preprocess
¶
Modules¶
fastvideo.pipelines.preprocess.preprocess_pipeline_base
¶
Classes¶
fastvideo.pipelines.preprocess.preprocess_pipeline_base.BasePreprocessPipeline
¶
BasePreprocessPipeline(model_path: str, fastvideo_args: FastVideoArgs | TrainingArgs, required_config_modules: list[str] | None = None, loaded_modules: dict[str, Module] | None = None)
Bases: ComposedPipelineBase
Base class for preprocessing pipelines that handles common functionality.
Source code in fastvideo/pipelines/composed_pipeline_base.py
Functions¶
fastvideo.pipelines.preprocess.preprocess_pipeline_base.BasePreprocessPipeline.create_pipeline_stages
¶create_pipeline_stages(fastvideo_args: FastVideoArgs)
Set up pipeline stages with proper dependency injection.
Source code in fastvideo/pipelines/preprocess/preprocess_pipeline_base.py
fastvideo.pipelines.preprocess.preprocess_pipeline_base.BasePreprocessPipeline.create_record
¶create_record(video_name: str, vae_latent: ndarray, text_embedding: ndarray, valid_data: dict[str, Any], idx: int, extra_features: dict[str, Any] | None = None) -> dict[str, Any]
Create a record for the Parquet dataset.
Source code in fastvideo/pipelines/preprocess/preprocess_pipeline_base.py
fastvideo.pipelines.preprocess.preprocess_pipeline_base.BasePreprocessPipeline.create_record_for_schema
¶create_record_for_schema(preprocess_batch: PreprocessBatch, schema: Schema, strict: bool = False) -> dict[str, Any]
Create a record for the Parquet dataset using a generic schema-based approach.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
preprocess_batch
|
PreprocessBatch
|
The batch containing the data to extract |
required |
schema
|
Schema
|
PyArrow schema defining the expected fields |
required |
strict
|
bool
|
If True, raises an exception when required fields are missing or unfilled |
False
|
Returns:
| Type | Description |
|---|---|
dict[str, Any]
|
Dictionary record matching the schema |
Raises:
| Type | Description |
|---|---|
ValueError
|
If strict=True and required fields are missing or unfilled |
Source code in fastvideo/pipelines/preprocess/preprocess_pipeline_base.py
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 | |
fastvideo.pipelines.preprocess.preprocess_pipeline_base.BasePreprocessPipeline.get_extra_features
¶Get additional features specific to the pipeline type. Override in subclasses.
fastvideo.pipelines.preprocess.preprocess_pipeline_base.BasePreprocessPipeline.get_pyarrow_schema
¶ fastvideo.pipelines.preprocess.preprocess_pipeline_base.BasePreprocessPipeline.get_schema_fields
¶Functions¶
fastvideo.pipelines.preprocess.preprocess_pipeline_i2v
¶
I2V Data Preprocessing pipeline implementation.
This module contains an implementation of the I2V Data Preprocessing pipeline using the modular pipeline architecture.
Classes¶
fastvideo.pipelines.preprocess.preprocess_pipeline_i2v.PreprocessPipeline_I2V
¶
PreprocessPipeline_I2V(model_path: str, fastvideo_args: FastVideoArgs | TrainingArgs, required_config_modules: list[str] | None = None, loaded_modules: dict[str, Module] | None = None)
Bases: BasePreprocessPipeline
I2V preprocessing pipeline implementation.
Source code in fastvideo/pipelines/composed_pipeline_base.py
Functions¶
fastvideo.pipelines.preprocess.preprocess_pipeline_i2v.PreprocessPipeline_I2V.create_record
¶create_record(video_name: str, vae_latent: ndarray, text_embedding: ndarray, valid_data: dict[str, Any], idx: int, extra_features: dict[str, Any] | None = None) -> dict[str, Any]
Create a record for the Parquet dataset with CLIP features.
Source code in fastvideo/pipelines/preprocess/preprocess_pipeline_i2v.py
fastvideo.pipelines.preprocess.preprocess_pipeline_i2v.PreprocessPipeline_I2V.get_pyarrow_schema
¶Functions¶
fastvideo.pipelines.preprocess.preprocess_pipeline_ode_trajectory
¶
ODE Trajectory Data Preprocessing pipeline implementation.
This module contains an implementation of the ODE Trajectory Data Preprocessing pipeline using the modular pipeline architecture.
