turbodiffusion
¶
Classes¶
fastvideo.pipelines.basic.turbodiffusion.TurboDiffusionI2VPipeline
¶
Bases: LoRAPipeline, ComposedPipelineBase
TurboDiffusion I2V pipeline for 1-4 step image-to-video generation.
Uses RCM scheduler, SLA attention, and dual model switching for high-quality I2V generation.
Source code in fastvideo/pipelines/lora_pipeline.py
Functions¶
fastvideo.pipelines.basic.turbodiffusion.TurboDiffusionI2VPipeline.create_pipeline_stages
¶
create_pipeline_stages(fastvideo_args: FastVideoArgs) -> None
Set up pipeline stages with proper dependency injection.
Source code in fastvideo/pipelines/basic/turbodiffusion/turbodiffusion_i2v_pipeline.py
fastvideo.pipelines.basic.turbodiffusion.TurboDiffusionPipeline
¶
Bases: LoRAPipeline, ComposedPipelineBase
TurboDiffusion video pipeline for 1-4 step generation.
Uses RCM scheduler and SLA attention for fast, high-quality video generation.
Source code in fastvideo/pipelines/lora_pipeline.py
Functions¶
fastvideo.pipelines.basic.turbodiffusion.TurboDiffusionPipeline.create_pipeline_stages
¶
create_pipeline_stages(fastvideo_args: FastVideoArgs) -> None
Set up pipeline stages with proper dependency injection.
Source code in fastvideo/pipelines/basic/turbodiffusion/turbodiffusion_pipeline.py
Modules¶
fastvideo.pipelines.basic.turbodiffusion.turbodiffusion_i2v_pipeline
¶
TurboDiffusion I2V (Image-to-Video) Pipeline Implementation.
This module contains an implementation of the TurboDiffusion I2V pipeline for 1-4 step image-to-video generation using rCM (recurrent Consistency Model) sampling with SLA (Sparse-Linear Attention).
Key differences from T2V: - Uses dual models (high/low noise) with boundary switching - sigma_max=200 (vs 80 for T2V) - Mask conditioning with encoded first frame
Classes¶
fastvideo.pipelines.basic.turbodiffusion.turbodiffusion_i2v_pipeline.TurboDiffusionI2VPipeline
¶
Bases: LoRAPipeline, ComposedPipelineBase
TurboDiffusion I2V pipeline for 1-4 step image-to-video generation.
Uses RCM scheduler, SLA attention, and dual model switching for high-quality I2V generation.
Source code in fastvideo/pipelines/lora_pipeline.py
Functions¶
fastvideo.pipelines.basic.turbodiffusion.turbodiffusion_i2v_pipeline.TurboDiffusionI2VPipeline.create_pipeline_stages
¶create_pipeline_stages(fastvideo_args: FastVideoArgs) -> None
Set up pipeline stages with proper dependency injection.
Source code in fastvideo/pipelines/basic/turbodiffusion/turbodiffusion_i2v_pipeline.py
Functions¶
fastvideo.pipelines.basic.turbodiffusion.turbodiffusion_pipeline
¶
TurboDiffusion Video Pipeline Implementation.
This module contains an implementation of the TurboDiffusion video diffusion pipeline for 1-4 step video generation using rCM (recurrent Consistency Model) sampling with SLA (Sparse-Linear Attention).
Classes¶
fastvideo.pipelines.basic.turbodiffusion.turbodiffusion_pipeline.TurboDiffusionPipeline
¶
Bases: LoRAPipeline, ComposedPipelineBase
TurboDiffusion video pipeline for 1-4 step generation.
Uses RCM scheduler and SLA attention for fast, high-quality video generation.
Source code in fastvideo/pipelines/lora_pipeline.py
Functions¶
fastvideo.pipelines.basic.turbodiffusion.turbodiffusion_pipeline.TurboDiffusionPipeline.create_pipeline_stages
¶create_pipeline_stages(fastvideo_args: FastVideoArgs) -> None
Set up pipeline stages with proper dependency injection.