Skip to content

Source: examples/inference/gradio/local

FastVideo Gradio Local Demo

This is a Gradio-based web interface for generating videos using the FastVideo framework. The demo allows users to create videos from text prompts with various customization options.

Overview

The demo uses the FastVideo framework to generate videos based on text prompts. It provides a simple web interface built with Gradio that allows users to:

  • Enter text prompts to generate videos
  • Customize video parameters (dimensions, number of frames, etc.)
  • Use negative prompts to guide the generation process
  • Set or randomize seeds for reproducibility

Usage

Run the demo with:

python examples/inference/gradio/local/gradio_local_demo.py

This will start a web server at http://0.0.0.0:7860 where you can access the interface.


Model Initialization

This demo initializes a VideoGenerator with the minimum required arguments for inference. Users can seamlessly adjust inference options between generations, including prompts, resolution, video length, without ever needing to reload the model.

Video Generation

The core functionality is in the generate_video function, which: 1. Processes user inputs 2. Uses the FastVideo VideoGenerator from earlier to run inference (generator.generate_video())

Gradio Interface

The interface is built with several components: - A text input for the prompt - A video display for the result - Inference options in a collapsible accordion: - Height and width sliders - Number of frames slider - Guidance scale slider - Negative prompt options - Seed controls

Inference Options

  • Height/Width: Control the resolution of the generated video
  • Number of Frames: Set how many frames to generate
  • Guidance Scale: Control how closely the generation follows the prompt
  • Negative Prompt: Specify what you don't want to see in the video
  • Seed: Control randomness for reproducible results

Additional Files

gradio_local_demo.py
import argparse
import os
import base64
import time

import gradio as gr
from fastvideo.entrypoints.video_generator import VideoGenerator
from fastvideo.configs.sample.base import SamplingParam
from copy import deepcopy


MODEL_PATH_MAPPING = {
    "FastWan2.1-T2V-1.3B": "FastVideo/FastWan2.1-T2V-1.3B-Diffusers",
    # "FastWan2.2-TI2V-5B-FullAttn": "FastVideo/FastWan2.2-TI2V-5B-FullAttn-Diffusers",
}

def create_timing_display(inference_time, total_time, stage_execution_times, num_frames):
    dit_denoising_time = f"{stage_execution_times[5]:.2f}s" if len(stage_execution_times) > 5 else "N/A"

    timing_html = f"""
    <div style="margin: 10px 0;">
        <h3 style="text-align: center; margin-bottom: 10px;">⏱️ Timing Breakdown</h3>
        <div style="display: grid; grid-template-columns: repeat(5, 1fr); gap: 10px; margin-bottom: 10px;">
            <div class="timing-card timing-card-highlight">
                <div style="font-size: 20px;">🚀</div>
                <div style="font-weight: bold; margin: 3px 0; font-size: 14px;">DiT Denoising</div>
                <div style="font-size: 16px; color: #ffa200; font-weight: bold;">{dit_denoising_time}</div>
            </div>
            <div class="timing-card">
                <div style="font-size: 20px;">🧠</div>
                <div style="font-weight: bold; margin: 3px 0; font-size: 14px;">E2E (w. vae/text encoder)</div>
                <div style="font-size: 16px; color: #2563eb;">{inference_time:.2f}s</div>
            </div>
            <div class="timing-card">
                <div style="font-size: 20px;">🎬</div>
                <div style="font-weight: bold; margin: 3px 0; font-size: 14px;">Video Encoding</div>
                <div style="font-size: 16px; color: #dc2626;">N/A</div>
            </div>
            <div class="timing-card">
                <div style="font-size: 20px;">🌐</div>
                <div style="font-weight: bold; margin: 3px 0; font-size: 14px;">Network Transfer</div>
                <div style="font-size: 16px; color: #059669;">N/A</div>
            </div>
            <div class="timing-card">
                <div style="font-size: 20px;">📊</div>
                <div style="font-weight: bold; margin: 3px 0; font-size: 14px;">Total Processing</div>
                <div style="font-size: 18px; color: #0277bd;">{total_time:.2f}s</div>
            </div>
        </div>"""

    if inference_time > 0:
        fps = num_frames / inference_time
        timing_html += f"""
        <div class="performance-card" style="margin-top: 15px;">
            <span style="font-weight: bold;">Generation Speed: </span>
            <span style="font-size: 18px; color: #6366f1; font-weight: bold;">{fps:.1f} frames/second</span>
        </div>"""

    return timing_html + "</div>"
def setup_model_environment(model_path: str) -> None:
    if "fullattn" in model_path.lower():
        os.environ["FASTVIDEO_ATTENTION_BACKEND"] = "FLASH_ATTN"
    else:
        os.environ["FASTVIDEO_ATTENTION_BACKEND"] = "VIDEO_SPARSE_ATTN"
    os.environ["FASTVIDEO_STAGE_LOGGING"] = "1"

def load_example_prompts():
    def contains_chinese(text):
        return any('\u4e00' <= char <= '\u9fff' for char in text)

    def load_from_file(filepath):
        prompts, labels = [], []
        try:
            with open(filepath, "r", encoding='utf-8') as f:
                for line in f:
                    line = line.strip()
                    if line and not contains_chinese(line):
                        label = line[:100] + "..." if len(line) > 100 else line
                        labels.append(label)
                        prompts.append(line)
        except Exception as e:
            print(f"Warning: Could not read {filepath}: {e}")
        return prompts, labels

    examples, example_labels = load_from_file("examples/inference/gradio/local/prompts_final.txt")

    if not examples:
        examples = ["A crowded rooftop bar buzzes with energy, the city skyline twinkling like a field of stars in the background."]
        example_labels = ["Crowded rooftop bar at night"]

    return examples, example_labels


def create_gradio_interface(default_params: dict[str, SamplingParam], generators: dict[str, VideoGenerator]):
    def generate_video(
        prompt, negative_prompt, use_negative_prompt, seed, guidance_scale,
        num_frames, height, width, randomize_seed, model_selection, progress
    ):
        model_path = MODEL_PATH_MAPPING.get(model_selection, "FastVideo/FastWan2.1-T2V-1.3B-Diffusers")
        setup_model_environment(model_path)
        try:
            if progress:
                progress(0.1, desc="Loading model for local inference...")

