composed_pipeline_base
¶
Base class for composed pipelines.
This module defines the base class for pipelines that are composed of multiple stages.
Classes¶
fastvideo.pipelines.composed_pipeline_base.ComposedPipelineBase
¶
ComposedPipelineBase(model_path: str, fastvideo_args: FastVideoArgs | TrainingArgs, required_config_modules: list[str] | None = None, loaded_modules: dict[str, Module] | None = None)
Bases: ABC
Base class for pipelines composed of multiple stages.
This class provides the framework for creating pipelines by composing multiple stages together. Each stage is responsible for a specific part of the diffusion process, and the pipeline orchestrates the execution of these stages.
Initialize the pipeline. After init, the pipeline should be ready to use. The pipeline should be stateless and not hold any batch state.
Source code in fastvideo/pipelines/composed_pipeline_base.py
Attributes¶
fastvideo.pipelines.composed_pipeline_base.ComposedPipelineBase.required_config_modules
property
¶
List of modules that are required by the pipeline. The names should match the diffusers directory and model_index.json file. These modules will be loaded using the PipelineComponentLoader and made available in the modules dictionary. Access these modules using the get_module method.
class ConcretePipeline(ComposedPipelineBase): _required_config_modules = ["vae", "text_encoder", "transformer", "scheduler", "tokenizer"]
@property
def required_config_modules(self):
return self._required_config_modules
fastvideo.pipelines.composed_pipeline_base.ComposedPipelineBase.stages
property
¶
stages: list[PipelineStage]
List of stages in the pipeline.
Functions¶
fastvideo.pipelines.composed_pipeline_base.ComposedPipelineBase.create_pipeline_stages
abstractmethod
¶
create_pipeline_stages(fastvideo_args: FastVideoArgs)
fastvideo.pipelines.composed_pipeline_base.ComposedPipelineBase.create_training_stages
¶
create_training_stages(training_args: TrainingArgs)
fastvideo.pipelines.composed_pipeline_base.ComposedPipelineBase.forward
¶
forward(batch: ForwardBatch, fastvideo_args: FastVideoArgs) -> ForwardBatch
Generate a video or image using the pipeline.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
batch
|
ForwardBatch
|
The batch to generate from. |
required |
fastvideo_args
|
FastVideoArgs
|
The inference arguments. |
required |
Returns: ForwardBatch: The batch with the generated video or image.
Source code in fastvideo/pipelines/composed_pipeline_base.py
fastvideo.pipelines.composed_pipeline_base.ComposedPipelineBase.from_pretrained
classmethod
¶
from_pretrained(model_path: str, device: str | None = None, torch_dtype: dtype | None = None, pipeline_config: str | PipelineConfig | None = None, args: Namespace | None = None, required_config_modules: list[str] | None = None, loaded_modules: dict[str, Module] | None = None, **kwargs) -> ComposedPipelineBase
Load a pipeline from a pretrained model. loaded_modules: Optional[Dict[str, torch.nn.Module]] = None, If provided, loaded_modules will be used instead of loading from config/pretrained weights.
Source code in fastvideo/pipelines/composed_pipeline_base.py
fastvideo.pipelines.composed_pipeline_base.ComposedPipelineBase.initialize_pipeline
¶
initialize_pipeline(fastvideo_args: FastVideoArgs)
fastvideo.pipelines.composed_pipeline_base.ComposedPipelineBase.load_modules
¶
load_modules(fastvideo_args: FastVideoArgs, loaded_modules: dict[str, Module] | None = None) -> dict[str, Any]
Load the modules from the config. loaded_modules: Optional[Dict[str, torch.nn.Module]] = None, If provided, loaded_modules will be used instead of loading from config/pretrained weights.
Source code in fastvideo/pipelines/composed_pipeline_base.py
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 | |