Skip to content

test_longcat_similarity

SSIM-based similarity tests for LongCat video generation.

Tests three LongCat modes: - T2V (Text-to-Video): 480p video from text prompt - I2V (Image-to-Video): 480p video from image + text prompt
- VC (Video Continuation): 480p video continuation from input video + text prompt

Sampling parameters are derived from: - examples/inference/basic/basic_longcat_t2v.py - examples/inference/basic/basic_longcat_i2v.py - examples/inference/basic/basic_longcat_vc.py

Note: num_inference_steps is reduced for CI speed (4 steps vs 50 in examples).

Classes

Functions

fastvideo.tests.ssim.test_longcat_similarity.test_longcat_i2v_similarity

test_longcat_i2v_similarity(prompt: str, ATTENTION_BACKEND: str)

Test LongCat I2V inference and compare output to reference videos using SSIM.

Parameters derived from examples/inference/basic/basic_longcat_i2v.py

Source code in fastvideo/tests/ssim/test_longcat_similarity.py
@pytest.mark.parametrize("prompt", I2V_TEST_PROMPTS)
@pytest.mark.parametrize("ATTENTION_BACKEND", ["FLASH_ATTN"])
def test_longcat_i2v_similarity(prompt: str, ATTENTION_BACKEND: str):
    """
    Test LongCat I2V inference and compare output to reference videos using SSIM.

    Parameters derived from examples/inference/basic/basic_longcat_i2v.py
    """
    os.environ["FASTVIDEO_ATTENTION_BACKEND"] = ATTENTION_BACKEND

    script_dir = os.path.dirname(os.path.abspath(__file__))
    model_id = "LongCat-Video-I2V"

    output_dir = os.path.join(script_dir, "generated_videos", model_id, ATTENTION_BACKEND)
    output_video_name = f"{prompt[:100].strip()}.mp4"
    os.makedirs(output_dir, exist_ok=True)

    # Get image path for this prompt
    prompt_idx = I2V_TEST_PROMPTS.index(prompt)
    image_path = _resolve_asset_path(I2V_IMAGE_PATHS[prompt_idx])

    init_kwargs = {
        "num_gpus": LONGCAT_I2V_PARAMS["num_gpus"],
        "use_fsdp_inference": True,
        "dit_cpu_offload": True,
        "vae_cpu_offload": True,
        "text_encoder_cpu_offload": True,
        "enable_bsa": False,
    }

    generation_kwargs = {
        "output_path": output_dir,
        "image_path": image_path,
        "height": LONGCAT_I2V_PARAMS["height"],
        "width": LONGCAT_I2V_PARAMS["width"],
        "num_frames": LONGCAT_I2V_PARAMS["num_frames"],
        "num_inference_steps": LONGCAT_I2V_PARAMS["num_inference_steps"],
        "guidance_scale": LONGCAT_I2V_PARAMS["guidance_scale"],
        "fps": LONGCAT_I2V_PARAMS["fps"],
        "seed": LONGCAT_I2V_PARAMS["seed"],
        "negative_prompt": LONGCAT_I2V_PARAMS["negative_prompt"],
    }

    generator = VideoGenerator.from_pretrained(
        model_path=LONGCAT_I2V_PARAMS["model_path"], **init_kwargs
    )
    generator.generate_video(prompt, **generation_kwargs)
    generator.shutdown()

    generated_video_path = os.path.join(output_dir, output_video_name)
    assert os.path.exists(generated_video_path), (
        f"Output video was not generated at {generated_video_path}"
    )

    # Find reference video
    reference_folder = os.path.join(
        script_dir, device_reference_folder, model_id, ATTENTION_BACKEND
    )
    if not os.path.exists(reference_folder):
        raise FileNotFoundError(
            f"Reference video folder does not exist: {reference_folder}"
        )

    reference_video_name = None
    for filename in os.listdir(reference_folder):
        if filename.endswith(".mp4") and prompt[:100].strip() in filename:
            reference_video_name = filename
            break

    if not reference_video_name:
        raise FileNotFoundError(
            f"Reference video not found for prompt: {prompt[:50]}... with backend: {ATTENTION_BACKEND}"
        )

    reference_video_path = os.path.join(reference_folder, reference_video_name)

    logger.info(f"Computing SSIM between {reference_video_path} and {generated_video_path}")
    ssim_values = compute_video_ssim_torchvision(
        reference_video_path, generated_video_path, use_ms_ssim=True
    )

    mean_ssim = ssim_values[0]
    logger.info(f"SSIM mean value: {mean_ssim}")

    write_ssim_results(
        output_dir, ssim_values, reference_video_path, generated_video_path,
        LONGCAT_I2V_PARAMS["num_inference_steps"], prompt
    )

    min_acceptable_ssim = 0.90
    assert mean_ssim >= min_acceptable_ssim, (
        f"SSIM value {mean_ssim} is below threshold {min_acceptable_ssim} "
        f"for {model_id} with backend {ATTENTION_BACKEND}"
    )

fastvideo.tests.ssim.test_longcat_similarity.test_longcat_t2v_similarity

test_longcat_t2v_similarity(prompt: str, ATTENTION_BACKEND: str)

Test LongCat T2V inference and compare output to reference videos using SSIM.