            generator = generators[model_path]
            params = deepcopy(default_params[model_path])
            total_start_time = time.time()
            if progress:
                progress(0.2, desc="Configuring parameters...")

            params.prompt = prompt
            params.seed = int(seed)
            params.guidance_scale = guidance_scale
            params.num_frames = int(num_frames)
            params.height = int(height)
            params.width = int(width)

            if randomize_seed:
                params.seed = torch.randint(0, 1000000, (1, )).item()

            if use_negative_prompt and negative_prompt:
                params.negative_prompt = negative_prompt
            else:
                params.negative_prompt = default_params[model_path].negative_prompt

            if progress:
                progress(0.4, desc="Generating video locally...")

            output_dir = "outputs/"
            os.makedirs(output_dir, exist_ok=True)
            start_time = time.time()
            result = generator.generate_video(prompt=prompt, sampling_param=params, save_video=True, return_frames=False)
            inference_time = time.time() - start_time
            logging_info = result.get("logging_info", None)
            if logging_info:
                stage_names = logging_info.get_execution_order()
                stage_execution_times = [
                    logging_info.get_stage_info(stage_name).get("execution_time", 0.0) 
                    for stage_name in stage_names
                ]
            else:
                stage_names = []
                stage_execution_times = []
            total_time = time.time() - total_start_time
            timing_details=create_timing_display(inference_time=inference_time, total_time=total_time, stage_execution_times=stage_execution_times, num_frames=params.num_frames)
            safe_prompt = params.prompt[:100].replace(' ', '_').replace('/', '_').replace('\\', '_')
            video_filename = f"{params.prompt[:100]}.mp4"
            output_path = os.path.join(output_dir, video_filename)

            if progress:
                progress(1.0, desc="Generation complete!")

            return output_path, params.seed, timing_details

        except Exception as e:
            print(f"An error occurred during local generation: {e}")
            return None, f"Generation failed: {str(e)}", ""

    examples, example_labels = load_example_prompts()

    theme = gr.themes.Base().set(
        button_primary_background_fill="#2563eb",
        button_primary_background_fill_hover="#1d4ed8",
        button_primary_text_color="white",
        slider_color="#2563eb",
        checkbox_background_color_selected="#2563eb",
    )

    def get_default_values(model_name):
        model_path = MODEL_PATH_MAPPING.get(model_name)
        if model_path and model_path in default_params:
            params = default_params[model_path]
            return {
                'height': params.height,
                'width': params.width,
                'num_frames': params.num_frames,
                'guidance_scale': params.guidance_scale,
                'seed': params.seed,
            }

        return {
            'height': 448,
            'width': 832,
            'num_frames': 61,
            'guidance_scale': 3.0,
            'seed': 1024,
        }

    initial_values = get_default_values("FastWan2.1-T2V-1.3B")

    with gr.Blocks(title="FastWan", theme=theme) as demo:
        gr.Image("assets/full.svg", show_label=False, container=False, height=80)

        gr.HTML("""
        <div style="text-align: center; margin-bottom: 10px;">
            <p style="font-size: 18px;"> Make Video Generation Go Blurrrrrrr </p>
            <p style="font-size: 18px;"> <a href="https://github.com/hao-ai-lab/FastVideo/tree/main" target="_blank">Code</a> | <a href="https://hao-ai-lab.github.io/blogs/fastvideo_post_training/" target="_blank">Blog</a> | <a href="https://hao-ai-lab.github.io/FastVideo/" target="_blank">Docs</a>  </p>
        </div>
        """)

        with gr.Accordion("🎥 What Is FastVideo?", open=False):
            gr.HTML("""
            <div style="padding: 20px; line-height: 1.6;">
                <p style="font-size: 16px; margin-bottom: 15px;">
                    FastVideo is an inference and post-training framework for diffusion models. It features an end-to-end unified pipeline for accelerating diffusion models, starting from data preprocessing to model training, finetuning, distillation, and inference. FastVideo is designed to be modular and extensible, allowing users to easily add new optimizations and techniques. Whether it is training-free optimizations or post-training optimizations, FastVideo has you covered.
                </p>
            </div>
            """)

        with gr.Row():
            model_selection = gr.Dropdown(
                choices=list(MODEL_PATH_MAPPING.keys()),
                value="FastWan2.1-T2V-1.3B",
                label="Select Model",
                interactive=True
            )

        with gr.Row():
            example_dropdown = gr.Dropdown(
                choices=example_labels,
                label="Example Prompts",
                value=None,
                interactive=True,
                allow_custom_value=False
            )

        with gr.Row():
            with gr.Column(scale=6):
                prompt = gr.Text(
                    label="Prompt",
                    show_label=False,
                    max_lines=3,
                    placeholder="Describe your scene...",
                    container=False,
                    lines=3,
                    autofocus=True,
                )
            with gr.Column(scale=1, min_width=120, elem_classes="center-button"):
                run_button = gr.Button("Run", variant="primary", size="lg")

        with gr.Row():
            with gr.Column():
                error_output = gr.Text(label="Error", visible=False)
                timing_display = gr.Markdown(label="Timing Breakdown", visible=False)

        with gr.Row(equal_height=True, elem_classes="main-content-row"):
            with gr.Column(scale=1, elem_classes="advanced-options-column"):
                with gr.Group():
                    gr.HTML("<div style='margin: 0 0 15px 0; text-align: center; font-size: 16px;'>Advanced Options</div>")
                    with gr.Row():
                        height = gr.Number(
                            label="Height",
                            value=initial_values['height'],
                            interactive=False,
                            container=True
                        )
                        width = gr.Number(
                            label="Width",
                            value=initial_values['width'],
                            interactive=False,
                            container=True
                        )

                    with gr.Row():
                        num_frames = gr.Number(
                            label="Number of Frames",
                            value=initial_values['num_frames'],
                            interactive=False,
                            container=True
                        )
                        guidance_scale = gr.Slider(
                            label="Guidance Scale",
                            minimum=1,
                            maximum=12,
                            value=initial_values['guidance_scale'],
                        )

                    with gr.Row():
                        use_negative_prompt = gr.Checkbox(
                            label="Use negative prompt", value=False)
                        negative_prompt = gr.Text(
                            label="Negative prompt",
                            max_lines=3,
                            lines=3,
                            placeholder="Enter a negative prompt",
                            visible=False,
                        )

