@pytest.mark.parametrize("prompt", TEST_PROMPTS)
@pytest.mark.parametrize("ATTENTION_BACKEND", ["FLASH_ATTN", "TORCH_SDPA"])
@pytest.mark.parametrize("model_id", list(MODEL_TO_PARAMS.keys()))
def test_inference_similarity(prompt, ATTENTION_BACKEND, model_id):
"""
Test that runs inference with different parameters and compares the output
to reference videos using SSIM.
"""
os.environ["FASTVIDEO_ATTENTION_BACKEND"] = ATTENTION_BACKEND
script_dir = os.path.dirname(os.path.abspath(__file__))
base_output_dir = os.path.join(script_dir, 'generated_videos', model_id)
output_dir = os.path.join(base_output_dir, ATTENTION_BACKEND)
output_video_name = f"{prompt[:100].strip()}.mp4"
os.makedirs(output_dir, exist_ok=True)
BASE_PARAMS = MODEL_TO_PARAMS[model_id]
num_inference_steps = BASE_PARAMS["num_inference_steps"]
init_kwargs = {
"num_gpus": BASE_PARAMS["num_gpus"],
"flow_shift": BASE_PARAMS["flow_shift"],
"sp_size": BASE_PARAMS["sp_size"],
"tp_size": BASE_PARAMS["tp_size"],
"use_fsdp_inference": True,
"dit_cpu_offload": False,
}
if BASE_PARAMS.get("vae_sp"):
init_kwargs["vae_sp"] = True
init_kwargs["vae_tiling"] = True
if "text-encoder-precision" in BASE_PARAMS:
init_kwargs["text_encoder_precisions"] = BASE_PARAMS["text-encoder-precision"]
generation_kwargs = {
"num_inference_steps": num_inference_steps,
"output_path": output_dir,
"height": BASE_PARAMS["height"],
"width": BASE_PARAMS["width"],
"num_frames": BASE_PARAMS["num_frames"],
"guidance_scale": BASE_PARAMS["guidance_scale"],
"embedded_cfg_scale": BASE_PARAMS["embedded_cfg_scale"],
"seed": BASE_PARAMS["seed"],
"fps": BASE_PARAMS["fps"],
}
if "neg_prompt" in BASE_PARAMS:
generation_kwargs["neg_prompt"] = BASE_PARAMS["neg_prompt"]
generator = VideoGenerator.from_pretrained(model_path=BASE_PARAMS["model_path"], **init_kwargs)
generator.generate_video(prompt, **generation_kwargs)
if isinstance(generator.executor, MultiprocExecutor):
generator.executor.shutdown()
assert os.path.exists(
output_dir), f"Output video was not generated at {output_dir}"
reference_folder = os.path.join(script_dir, device_reference_folder, model_id, ATTENTION_BACKEND)
if not os.path.exists(reference_folder):
logger.error("Reference folder missing")
raise FileNotFoundError(
f"Reference video folder does not exist: {reference_folder}")
# Find the matching reference video based on the prompt
reference_video_name = None
for filename in os.listdir(reference_folder):
if filename.endswith('.mp4') and prompt[:100].strip() in filename:
reference_video_name = filename
break
if not reference_video_name:
logger.error(f"Reference video not found for prompt: {prompt} with backend: {ATTENTION_BACKEND}")
raise FileNotFoundError(f"Reference video missing")
reference_video_path = os.path.join(reference_folder, reference_video_name)
generated_video_path = os.path.join(output_dir, output_video_name)
logger.info(
f"Computing SSIM between {reference_video_path} and {generated_video_path}"
)
ssim_values = compute_video_ssim_torchvision(reference_video_path,
generated_video_path,
use_ms_ssim=True)
mean_ssim = ssim_values[0]
logger.info(f"SSIM mean value: {mean_ssim}")
logger.info(f"Writing SSIM results to directory: {output_dir}")
success = write_ssim_results(output_dir, ssim_values, reference_video_path,
generated_video_path, num_inference_steps,
prompt)
if not success:
logger.error("Failed to write SSIM results to file")
min_acceptable_ssim = 0.93
assert mean_ssim >= min_acceptable_ssim, f"SSIM value {mean_ssim} is below threshold {min_acceptable_ssim} for {model_id} with backend {ATTENTION_BACKEND}"