Parameters derived from examples/inference/basic/basic_longcat_t2v.py

Source code in fastvideo/tests/ssim/test_longcat_similarity.py
@pytest.mark.parametrize("prompt", T2V_TEST_PROMPTS)
@pytest.mark.parametrize("ATTENTION_BACKEND", ["FLASH_ATTN"])
def test_longcat_t2v_similarity(prompt: str, ATTENTION_BACKEND: str):
    """
    Test LongCat T2V inference and compare output to reference videos using SSIM.

    Parameters derived from examples/inference/basic/basic_longcat_t2v.py
    """
    os.environ["FASTVIDEO_ATTENTION_BACKEND"] = ATTENTION_BACKEND

    script_dir = os.path.dirname(os.path.abspath(__file__))
    model_id = "LongCat-Video-T2V"

    output_dir = os.path.join(script_dir, "generated_videos", model_id, ATTENTION_BACKEND)
    output_video_name = f"{prompt[:100].strip()}.mp4"
    os.makedirs(output_dir, exist_ok=True)

    init_kwargs = {
        "num_gpus": LONGCAT_T2V_PARAMS["num_gpus"],
        "use_fsdp_inference": True,
        "dit_cpu_offload": True,
        "vae_cpu_offload": True,
        "text_encoder_cpu_offload": True,
        "enable_bsa": False,
    }

    generation_kwargs = {
        "output_path": output_dir,
        "height": LONGCAT_T2V_PARAMS["height"],
        "width": LONGCAT_T2V_PARAMS["width"],
        "num_frames": LONGCAT_T2V_PARAMS["num_frames"],
        "num_inference_steps": LONGCAT_T2V_PARAMS["num_inference_steps"],
        "guidance_scale": LONGCAT_T2V_PARAMS["guidance_scale"],
        "fps": LONGCAT_T2V_PARAMS["fps"],
        "seed": LONGCAT_T2V_PARAMS["seed"],
        "negative_prompt": LONGCAT_T2V_PARAMS["negative_prompt"],
    }

    generator = VideoGenerator.from_pretrained(
        model_path=LONGCAT_T2V_PARAMS["model_path"], **init_kwargs
    )
    generator.generate_video(prompt, **generation_kwargs)
    generator.shutdown()

    generated_video_path = os.path.join(output_dir, output_video_name)
    assert os.path.exists(generated_video_path), (
        f"Output video was not generated at {generated_video_path}"
    )

    # Find reference video
    reference_folder = os.path.join(
        script_dir, device_reference_folder, model_id, ATTENTION_BACKEND
    )
    if not os.path.exists(reference_folder):
        raise FileNotFoundError(
            f"Reference video folder does not exist: {reference_folder}"
        )

    reference_video_name = None
    for filename in os.listdir(reference_folder):
        if filename.endswith(".mp4") and prompt[:100].strip() in filename:
            reference_video_name = filename
            break

    if not reference_video_name:
        raise FileNotFoundError(
            f"Reference video not found for prompt: {prompt[:50]}... with backend: {ATTENTION_BACKEND}"
        )

    reference_video_path = os.path.join(reference_folder, reference_video_name)

    logger.info(f"Computing SSIM between {reference_video_path} and {generated_video_path}")
    ssim_values = compute_video_ssim_torchvision(
        reference_video_path, generated_video_path, use_ms_ssim=True
    )

    mean_ssim = ssim_values[0]
    logger.info(f"SSIM mean value: {mean_ssim}")

    write_ssim_results(
        output_dir, ssim_values, reference_video_path, generated_video_path,
        LONGCAT_T2V_PARAMS["num_inference_steps"], prompt
    )

    min_acceptable_ssim = 0.90
    assert mean_ssim >= min_acceptable_ssim, (
        f"SSIM value {mean_ssim} is below threshold {min_acceptable_ssim} "
        f"for {model_id} with backend {ATTENTION_BACKEND}"
    )

fastvideo.tests.ssim.test_longcat_similarity.test_longcat_vc_similarity

test_longcat_vc_similarity(prompt: str, ATTENTION_BACKEND: str)

Test LongCat VC (Video Continuation) inference and compare output to reference videos using SSIM.