                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=1000000,
                        step=1,
                        value=initial_values['seed'],
                    )
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
                    seed_output = gr.Number(label="Used Seed")

            with gr.Column(scale=1, elem_classes="video-column"):
                result = gr.Video(
                    label="Generated Video", 
                    show_label=True,
                    height=466,
                    width=600,
                    container=True,
                    elem_classes="video-component"
                )

        gr.HTML("""
        <style>
        .center-button {
            display: flex !important;
            justify-content: center !important;
            height: 100% !important;
            padding-top: 1.4em !important;
        }

        .gradio-container {
            max-width: 1200px !important;
            margin: 0 auto !important;
        }

        .main {
            max-width: 1200px !important;
            margin: 0 auto !important;
        }

        .gr-form, .gr-box, .gr-group {
            max-width: 1200px !important;
        }

        .gr-video {
            max-width: 500px !important;
            margin: 0 auto !important;
        }

        .main-content-row {
            display: flex !important;
            align-items: flex-start !important;
            min-height: 500px !important;
            gap: 20px !important;
        }

        .advanced-options-column,
        .video-column {
            display: flex !important;
            flex-direction: column !important;
            flex: 1 !important;
            min-height: 400px !important;
            align-items: stretch !important;
        }

        .video-column > * {
            margin-top: 0 !important;
        }

        .video-column .gr-video,
        .video-component {
            margin-top: 0 !important;
            padding-top: 0 !important;
        }

        .video-column .gr-video .gr-form {
            margin-top: 0 !important;
        }

        .advanced-options-column .gr-group,
        .video-column .gr-video {
            margin-top: 0 !important;
            vertical-align: top !important;
        }

        .advanced-options-column > *:last-child,
        .video-column > *:last-child {
            flex-grow: 0 !important;
        }

        @media (max-width: 1400px) {
            .main-content-row {
                min-height: 600px !important;
            }

            .advanced-options-column,
            .video-column {
                min-height: 600px !important;
            }
        }

        @media (max-width: 1200px) {
            .main-content-row {
                flex-direction: column !important;
                align-items: stretch !important;
            }

            .advanced-options-column,
            .video-column {
                min-height: auto !important;
                width: 100% !important;
            }
        }

        .timing-card {
            background: var(--background-fill-secondary) !important;
            border: 1px solid var(--border-color-primary) !important;
            color: var(--body-text-color) !important;
            padding: 10px;
            border-radius: 8px;
            text-align: center;
            min-height: 80px;
            display: flex;
            flex-direction: column;
            justify-content: center;
        }

        .timing-card-highlight {
            background: var(--background-fill-primary) !important;
            border: 2px solid var(--color-accent) !important;
        }

        .performance-card {
            background: var(--background-fill-secondary) !important;
            border: 1px solid var(--border-color-primary) !important;
            color: var(--body-text-color) !important;
            padding: 10px;
            border-radius: 6px;
            text-align: center;
        }

        .gr-number input[readonly] {
            background-color: var(--background-fill-secondary) !important;
            border: 1px solid var(--border-color-primary) !important;
            color: var(--body-text-color-subdued) !important;
            cursor: default !important;
            text-align: center !important;
            font-weight: 500 !important;
        }
        </style>
        """)

        def on_example_select(example_label):
            if example_label and example_label in example_labels:
                index = example_labels.index(example_label)
                return examples[index]
            return ""

        example_dropdown.change(
            fn=on_example_select,
            inputs=example_dropdown,
            outputs=prompt,
        )

        gr.HTML("""
        <div style="text-align: center; margin-top: 10px; margin-bottom: 15px;">
            <p style="font-size: 16px; margin: 0;">Note that this demo is meant to showcase FastWan's quality and that under a large number of requests, generation speed may be affected.</p>
        </div>
        """)

        use_negative_prompt.change(
            fn=lambda x: gr.update(visible=x),
            inputs=use_negative_prompt,
            outputs=negative_prompt,
        )

        def on_model_selection_change(selected_model):
            if not selected_model:
                selected_model = "FastWan2.1-T2V-1.3B"

            model_path = MODEL_PATH_MAPPING.get(selected_model)

            if model_path and model_path in default_params:
                params = default_params[model_path]
                return (
                    gr.update(value=params.height),
                    gr.update(value=params.width),
                    gr.update(value=params.num_frames),
                    gr.update(value=params.guidance_scale),
                    gr.update(value=params.seed),
                )

            return (
                gr.update(value=448),
                gr.update(value=832),
                gr.update(value=61),
                gr.update(value=3.0),
                gr.update(value=1024),
            )

        model_selection.change(
            fn=on_model_selection_change,
            inputs=model_selection,
            outputs=[height, width, num_frames, guidance_scale, seed],
        )

        def handle_generation(*args, progress=None, request: gr.Request = None):
            model_selection, prompt, negative_prompt, use_negative_prompt, seed, guidance_scale, num_frames, height, width, randomize_seed = args

            result_path, seed_or_error, timing_details = generate_video(
                prompt, negative_prompt, use_negative_prompt, seed, guidance_scale, 
                num_frames, height, width, randomize_seed, model_selection, progress
            )
            if result_path and os.path.exists(result_path):
                return (
                    result_path, 
                    seed_or_error, 
                    gr.update(visible=False),
                    gr.update(visible=True, value=timing_details),
                )
            else:
                return (
                    None, 
                    seed_or_error, 
                    gr.update(visible=True, value=seed_or_error),
                    gr.update(visible=False),
                )

        run_button.click(
            fn=handle_generation,
            inputs=[
                model_selection,
                prompt,
                negative_prompt,
                use_negative_prompt,
                seed,
                guidance_scale,
                num_frames,
                height,
                width,
                randomize_seed,
            ],
            outputs=[result, seed_output, error_output, timing_display],
            concurrency_limit=20,
        )

    return demo


def main():
    parser = argparse.ArgumentParser(description="FastVideo Gradio Local Demo")
    parser.add_argument("--t2v_model_paths", type=str,
                        default="FastVideo/FastWan2.1-T2V-1.3B-Diffusers",
                        help="Comma separated list of paths to the T2V model(s)")
    parser.add_argument("--host", type=str, default="0.0.0.0",
                        help="Host to bind to")
    parser.add_argument("--port", type=int, default=7860,
                        help="Port to bind to")
    args = parser.parse_args()
    generators = {}
    default_params = {}
    model_paths = args.t2v_model_paths.split(",")
    for model_path in model_paths:
        print(f"Loading model: {model_path}")
        setup_model_environment(model_path)
        generators[model_path] = VideoGenerator.from_pretrained(model_path)
        default_params[model_path] = SamplingParam.from_pretrained(model_path)
    demo = create_gradio_interface(default_params, generators)
    print(f"Starting Gradio frontend at http://{args.host}:{args.port}")
    print(f"T2V Models: {args.t2v_model_paths}")

    from fastapi import FastAPI, Request, HTTPException
    from fastapi.responses import HTMLResponse, FileResponse
    import uvicorn

    app = FastAPI()

