fastvideo_args
¶
The arguments of FastVideo Inference.
Classes¶
fastvideo.fastvideo_args.ExecutionMode
¶
Enumeration for different pipeline modes.
Inherits from str to allow string comparison for backward compatibility.
Functions¶
fastvideo.fastvideo_args.ExecutionMode.choices
classmethod
¶
fastvideo.fastvideo_args.ExecutionMode.from_string
classmethod
¶
from_string(value: str) -> ExecutionMode
Convert string to ExecutionMode enum.
Source code in fastvideo/fastvideo_args.py
fastvideo.fastvideo_args.FastVideoArgs
dataclass
¶
FastVideoArgs(model_path: str, mode: ExecutionMode = INFERENCE, workload_type: WorkloadType = T2V, cache_strategy: str = 'none', distributed_executor_backend: str = 'mp', ray_placement_group: PlacementGroup | None = None, ray_runtime_env: RuntimeEnv | None = None, inference_mode: bool = True, trust_remote_code: bool = False, revision: str | None = None, num_gpus: int = 1, tp_size: int = -1, sp_size: int = -1, hsdp_replicate_dim: int = 1, hsdp_shard_dim: int = -1, dist_timeout: int | None = None, pipeline_config: PipelineConfig = PipelineConfig(), preprocess_config: PreprocessConfig | None = None, lora_path: str | None = None, lora_nickname: str = 'default', lora_target_modules: list[str] | None = None, output_type: str = 'pil', dit_cpu_offload: bool = True, use_fsdp_inference: bool = False, dit_layerwise_offload: bool = False, text_encoder_cpu_offload: bool = True, image_encoder_cpu_offload: bool = True, vae_cpu_offload: bool = True, pin_cpu_memory: bool = True, mask_strategy_file_path: str | None = None, STA_mode: STA_Mode = STA_INFERENCE, skip_time_steps: int = 15, enable_torch_compile: bool = False, torch_compile_kwargs: dict[str, Any] = dict(), disable_autocast: bool = False, VSA_sparsity: float = 0.0, moba_config_path: str | None = None, moba_config: dict[str, Any] = dict(), master_port: int | None = None, enable_stage_verification: bool = True, prompt_txt: str | None = None, model_paths: dict[str, str] = dict(), model_loaded: dict[str, bool] = (lambda: {'transformer': True, 'vae': True})(), override_text_encoder_safetensors: str | None = None, override_text_encoder_quant: QuantizationMethods = None, override_transformer_cls_name: str | None = None, init_weights_from_safetensors: str = '', init_weights_from_safetensors_2: str = '', override_pipeline_cls_name: str | None = None, boundary_ratio: float | None = 0.875)
Functions¶
fastvideo.fastvideo_args.FastVideoArgs.check_fastvideo_args
¶
Validate inference arguments for consistency
Source code in fastvideo/fastvideo_args.py
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 | |
fastvideo.fastvideo_args.TrainingArgs
dataclass
¶
TrainingArgs(model_path: str, mode: ExecutionMode = INFERENCE, workload_type: WorkloadType = T2V, cache_strategy: str = 'none', distributed_executor_backend: str = 'mp', ray_placement_group: PlacementGroup | None = None, ray_runtime_env: RuntimeEnv | None = None, inference_mode: bool = True, trust_remote_code: bool = False, revision: str | None = None, num_gpus: int = 1, tp_size: int = -1, sp_size: int = -1, hsdp_replicate_dim: int = 1, hsdp_shard_dim: int = -1, dist_timeout: int | None = None, pipeline_config: PipelineConfig = PipelineConfig(), preprocess_config: PreprocessConfig | None = None, lora_path: str | None = None, lora_nickname: str = 'default', lora_target_modules: list[str] | None = None, output_type: str = 'pil', dit_cpu_offload: bool = True, use_fsdp_inference: bool = False, dit_layerwise_offload: bool = False, text_encoder_cpu_offload: bool = True, image_encoder_cpu_offload: bool = True, vae_cpu_offload: bool = True, pin_cpu_memory: bool = True, mask_strategy_file_path: str | None = None, STA_mode: STA_Mode = STA_INFERENCE, skip_time_steps: int = 15, enable_torch_compile: bool = False, torch_compile_kwargs: dict[str, Any] = dict(), disable_autocast: bool = False, VSA_sparsity: float = 0.0, moba_config_path: str | None = None, moba_config: dict[str, Any] = dict(), master_port: int | None = None, enable_stage_verification: bool = True, prompt_txt: str | None = None, model_paths: dict[str, str] = dict(), model_loaded: dict[str, bool] = (lambda: {'transformer': True, 'vae': True})(), override_text_encoder_safetensors: str | None = None, override_text_encoder_quant: QuantizationMethods = None, override_transformer_cls_name: str | None = None, init_weights_from_safetensors: str = '', init_weights_from_safetensors_2: str = '', override_pipeline_cls_name: str | None = None, boundary_ratio: float | None = 0.875, data_path: str = '', dataloader_num_workers: int = 0, num_height: int = 0, num_width: int = 0, num_frames: int = 0, train_batch_size: int = 0, num_latent_t: int = 0, group_frame: bool = False, group_resolution: bool = False, pretrained_model_name_or_path: str = '', real_score_model_path: str = '', fake_score_model_path: str = '', ema_decay: float = 0.0, ema_start_step: int = 0, training_cfg_rate: float = 0.0, precondition_outputs: bool = False, validation_dataset_file: str = '', validation_preprocessed_path: str = '', validation_sampling_steps: str = '', validation_guidance_scale: str = '', validation_steps: float = 0.0, log_validation: bool = False, trackers: list[str] = list(), tracker_project_name: str = '', wandb_run_name: str = '', seed: int | None = None, output_dir: str = '', checkpoints_total_limit: int = 0, resume_from_checkpoint: str = '', num_train_epochs: int = 0, max_train_steps: int = 0, gradient_accumulation_steps: int = 0, learning_rate: float = 0.0, scale_lr: bool = False, lr_scheduler: str = 'constant', lr_warmup_steps: int = 0, max_grad_norm: float = 0.0, enable_gradient_checkpointing_type: str | None = None, selective_checkpointing: float = 0.0, mixed_precision: str = '', train_sp_batch_size: int = 0, fsdp_sharding_startegy: str = '', weighting_scheme: str = '', logit_mean: float = 0.0, logit_std: float = 1.0, mode_scale: float = 0.0, num_euler_timesteps: int = 0, lr_num_cycles: int = 0, lr_power: float = 0.0, min_lr_ratio: float = 0.5, not_apply_cfg_solver: bool = False, distill_cfg: float = 0.0, scheduler_type: str = '', linear_quadratic_threshold: float = 0.0, linear_range: float = 0.0, weight_decay: float = 0.0, betas: str = '0.9,0.999', use_ema: bool = False, multi_phased_distill_schedule: str = '', pred_decay_weight: float = 0.0, pred_decay_type: str = '', hunyuan_teacher_disable_cfg: bool = False, master_weight_type: str = '', VSA_decay_rate: float = 0.01, VSA_decay_interval_steps: int = 1, lora_rank: int | None = None, lora_alpha: int | None = None, lora_training: bool = False, generator_update_interval: int = 5, dfake_gen_update_ratio: int = 5, min_timestep_ratio: float = 0.2, max_timestep_ratio: float = 0.98, real_score_guidance_scale: float = 3.5, fake_score_learning_rate: float = 0.0, fake_score_lr_scheduler: str = 'constant', fake_score_betas: str = '0.9,0.999', training_state_checkpointing_steps: int = 0, weight_only_checkpointing_steps: int = 0, log_visualization: bool = False, simulate_generator_forward: bool = False, warp_denoising_step: bool = False, num_frame_per_block: int = 3, independent_first_frame: bool = False, enable_gradient_masking: bool = True, gradient_mask_last_n_frames: int = 21, same_step_across_blocks: bool = False, last_step_only: bool = False, context_noise: int = 0)
Bases: FastVideoArgs
Training arguments. Inherits from FastVideoArgs and adds training-specific arguments. If there are any conflicts, the training arguments will take precedence.
fastvideo.fastvideo_args.WorkloadType
¶
Enumeration for different workload types.
Inherits from str to allow string comparison for backward compatibility.
Functions¶
fastvideo.fastvideo_args.WorkloadType.choices
classmethod
¶
fastvideo.fastvideo_args.WorkloadType.from_string
classmethod
¶
from_string(value: str) -> WorkloadType
Convert string to WorkloadType enum.
Source code in fastvideo/fastvideo_args.py
Functions¶
fastvideo.fastvideo_args.prepare_fastvideo_args
¶
prepare_fastvideo_args(argv: list[str]) -> FastVideoArgs
Prepare the inference arguments from the command line arguments.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
argv
|
list[str]
|
The command line arguments. Typically, it should be |
required |
Returns:
| Type | Description |
|---|---|
FastVideoArgs
|
The inference arguments. |
Source code in fastvideo/fastvideo_args.py
fastvideo.fastvideo_args.set_current_fastvideo_args
¶
set_current_fastvideo_args(fastvideo_args: FastVideoArgs)
Temporarily set the current fastvideo config. Used during model initialization. We save the current fastvideo config in a global variable, so that all modules can access it, e.g. custom ops can access the fastvideo config to determine how to dispatch.