Parameters derived from examples/inference/basic/basic_longcat_vc.py

Source code in fastvideo/tests/ssim/test_longcat_similarity.py
@pytest.mark.parametrize("prompt", VC_TEST_PROMPTS)
@pytest.mark.parametrize("ATTENTION_BACKEND", ["FLASH_ATTN"])
def test_longcat_vc_similarity(prompt: str, ATTENTION_BACKEND: str):
    """
    Test LongCat VC (Video Continuation) inference and compare output to reference videos using SSIM.

    Parameters derived from examples/inference/basic/basic_longcat_vc.py
    """
    os.environ["FASTVIDEO_ATTENTION_BACKEND"] = ATTENTION_BACKEND

    script_dir = os.path.dirname(os.path.abspath(__file__))
    model_id = "LongCat-Video-VC"

    output_dir = os.path.join(script_dir, "generated_videos", model_id, ATTENTION_BACKEND)
    output_video_name = f"{prompt[:100].strip()}.mp4"
    os.makedirs(output_dir, exist_ok=True)

    # Get video path for this prompt
    prompt_idx = VC_TEST_PROMPTS.index(prompt)
    video_path = _resolve_asset_path(VC_VIDEO_PATHS[prompt_idx])

    if not os.path.exists(video_path):
        pytest.skip(f"Input video not found at {video_path}")

    init_kwargs = {
        "num_gpus": LONGCAT_VC_PARAMS["num_gpus"],
        "use_fsdp_inference": False,
        "dit_cpu_offload": False,
        "vae_cpu_offload": True,
        "text_encoder_cpu_offload": True,
        "pin_cpu_memory": False,
        "enable_bsa": False,
    }

    generation_kwargs = {
        "output_path": output_dir,
        "video_path": video_path,
        "num_cond_frames": LONGCAT_VC_PARAMS["num_cond_frames"],
        "height": LONGCAT_VC_PARAMS["height"],
        "width": LONGCAT_VC_PARAMS["width"],
        "num_frames": LONGCAT_VC_PARAMS["num_frames"],
        "num_inference_steps": LONGCAT_VC_PARAMS["num_inference_steps"],
        "guidance_scale": LONGCAT_VC_PARAMS["guidance_scale"],
        "fps": LONGCAT_VC_PARAMS["fps"],
        "seed": LONGCAT_VC_PARAMS["seed"],
        "negative_prompt": LONGCAT_VC_PARAMS["negative_prompt"],
    }

    generator = VideoGenerator.from_pretrained(
        model_path=LONGCAT_VC_PARAMS["model_path"], **init_kwargs
    )
    generator.generate_video(prompt, **generation_kwargs)
    generator.shutdown()

    generated_video_path = os.path.join(output_dir, output_video_name)
    assert os.path.exists(generated_video_path), (
        f"Output video was not generated at {generated_video_path}"
    )

    # Find reference video
    reference_folder = os.path.join(
        script_dir, device_reference_folder, model_id, ATTENTION_BACKEND
    )
    if not os.path.exists(reference_folder):
        raise FileNotFoundError(
            f"Reference video folder does not exist: {reference_folder}"
        )

    reference_video_name = None
    for filename in os.listdir(reference_folder):
        if filename.endswith(".mp4") and prompt[:100].strip() in filename:
            reference_video_name = filename
            break

    if not reference_video_name:
        raise FileNotFoundError(
            f"Reference video not found for prompt: {prompt[:50]}... with backend: {ATTENTION_BACKEND}"
        )

    reference_video_path = os.path.join(reference_folder, reference_video_name)

    logger.info(f"Computing SSIM between {reference_video_path} and {generated_video_path}")
    ssim_values = compute_video_ssim_torchvision(
        reference_video_path, generated_video_path, use_ms_ssim=True
    )

    mean_ssim = ssim_values[0]
    logger.info(f"SSIM mean value: {mean_ssim}")

    write_ssim_results(
        output_dir, ssim_values, reference_video_path, generated_video_path,
        LONGCAT_VC_PARAMS["num_inference_steps"], prompt
    )

    min_acceptable_ssim = 0.90
    assert mean_ssim >= min_acceptable_ssim, (
        f"SSIM value {mean_ssim} is below threshold {min_acceptable_ssim} "
        f"for {model_id} with backend {ATTENTION_BACKEND}"
    )