    @app.get("/logo.png")
    def get_logo():
        return FileResponse(
            "assets/full.svg",
            media_type="image/svg+xml",
            headers={
                "Cache-Control": "public, max-age=3600",
                "Access-Control-Allow-Origin": "*"
            }
        )

    @app.get("/favicon.ico")
    def get_favicon():
        favicon_path = "assets/icon-simple.svg"

        if os.path.exists(favicon_path):
            return FileResponse(
                favicon_path, 
                media_type="image/svg+xml",
                headers={
                    "Cache-Control": "public, max-age=3600",
                    "Access-Control-Allow-Origin": "*"
                }
            )
        else:
            raise HTTPException(status_code=404, detail="Favicon not found")

    @app.get("/", response_class=HTMLResponse)
    def index(request: Request):
        base_url = str(request.base_url).rstrip('/')
        return f"""
        <!DOCTYPE html>
        <html lang="en">
        <head>
            <meta charset="UTF-8" />
            <meta name="viewport" content="width=device-width, initial-scale=1.0" />

            <title>FastWan</title>
            <meta name="title" content="FastWan">
            <meta name="description" content="Make video generation go blurrrrrrr">
            <meta name="keywords" content="FastVideo, video generation, AI, machine learning, FastWan">

            <meta property="og:type" content="website">
            <meta property="og:url" content="{base_url}/">
            <meta property="og:title" content="FastWan">
            <meta property="og:description" content="Make video generation go blurrrrrrr">
            <meta property="og:image" content="{base_url}/logo.png">
            <meta property="og:image:width" content="1200">
            <meta property="og:image:height" content="630">
            <meta property="og:site_name" content="FastWan">

            <meta property="twitter:card" content="summary_large_image">
            <meta property="twitter:url" content="{base_url}/">
            <meta property="twitter:title" content="FastWan">
            <meta property="twitter:description" content="Make video generation go blurrrrrrr">
            <meta property="twitter:image" content="{base_url}/logo.png">
            <link rel="icon" type="image/png" sizes="32x32" href="/favicon.ico">
            <link rel="icon" type="image/png" sizes="16x16" href="/favicon.ico">
            <link rel="apple-touch-icon" href="/favicon.ico">
            <style>
                body, html {{
                    margin: 0;
                    padding: 0;
                    height: 100%;
                    overflow: hidden;
                }}
                iframe {{
                    width: 100%;
                    height: 100vh;
                    border: none;
                }}
            </style>
        </head>
        <body>
            <iframe src="/gradio" width="100%" height="100%" style="border: none;"></iframe>
        </body>
        </html>
        """

    app = gr.mount_gradio_app(
        app, 
        demo, 
        path="/gradio",
        allowed_paths=[os.path.abspath("outputs"), os.path.abspath("fastvideo-logos")]
    )

    uvicorn.run(app, host=args.host, port=args.port)


if __name__ == "__main__":

    main() 
gradio_local_demo_matrixgame.py
import argparse
import asyncio
import os
import time

import gradio as gr
import torch
import uvicorn
from fastapi import FastAPI, Request, HTTPException
from fastapi.responses import HTMLResponse, FileResponse

from fastvideo.entrypoints.streaming_generator import StreamingVideoGenerator
from fastvideo.models.dits.matrix_game.utils import expand_action_to_frames


VARIANT_CONFIG = {
    "Matrix-Game-2.0-Base": {
        "model_path": "FastVideo/Matrix-Game-2.0-Base-Diffusers",
        "keyboard_dim": 4,
        "mode": "universal",
        "image_url": "https://raw.githubusercontent.com/SkyworkAI/Matrix-Game/main/Matrix-Game-2/demo_images/universal/0000.png",
    },
    "Matrix-Game-2.0-GTA": {
        "model_path": "FastVideo/Matrix-Game-2.0-GTA-Diffusers",
        "keyboard_dim": 2,
        "mode": "gta_drive",
        "image_url": "https://raw.githubusercontent.com/SkyworkAI/Matrix-Game/main/Matrix-Game-2/demo_images/gta_drive/0000.png",
    },
    "Matrix-Game-2.0-TempleRun": {
        "model_path": "FastVideo/Matrix-Game-2.0-TempleRun-Diffusers",
        "keyboard_dim": 7,
        "mode": "templerun",
        "image_url": "https://raw.githubusercontent.com/SkyworkAI/Matrix-Game/main/Matrix-Game-2/demo_images/temple_run/0000.png",
    },
}

MODEL_PATH_MAPPING = {
    name: config["model_path"] for name, config in VARIANT_CONFIG.items()
}


CAM_VALUE = 0.1
KEYBOARD_MAP_UNIVERSAL = {
    "W (Forward)": [1, 0, 0, 0],
    "S (Back)": [0, 1, 0, 0],
    "A (Left)": [0, 0, 1, 0],
    "D (Right)": [0, 0, 0, 1],
    "Q (Stop)": [0, 0, 0, 0],
}
KEYBOARD_MAP_GTA = {
    "W (Forward)": [1, 0],
    "S (Back)": [0, 1],
    "Q (Stop)": [0, 0],
}
KEYBOARD_MAP_TEMPLERUN = {
    "Q (Run)": [1, 0, 0, 0, 0, 0, 0],
    "W (Jump)": [0, 1, 0, 0, 0, 0, 0],
    "S (Slide)": [0, 0, 1, 0, 0, 0, 0],
    "Z (Turn Left)": [0, 0, 0, 1, 0, 0, 0],
    "C (Turn Right)": [0, 0, 0, 0, 1, 0, 0],
    "A (Left)": [0, 0, 0, 0, 0, 1, 0],
    "D (Right)": [0, 0, 0, 0, 0, 0, 1],
}


