, image_encoder_config: EncoderConfig = EncoderConfig(), image_encoder_precision: str = 'fp32', text_encoder_configs: tuple[EncoderConfig, ...] = (lambda: (T5Config(),))(), text_encoder_precisions: tuple[str, ...] = (lambda: ('fp32',))(), preprocess_text_funcs: tuple[Callable[[str], str], ...] = (lambda: (preprocess_text,))(), postprocess_text_funcs: tuple[Callable[[BaseEncoderOutput], Tensor], ...] = (lambda: (t5_postprocess_text,))(), pos_magic: str | None = None, neg_magic: str | None = None, timesteps_scale: bool | None = None, mask_strategy_file_path: str | None = None, STA_mode: STA_Mode = STA_INFERENCE, skip_time_steps: int = 15, dmd_denoising_steps: list[int] | None = (lambda: [1000, 757, 522])(), ti2v_task: bool = False, boundary_ratio: float | None = None, precision: str = 'bf16', warp_denoising_step: bool = True)
fastvideo.configs.pipelines.wan.WANV2VConfig
dataclass
¶
WANV2VConfig(model_path: str = '', pipeline_config_path: str | None = None, embedded_cfg_scale: float = 6.0, flow_shift: float | None = 3.0, disable_autocast: bool = False, is_causal: bool = False, dit_config: DiTConfig = WanVideoConfig(), dit_precision: str = 'bf16', vae_config: VAEConfig = WanVAEConfig(), vae_precision: str = 'fp32', vae_tiling: bool = False, vae_sp: bool = False, image_encoder_config: EncoderConfig = WAN2_1ControlCLIPVisionConfig(), image_encoder_precision: str = 'bf16', text_encoder_configs: tuple[EncoderConfig, ...] = (lambda: (T5Config(),))(), text_encoder_precisions: tuple[str, ...] = (lambda: ('fp32',))(), preprocess_text_funcs: tuple[Callable[[str], str], ...] = (lambda: (preprocess_text,))(), postprocess_text_funcs: tuple[Callable[[BaseEncoderOutput], Tensor], ...] = (lambda: (t5_postprocess_text,))(), pos_magic: str | None = None, neg_magic: str | None = None, timesteps_scale: bool | None = None, mask_strategy_file_path: str | None = None, STA_mode: STA_Mode = STA_INFERENCE, skip_time_steps: int = 15, dmd_denoising_steps: list[int] | None = None, ti2v_task: bool = False, boundary_ratio: float | None = None, precision: str = 'bf16', warp_denoising_step: bool = True)
fastvideo.configs.pipelines.wan.WanI2V480PConfig
dataclass
¶
WanI2V480PConfig(model_path: str = '', pipeline_config_path: str | None = None, embedded_cfg_scale: float = 6.0, flow_shift: float | None = 3.0, disable_autocast: bool = False, is_causal: bool = False, dit_config: DiTConfig = WanVideoConfig(), dit_precision: str = 'bf16', vae_config: VAEConfig = WanVAEConfig(), vae_precision: str = 'fp32', vae_tiling: bool = False, vae_sp: bool = False, image_encoder_config: EncoderConfig = CLIPVisionConfig(), image_encoder_precision: str = 'fp32', text_encoder_configs: tuple[EncoderConfig, ...] = (lambda: (T5Config(),))(), text_encoder_precisions: tuple[str, ...] = (lambda: ('fp32',))(), preprocess_text_funcs: tuple[Callable[[str], str], ...] = (lambda: (preprocess_text,))(), postprocess_text_funcs: tuple[Callable[[BaseEncoderOutput], Tensor], ...] = (lambda: (t5_postprocess_text,))(), pos_magic: str | None = None, neg_magic: str | None = None, timesteps_scale: bool | None = None, mask_strategy_file_path: str | None = None, STA_mode: STA_Mode = STA_INFERENCE, skip_time_steps: int = 15, dmd_denoising_steps: list[int] | None = None, ti2v_task: bool = False, boundary_ratio: float | None = None, precision: str = 'bf16', warp_denoising_step: bool = True)
fastvideo.configs.pipelines.wan.WanI2V720PConfig
dataclass
¶