Sec 4.3 of CausVid paper: https://arxiv.org/pdf/2412.07772
Classes¶
fastvideo.pipelines.preprocess.preprocess_pipeline_ode_trajectory.PreprocessPipeline_ODE_Trajectory
¶
PreprocessPipeline_ODE_Trajectory(model_path: str, fastvideo_args: FastVideoArgs | TrainingArgs, required_config_modules: list[str] | None = None, loaded_modules: dict[str, Module] | None = None)
Bases: BasePreprocessPipeline
ODE Trajectory preprocessing pipeline implementation.
Source code in fastvideo/pipelines/composed_pipeline_base.py
Functions¶
fastvideo.pipelines.preprocess.preprocess_pipeline_ode_trajectory.PreprocessPipeline_ODE_Trajectory.create_pipeline_stages
¶create_pipeline_stages(fastvideo_args: FastVideoArgs)
Set up pipeline stages with proper dependency injection.
Source code in fastvideo/pipelines/preprocess/preprocess_pipeline_ode_trajectory.py
fastvideo.pipelines.preprocess.preprocess_pipeline_ode_trajectory.PreprocessPipeline_ODE_Trajectory.get_pyarrow_schema
¶ fastvideo.pipelines.preprocess.preprocess_pipeline_ode_trajectory.PreprocessPipeline_ODE_Trajectory.preprocess_text_and_trajectory
¶preprocess_text_and_trajectory(fastvideo_args: FastVideoArgs, args)
Preprocess text-only data and generate trajectory information.
Source code in fastvideo/pipelines/preprocess/preprocess_pipeline_ode_trajectory.py
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 | |
Functions¶
fastvideo.pipelines.preprocess.preprocess_pipeline_t2v
¶
T2V Data Preprocessing pipeline implementation.
This module contains an implementation of the T2V Data Preprocessing pipeline using the modular pipeline architecture.
Classes¶
fastvideo.pipelines.preprocess.preprocess_pipeline_t2v.PreprocessPipeline_T2V
¶
PreprocessPipeline_T2V(model_path: str, fastvideo_args: FastVideoArgs | TrainingArgs, required_config_modules: list[str] | None = None, loaded_modules: dict[str, Module] | None = None)
Bases: BasePreprocessPipeline
T2V preprocessing pipeline implementation.
Source code in fastvideo/pipelines/composed_pipeline_base.py
fastvideo.pipelines.preprocess.preprocess_pipeline_text
¶
Text-only Data Preprocessing pipeline implementation.
This module contains an implementation of the Text-only Data Preprocessing pipeline using the modular pipeline architecture, based on the ODE Trajectory preprocessing.
Classes¶
fastvideo.pipelines.preprocess.preprocess_pipeline_text.PreprocessPipeline_Text
¶
PreprocessPipeline_Text(model_path: str, fastvideo_args: FastVideoArgs | TrainingArgs, required_config_modules: list[str] | None = None, loaded_modules: dict[str, Module] | None = None)
Bases: BasePreprocessPipeline
Text-only preprocessing pipeline implementation.
Source code in fastvideo/pipelines/composed_pipeline_base.py
Functions¶
fastvideo.pipelines.preprocess.preprocess_pipeline_text.PreprocessPipeline_Text.create_pipeline_stages
¶create_pipeline_stages(fastvideo_args: FastVideoArgs)
Set up pipeline stages with proper dependency injection.
Source code in fastvideo/pipelines/preprocess/preprocess_pipeline_text.py
fastvideo.pipelines.preprocess.preprocess_pipeline_text.PreprocessPipeline_Text.get_pyarrow_schema
¶ fastvideo.pipelines.preprocess.preprocess_pipeline_text.PreprocessPipeline_Text.preprocess_text_only
¶preprocess_text_only(fastvideo_args: FastVideoArgs, args)
Preprocess text-only data.
Source code in fastvideo/pipelines/preprocess/preprocess_pipeline_text.py
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 | |
Functions¶
fastvideo.pipelines.preprocess.preprocess_stages
¶
Classes¶
fastvideo.pipelines.preprocess.preprocess_stages.TextTransformStage
¶
Bases: PipelineStage
Process text data according to the cfg rate.
Source code in fastvideo/pipelines/preprocess/preprocess_stages.py
fastvideo.pipelines.preprocess.preprocess_stages.VideoTransformStage
¶
VideoTransformStage(train_fps: int, num_frames: int, max_height: int, max_width: int, do_temporal_sample: bool)
Bases: PipelineStage
Crop a video in temporal dimension.