CAMERA_MAP_UNIVERSAL = {
    "U (Center)": [0, 0],
    "I (Up)": [CAM_VALUE, 0],
    "K (Down)": [-CAM_VALUE, 0],
    "J (Left)": [0, -CAM_VALUE],
    "L (Right)": [0, CAM_VALUE],
}
CAMERA_MAP_GTA = {
    "Q (Straight)": [0, 0],
    "A (Steer Left)": [0, -CAM_VALUE],
    "D (Steer Right)": [0, CAM_VALUE],
}

def setup_model_environment(model_path: str) -> None:
    # if "fullattn" in model_path.lower():
    #     os.environ["FASTVIDEO_ATTENTION_BACKEND"] = "FLASH_ATTN"
    # else:
    #     os.environ["FASTVIDEO_ATTENTION_BACKEND"] = "VIDEO_SPARSE_ATTN"
    os.environ["FASTVIDEO_ATTENTION_BACKEND"] = "FLASH_ATTN"
    os.environ["FASTVIDEO_STAGE_LOGGING"] = "1"

def create_timing_display(inference_time, total_time, stage_execution_times, num_frames):
    dit_denoising_time = f"{stage_execution_times[5]:.2f}s" if len(stage_execution_times) > 5 else "N/A"

    timing_html = f"""
    <div style="margin: 10px 0;">
        <h3 style="text-align: center; margin-bottom: 10px;">⏱️ Timing Breakdown</h3>
        <div style="display: grid; grid-template-columns: repeat(5, 1fr); gap: 10px; margin-bottom: 10px;">
            <div class="timing-card timing-card-highlight">
                <div style="font-size: 20px;">🚀</div>
                <div style="font-weight: bold; margin: 3px 0; font-size: 14px;">DiT Denoising</div>
                <div style="font-size: 16px; color: #ffa200; font-weight: bold;">{dit_denoising_time}</div>
            </div>
            <div class="timing-card">
                <div style="font-size: 20px;">🧠</div>
                <div style="font-weight: bold; margin: 3px 0; font-size: 14px;">E2E (w. vae/text encoder)</div>
                <div style="font-size: 16px; color: #2563eb;">{inference_time:.2f}s</div>
            </div>
            <div class="timing-card">
                <div style="font-size: 20px;">🎬</div>
                <div style="font-weight: bold; margin: 3px 0; font-size: 14px;">Video Encoding</div>
                <div style="font-size: 16px; color: #dc2626;">N/A</div>
            </div>
            <div class="timing-card">
                <div style="font-size: 20px;">🌐</div>
                <div style="font-weight: bold; margin: 3px 0; font-size: 14px;">Network Transfer</div>
                <div style="font-size: 16px; color: #059669;">N/A</div>
            </div>
            <div class="timing-card">
                <div style="font-size: 20px;">📊</div>
                <div style="font-weight: bold; margin: 3px 0; font-size: 14px;">Total Processing</div>
                <div style="font-size: 18px; color: #0277bd;">{total_time:.2f}s</div>
            </div>
        </div>"""

    if inference_time > 0:
        fps = num_frames / inference_time
        timing_html += f"""
        <div class="performance-card" style="margin-top: 15px;">
            <span style="font-weight: bold;">Generation Speed: </span>
            <span style="font-size: 18px; color: #6366f1; font-weight: bold;">{fps:.1f} frames/second</span>
        </div>"""

    return timing_html + "</div>"

def get_action_tensors(mode: str, keyboard_key: str, mouse_key: str | None):
    if mode == "universal":
        keyboard = torch.tensor(KEYBOARD_MAP_UNIVERSAL.get(keyboard_key, [0, 0, 0, 0])).cuda()
        mouse = torch.tensor(CAMERA_MAP_UNIVERSAL.get(mouse_key, [0, 0])).cuda()
    elif mode == "gta_drive":
        keyboard = torch.tensor(KEYBOARD_MAP_GTA.get(keyboard_key, [0, 0])).cuda()
        mouse = torch.tensor(CAMERA_MAP_GTA.get(mouse_key, [0, 0])).cuda()
    elif mode == "templerun":
        keyboard = torch.tensor(KEYBOARD_MAP_TEMPLERUN.get(keyboard_key, [1, 0, 0, 0, 0, 0, 0])).cuda()
        mouse = None
    else:
        raise ValueError(f"Unknown mode: {mode}")

    return {"keyboard": keyboard, "mouse": mouse}

def create_gradio_interface(generators: dict[str, StreamingVideoGenerator], loaded_model_name: str):
    initial_config = VARIANT_CONFIG.get(loaded_model_name, VARIANT_CONFIG["Matrix-Game-2.0-Base"])
    initial_mode = initial_config["mode"]

    if initial_mode == "universal":
        initial_kb_choices = list(KEYBOARD_MAP_UNIVERSAL.keys())
        initial_mouse_choices = list(CAMERA_MAP_UNIVERSAL.keys())
        initial_mouse_visible = True
    elif initial_mode == "gta_drive":
        initial_kb_choices = list(KEYBOARD_MAP_GTA.keys())
        initial_mouse_choices = list(CAMERA_MAP_GTA.keys())
        initial_mouse_visible = True
    else:  # templerun
        initial_kb_choices = list(KEYBOARD_MAP_TEMPLERUN.keys())
        initial_mouse_choices = []
        initial_mouse_visible = False

    theme = gr.themes.Base().set(
        button_primary_background_fill="#2563eb",
        button_primary_background_fill_hover="#1d4ed8",
        button_primary_text_color="white",
        slider_color="#2563eb",
        checkbox_background_color_selected="#2563eb",
    )

    with gr.Blocks(title="FastVideo - Matrix Game 2.0", theme=theme) as demo:
        game_state = gr.State({
            "initialized": False,
            "current_model": None,
            "block_idx": 0,
            "max_blocks": 50,
        })

