Hunyuan video diffusion pipeline implementation.
This module contains an implementation of the Hunyuan video diffusion pipeline
using the modular pipeline architecture.
Classes
fastvideo.pipelines.basic.hunyuan.hunyuan_pipeline.HunyuanVideoPipeline
Bases: ComposedPipelineBase
Source code in fastvideo/pipelines/composed_pipeline_base.py
| def __init__(self,
model_path: str,
fastvideo_args: FastVideoArgs | TrainingArgs,
required_config_modules: list[str] | None = None,
loaded_modules: dict[str, torch.nn.Module] | None = None):
"""
Initialize the pipeline. After __init__, the pipeline should be ready to
use. The pipeline should be stateless and not hold any batch state.
"""
self.fastvideo_args = fastvideo_args
self.model_path: str = model_path
self._stages: list[PipelineStage] = []
self._stage_name_mapping: dict[str, PipelineStage] = {}
if required_config_modules is not None:
self._required_config_modules = required_config_modules
if self._required_config_modules is None:
raise NotImplementedError(
"Subclass must set _required_config_modules")
maybe_init_distributed_environment_and_model_parallel(
fastvideo_args.tp_size, fastvideo_args.sp_size)
# Torch profiler. Enabled and configured through env vars:
# FASTVIDEO_TORCH_PROFILER_DIR=/path/to/save/trace
trace_dir = envs.FASTVIDEO_TORCH_PROFILER_DIR
self.profiler_controller = get_or_create_profiler(trace_dir)
self.profiler = self.profiler_controller.profiler
self.local_rank = get_world_group().local_rank
# Load modules directly in initialization
logger.info("Loading pipeline modules...")
with self.profiler_controller.region("profiler_region_model_loading"):
self.modules = self.load_modules(fastvideo_args, loaded_modules)
|
Functions
fastvideo.pipelines.basic.hunyuan.hunyuan_pipeline.HunyuanVideoPipeline.create_pipeline_stages
Set up pipeline stages with proper dependency injection.
Source code in fastvideo/pipelines/basic/hunyuan/hunyuan_pipeline.py
| def create_pipeline_stages(self, fastvideo_args: FastVideoArgs):
"""Set up pipeline stages with proper dependency injection."""
self.add_stage(stage_name="input_validation_stage",
stage=InputValidationStage())
self.add_stage(stage_name="prompt_encoding_stage_primary",
stage=TextEncodingStage(
text_encoders=[
self.get_module("text_encoder"),
self.get_module("text_encoder_2")
],
tokenizers=[
self.get_module("tokenizer"),
self.get_module("tokenizer_2")
],
))
self.add_stage(stage_name="conditioning_stage",
stage=ConditioningStage())
self.add_stage(stage_name="timestep_preparation_stage",
stage=TimestepPreparationStage(
scheduler=self.get_module("scheduler")))
self.add_stage(stage_name="latent_preparation_stage",
stage=LatentPreparationStage(
scheduler=self.get_module("scheduler"),
transformer=self.get_module("transformer")))
self.add_stage(stage_name="denoising_stage",
stage=DenoisingStage(
transformer=self.get_module("transformer"),
scheduler=self.get_module("scheduler")))
self.add_stage(stage_name="decoding_stage",
stage=DecodingStage(vae=self.get_module("vae")))
|
Functions