WanI2V720PConfig(model_path: str = '', pipeline_config_path: str | None = None, embedded_cfg_scale: float = 6.0, flow_shift: float | None = 5.0, disable_autocast: bool = False, is_causal: bool = False, dit_config: DiTConfig = WanVideoConfig(), dit_precision: str = 'bf16', vae_config: VAEConfig = WanVAEConfig(), vae_precision: str = 'fp32', vae_tiling: bool = False, vae_sp: bool = False, image_encoder_config: EncoderConfig = CLIPVisionConfig(), image_encoder_precision: str = 'fp32', text_encoder_configs: tuple[EncoderConfig, ...] = (lambda: (T5Config(),))(), text_encoder_precisions: tuple[str, ...] = (lambda: ('fp32',))(), preprocess_text_funcs: tuple[Callable[[str], str], ...] = (lambda: (preprocess_text,))(), postprocess_text_funcs: tuple[Callable[[BaseEncoderOutput], Tensor], ...] = (lambda: (t5_postprocess_text,))(), pos_magic: str | None = None, neg_magic: str | None = None, timesteps_scale: bool | None = None, mask_strategy_file_path: str | None = None, STA_mode: STA_Mode = STA_INFERENCE, skip_time_steps: int = 15, dmd_denoising_steps: list[int] | None = None, ti2v_task: bool = False, boundary_ratio: float | None = None, precision: str = 'bf16', warp_denoising_step: bool = True)
fastvideo.configs.pipelines.wan.WanT2V480PConfig
dataclass
¶
WanT2V480PConfig(model_path: str = '', pipeline_config_path: str | None = None, embedded_cfg_scale: float = 6.0, flow_shift: float | None = 3.0, disable_autocast: bool = False, is_causal: bool = False, dit_config: DiTConfig = WanVideoConfig(), dit_precision: str = 'bf16', vae_config: VAEConfig = WanVAEConfig(), vae_precision: str = 'fp32', vae_tiling: bool = False, vae_sp: bool = False, image_encoder_config: EncoderConfig = EncoderConfig(), image_encoder_precision: str = 'fp32', text_encoder_configs: tuple[EncoderConfig, ...] = (lambda: (T5Config(),))(), text_encoder_precisions: tuple[str, ...] = (lambda: ('fp32',))(), preprocess_text_funcs: tuple[Callable[[str], str], ...] = (lambda: (preprocess_text,))(), postprocess_text_funcs: tuple[Callable[[BaseEncoderOutput], Tensor], ...] = (lambda: (t5_postprocess_text,))(), pos_magic: str | None = None, neg_magic: str | None = None, timesteps_scale: bool | None = None, mask_strategy_file_path: str | None = None, STA_mode: STA_Mode = STA_INFERENCE, skip_time_steps: int = 15, dmd_denoising_steps: list[int] | None = None, ti2v_task: bool = False, boundary_ratio: float | None = None, precision: str = 'bf16', warp_denoising_step: bool = True)
fastvideo.configs.pipelines.wan.WanT2V720PConfig
dataclass
¶
WanT2V720PConfig(model_path: str = '', pipeline_config_path: str | None = None, embedded_cfg_scale: float = 6.0, flow_shift: float | None = 5.0, disable_autocast: bool = False, is_causal: bool = False, dit_config: DiTConfig = WanVideoConfig(), dit_precision: str = 'bf16', vae_config: VAEConfig = WanVAEConfig(), vae_precision: str = 'fp32', vae_tiling: bool = False, vae_sp: bool = False, image_encoder_config: EncoderConfig = EncoderConfig(), image_encoder_precision: str = 'fp32', text_encoder_configs: tuple[EncoderConfig, ...] = (lambda: (T5Config(),))(), text_encoder_precisions: tuple[str, ...] = (lambda: ('fp32',))(), preprocess_text_funcs: tuple[Callable[[str], str], ...] = (lambda: (preprocess_text,))(), postprocess_text_funcs: tuple[Callable[[BaseEncoderOutput], Tensor], ...] = (lambda: (t5_postprocess_text,))(), pos_magic: str | None = None, neg_magic: str | None = None, timesteps_scale: bool | None = None, mask_strategy_file_path: str | None = None, STA_mode: STA_Mode = STA_INFERENCE, skip_time_steps: int = 15, dmd_denoising_steps: list[int] | None = None, ti2v_task: bool = False, boundary_ratio: float | None = None, precision: str = 'bf16', warp_denoising_step: bool = True)