        # Header
        gr.Image("assets/full.svg", show_label=False, container=False, height=80)

        gr.HTML("""
        <div style="text-align: center; margin-bottom: 10px;">
            <p style="font-size: 18px;"> Make Video Generation Go Blurrrrrrr </p>
            <p style="font-size: 18px;"> <a href="https://github.com/hao-ai-lab/FastVideo/tree/main" target="_blank">Code</a> | <a href="https://hao-ai-lab.github.io/blogs/fastvideo_post_training/" target="_blank">Blog</a> | <a href="https://hao-ai-lab.github.io/FastVideo/" target="_blank">Docs</a>  </p>
        </div>
        """)

        with gr.Accordion("🎥 What Is FastVideo?", open=False):
            gr.HTML("""
            <div style="padding: 20px; line-height: 1.6;">
                <p style="font-size: 16px; margin-bottom: 15px;">
                    FastVideo is an inference and post-training framework for diffusion models. It features an end-to-end unified pipeline for accelerating diffusion models, starting from data preprocessing to model training, finetuning, distillation, and inference. FastVideo is designed to be modular and extensible, allowing users to easily add new optimizations and techniques. Whether it is training-free optimizations or post-training optimizations, FastVideo has you covered.
                </p>
            </div>
            """)

        # Model Selection
        with gr.Row():
            model_selection = gr.Dropdown(
                choices=[loaded_model_name],
                value=loaded_model_name,
                label="Select Model",
                interactive=False
            )


        # Main Layout
        with gr.Row(equal_height=True, elem_classes="main-content-row"):
            with gr.Column(scale=1, elem_classes="advanced-options-column"):
                with gr.Group():
                    gr.HTML("<div style='margin: 0 0 15px 0; text-align: center; font-size: 16px;'>Game Controls</div>")

                    with gr.Group():
                        gr.HTML("<div style='font-size: 14px; margin-bottom: 5px; font-weight: bold;'>🎮 Keyboard Control</div>")
                        keyboard_action = gr.Radio(
                            choices=initial_kb_choices,
                            value=initial_kb_choices[0] if initial_kb_choices else None,
                            label="Movement",
                            show_label=False,
                            interactive=True
                        )

                    with gr.Group(visible=initial_mouse_visible) as mouse_group:
                        gr.HTML("<div style='font-size: 14px; margin-bottom: 5px; font-weight: bold;'>🖱️ Mouse/Camera Control</div>")
                        mouse_action = gr.Radio(
                            choices=initial_mouse_choices if initial_mouse_visible else [],
                            value=initial_mouse_choices[0] if initial_mouse_choices else None,
                            label="Camera",
                            show_label=False,
                            interactive=True
                        )

                    with gr.Row():
                        action_btn = gr.Button("Start", variant="primary")
                        stop_btn = gr.Button("Stop", variant="stop")

                    gr.HTML("<div style='margin-top: 15px;'></div>")

                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=1000000,
                        step=1,
                        value=1024,
                    )
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
                    seed_output = gr.Number(label="Used Seed")

                    block_counter = gr.Textbox(label="Progress", value="Block: 0 / 50", interactive=False, lines=1)


            # Right Column: Video Output
            with gr.Column(scale=1, elem_classes="video-column"):
                video_output = gr.Video(
                    label="Generated Video",
                    show_label=True,
                    height=466,
                    width=600,
                    container=True,
                    elem_classes="video-component",
                    autoplay=True
                )

        # Styles
        gr.HTML("""
        <style>
        .center-button {
            display: flex !important;
            justify-content: center !important;
            height: 100% !important;
            padding-top: 1.4em !important;
        }

        .gradio-container {
            max-width: 1200px !important;
            margin: 0 auto !important;
        }

        .main {
            max-width: 1200px !important;
            margin: 0 auto !important;
        }

        .gr-form, .gr-box, .gr-group {
            max-width: 1200px !important;
        }

        .gr-video {
            max-width: 500px !important;
            margin: 0 auto !important;
        }

        .main-content-row {
            display: flex !important;
            align-items: flex-start !important;
            min-height: 500px !important;
            gap: 20px !important;
        }

        .advanced-options-column,
        .video-column {
            display: flex !important;
            flex-direction: column !important;
            flex: 1 !important;
            min-height: 400px !important;
            align-items: stretch !important;
        }

        .video-column > * {
            margin-top: 0 !important;
        }

        .video-column .gr-video,
        .video-component {
            margin-top: 0 !important;
            padding-top: 0 !important;
        }

        .video-column .gr-video .gr-form {
            margin-top: 0 !important;
        }

        .advanced-options-column .gr-group,
        .video-column .gr-video {
            margin-top: 0 !important;
            vertical-align: top !important;
        }

        .advanced-options-column > *:last-child,
        .video-column > *:last-child {
            flex-grow: 0 !important;
        }

        @media (max-width: 1400px) {
            .main-content-row {
                min-height: 600px !important;
            }

            .advanced-options-column,
            .video-column {
                min-height: 600px !important;
            }
        }

        @media (max-width: 1200px) {
            .main-content-row {
                flex-direction: column !important;
                align-items: stretch !important;
            }

            .advanced-options-column,
            .video-column {
                min-height: auto !important;
                width: 100% !important;
            }
        }

        .timing-card {
            background: var(--background-fill-secondary) !important;
            border: 1px solid var(--border-color-primary) !important;
            color: var(--body-text-color) !important;
            padding: 10px;
            border-radius: 8px;
            text-align: center;
            min-height: 80px;
            display: flex;
            flex-direction: column;
            justify-content: center;
        }

        .timing-card-highlight {
            background: var(--background-fill-primary) !important;
            border: 2px solid var(--color-accent) !important;
        }

        .performance-card {
            background: var(--background-fill-secondary) !important;
            border: 1px solid var(--border-color-primary) !important;
            color: var(--body-text-color) !important;
            padding: 10px;
            border-radius: 6px;
            text-align: center;
        }

        .gr-number input[readonly] {
            background-color: var(--background-fill-secondary) !important;
            border: 1px solid var(--border-color-primary) !important;
            color: var(--body-text-color-subdued) !important;
            cursor: default !important;
            text-align: center !important;
            font-weight: 500 !important;
        }
        </style>
        """)

        # UI update based on model selection
        def on_model_change(model_name):
            config = VARIANT_CONFIG.get(model_name, VARIANT_CONFIG["Matrix-Game-2.0-Base"])
            mode = config["mode"]

            if mode == "universal":
                kb_choices = list(KEYBOARD_MAP_UNIVERSAL.keys())
                mouse_choices = list(CAMERA_MAP_UNIVERSAL.keys())
                mouse_visible = True
            elif mode == "gta_drive":
                kb_choices = list(KEYBOARD_MAP_GTA.keys())
                mouse_choices = list(CAMERA_MAP_GTA.keys())
                mouse_visible = True
            else:  # templerun
                kb_choices = list(KEYBOARD_MAP_TEMPLERUN.keys())
                mouse_choices = []
                mouse_visible = False

            return (
                gr.update(choices=kb_choices, value=kb_choices[0] if kb_choices else None),
                gr.update(choices=mouse_choices, value=mouse_choices[0] if mouse_choices else None, visible=mouse_visible),
                gr.update(visible=mouse_visible),
            )

        model_selection.change(
            fn=on_model_change,
            inputs=model_selection,
            outputs=[keyboard_action, mouse_action, mouse_group]
        )

        def start_game(model_name, seed_val, randomize, state):
            if randomize:
                seed_val = torch.randint(0, 1000000, (1,)).item()

            config = VARIANT_CONFIG.get(model_name)
            if not config:
                return state, seed_val, "Block: 0 / 50", None, "", gr.update(), gr.update()

            generator = generators.get(config["model_path"])
            if not generator:
                return state, seed_val, "Block: 0 / 50", None, "", gr.update(), gr.update()

            # If already initialized, clean up first
            if state.get("initialized"):
                try:
                    # Clear accumulated frames without saving
                    generator.accumulated_frames = []
                    generator.executor.execute_streaming_clear()
                except Exception as e:
                    print(f"Warning: cleanup error: {e}")

            # Streaming parameters
            num_latent_frames_per_block = 3
            max_blocks = 50
            total_latent_frames = num_latent_frames_per_block * max_blocks
            num_frames = (total_latent_frames - 1) * 4 + 1

            actions = {
                "keyboard": torch.zeros((num_frames, config["keyboard_dim"])),
                "mouse": torch.zeros((num_frames, 2))
            }
            grid_sizes = torch.tensor([150, 44, 80])

            output_dir = os.path.abspath("outputs/matrixgame")
            os.makedirs(output_dir, exist_ok=True)
            video_path = os.path.join(output_dir, f"video_{int(time.time())}.mp4")

            generator.reset(
                prompt="",
                image_path=config["image_url"],
                mouse_cond=actions["mouse"].unsqueeze(0),
                keyboard_cond=actions["keyboard"].unsqueeze(0),
                grid_sizes=grid_sizes,
                num_frames=num_frames,
                height=352,
                width=640,
                num_inference_steps=50,
                output_path=video_path,
            )

            new_state = {
                "initialized": True,
                "current_model": model_name,
                "block_idx": 0,
                "max_blocks": max_blocks,
                "video_path": video_path,
                "frames_per_block": num_latent_frames_per_block * 4,
                "mode": config["mode"],
                "seed": seed_val,
            }

            return new_state, seed_val, "Block: 0 / 50", None, gr.update(value="Step"), gr.update(interactive=True)

        async def step_game(keyboard_key, mouse_key, model_name, state):
            if not state.get("initialized"):
                return state, state.get("seed", 0), "Block: 0 / 50", None, gr.update(), gr.update()

            # total_start_time = time.time()
            config = VARIANT_CONFIG.get(model_name)
            generator = generators.get(config["model_path"])
            mode = state["mode"]
            frames_per_block = state["frames_per_block"]

            # Parse inputs to tensors
            action = get_action_tensors(mode, keyboard_key, mouse_key)
            keyboard_cond, mouse_cond = expand_action_to_frames(action, frames_per_block)

            # run step async
            # inference_start_time = time.time()
            frames, block_future = await generator.step_async(keyboard_cond, mouse_cond)
            # inference_time = time.time() - inference_start_time

            # wait for block file to be written
            block_path = await asyncio.to_thread(block_future.result) if block_future else None
            state["block_idx"] = generator.block_idx
            block_str = f"Block: {state['block_idx']} / {state['max_blocks']}"

            # total_time = time.time() - total_start_time

            # Timing breakdown
            # timing_html = create_timing_display(inference_time, total_time, [], frames_per_block)

            return state, state.get("seed", 0), block_str, block_path, gr.update(), gr.update()

        def stop_game(model_name, state):
            if not state.get("initialized"):
                return {"initialized": False}, 0, "Block: 0 / 50", None, gr.update(value="Start"), gr.update(interactive=False)

            config = VARIANT_CONFIG.get(model_name)
            generator = generators.get(config["model_path"])

            final_path = state.get("video_path")
            generator.finalize(final_path)

            return {"initialized": False}, state.get("seed", 0), "Block: 0 / 50", final_path, gr.update(value="Start"), gr.update(interactive=False)

        async def handle_action(keyboard_key, mouse_key, model_name, seed_val, randomize, state):
            if not state.get("initialized"):
                return start_game(model_name, seed_val, randomize, state)
            else:
                return await step_game(keyboard_key, mouse_key, model_name, state)

        action_btn.click(
            fn=handle_action,
            inputs=[keyboard_action, mouse_action, model_selection, seed, randomize_seed, game_state],
            outputs=[game_state, seed_output, block_counter, video_output, action_btn, stop_btn]
        )

        stop_btn.click(
            fn=stop_game,
            inputs=[model_selection, game_state],
            outputs=[game_state, seed_output, block_counter, video_output, action_btn, stop_btn]
        )

        gr.HTML("""
        <div style="text-align: center; margin-top: 10px; margin-bottom: 15px;">
            <p style="font-size: 16px; margin: 0;">Note that this demo is meant to showcase Matrix Game's quality and that under a large number of requests, generation speed may be affected.</p>
        </div>
        """)

    return demo


def main():
    parser = argparse.ArgumentParser(description="Matrix Game Gradio Demo")
    parser.add_argument("--model", type=str, default="Matrix-Game-2.0-Base",
                        choices=list(VARIANT_CONFIG.keys()),
                        help="Model variant to load")
    parser.add_argument("--host", type=str, default="0.0.0.0")
    parser.add_argument("--port", type=int, default=7860)
    args = parser.parse_args()

    # Load the selected model
    config = VARIANT_CONFIG[args.model]
    model_path = config["model_path"]

    print(f"Loading model: {model_path}")
    setup_model_environment(model_path)
    generator = StreamingVideoGenerator.from_pretrained(
        model_path,
        num_gpus=1,
        use_fsdp_inference=True,
        dit_cpu_offload=True,
        vae_cpu_offload=False,
        text_encoder_cpu_offload=True,
        pin_cpu_memory=True,
    )

    generators = {model_path: generator}

    demo = create_gradio_interface(generators, args.model)

    print(f"Starting Gradio at http://{args.host}:{args.port}")

    # FastAPI Wrapper
    app = FastAPI()

    @app.get("/logo.png")
    def get_logo():
        return FileResponse(
            "assets/full.svg",
            media_type="image/svg+xml",
            headers={
                "Cache-Control": "public, max-age=3600",
                "Access-Control-Allow-Origin": "*"
            }
        )

    @app.get("/favicon.ico")
    def get_favicon():
        favicon_path = "assets/icon-simple.svg"

        if os.path.exists(favicon_path):
            return FileResponse(
                favicon_path, 
                media_type="image/svg+xml",
                headers={
                    "Cache-Control": "public, max-age=3600",
                    "Access-Control-Allow-Origin": "*"
                }
            )
        else:
            raise HTTPException(status_code=404, detail="Favicon not found")

    @app.get("/", response_class=HTMLResponse)
    def index(request: Request):
        base_url = str(request.base_url).rstrip('/')
        return f"""
        <!DOCTYPE html>
        <html lang="en">
        <head>
            <meta charset="UTF-8" />
            <meta name="viewport" content="width=device-width, initial-scale=1.0" />

            <title>FastVideo - Matrix Game 2.0</title>
            <meta name="title" content="MatrixGame2.0">
            <meta name="description" content="Make video generation go blurrrrrrr">
            <meta name="keywords" content="FastVideo, video generation, AI, machine learning, Matrix Game 2.0">

            <meta property="og:type" content="website">
            <meta property="og:url" content="{base_url}/">
            <meta property="og:title" content="FastVideo - Matrix Game 2.0">
            <meta property="og:description" content="Make video generation go blurrrrrrr">
            <meta property="og:image" content="{base_url}/logo.png">
            <meta property="og:image:width" content="1200">
            <meta property="og:image:height" content="630">
            <meta property="og:site_name" content="MatrixGame2.0">

            <meta property="twitter:card" content="summary_large_image">
            <meta property="twitter:url" content="{base_url}/">
            <meta property="twitter:title" content="MatrixGame2.0">
            <meta property="twitter:description" content="Make video generation go blurrrrrrr">
            <meta property="twitter:image" content="{base_url}/logo.png">
            <link rel="icon" type="image/png" sizes="32x32" href="/favicon.ico">
            <link rel="icon" type="image/png" sizes="16x16" href="/favicon.ico">
            <link rel="apple-touch-icon" href="/favicon.ico">
            <style>
                body, html {{
                    margin: 0;
                    padding: 0;
                    height: 100%;
                    overflow: hidden;
                }}
                iframe {{
                    width: 100%;
                    height: 100vh;
                    border: none;
                }}
            </style>
        </head>
        <body>
            <iframe src="/gradio" width="100%" height="100%" style="border: none;"></iframe>
        </body>
        </html>
        """

    app = gr.mount_gradio_app(
        app, 
        demo, 
        path="/gradio",
        allowed_paths=[os.path.abspath("outputs"), os.path.abspath("fastvideo-logos")]
    )

    uvicorn.run(app, host=args.host, port=args.port)


if __name__ == "__main__":
    main()
prompts_final.txt
A dynamic shot of a sleek black motorcycle accelerating down an empty highway at sunset. The bike's engine roars as it gains speed, smoke trailing from the tires. The rider, wearing a black leather jacket and helmet, leans forward with determination, gripping the handlebars tightly. The camera follows the motorcycle from a distance, capturing the dust kicked up behind it, then zooms in to show the intense focus on the rider's face. The background showcases the endless road stretching into the horizon with vibrant orange and pink hues of the setting sun. Medium shot transitioning to close-up.
A Jedi Master Yoda, recognizable by his green skin, large ears, and wise wrinkles, is performing on a small stage, strumming a guitar with great concentration. Yoda wears a casual robe and sits on a stool, his eyes closed as he plays, fully immersed in the music. The stage is dimly lit with spotlights highlighting Yoda, creating a mystical atmosphere. The background shows a live audience watching intently. Medium close-up shot focusing on Yoda's expressive face and hands moving gracefully over the guitar strings.
A cute, fluffy panda bear is preparing a meal in a cozy, modern kitchen. The panda is standing at a wooden countertop, wearing a white chef’s hat and apron. It skillfully stirs a pot on the stove with one hand while holding a spatula in the other. The kitchen is well-lit, with appliances and cabinets in pastel colors, creating a warm and inviting atmosphere. The panda moves gracefully, with a focused and determined expression, as steam rises from the pot. Medium shot focusing on the panda’s actions at the stove.
In a futuristic Tokyo rooftop during a heavy rainstorm, a robotic DJ stands behind a turntable, spinning vinyl records in a cyberpunk night setting. The robot has metallic, sleek body parts with glowing blue LED lights, and it moves gracefully with the beat. Raindrops create a shimmering effect as they hit the ground and the DJ. The surrounding environment features neon signs, towering skyscrapers, and a dark, misty atmosphere. The camera starts with a wide shot of the city skyline before zooming in on the DJ performing. Sci-fi, fantasy.
A realistic animated scene featuring a polar bear playing a guitar. The polar bear is standing upright, wearing a cozy fur vest and fingerless gloves. It holds the guitar with both hands, strumming the strings with one hand while plucking them with the other, showcasing natural, fluid motions. The polar bear's expressive face shows concentration and joy as it plays. The background is a snowy Arctic landscape with icebergs and a clear blue sky. The scene captures the bear from a mid-shot angle, focusing on its interaction with the guitar.
The scene opens to a breathtaking view of a tranquil ocean horizon at dusk, displaying a vibrant tapestry of oranges, pinks, and purples as the sun sets. In the foreground, tall, swaying palm trees frame the scene, their silhouettes stark against the colorful sky. The ocean itself shimmers with reflections of the sunset, creating a peaceful, almost ethereal atmosphere. A small boat can be seen in the distance, centered on the horizon, adding a sense of scale and solitude to the scene. The waves gently lap the shore, creating faint patterns on the sandy beach, which stretches across the foreground. Above, the sky is dotted with scattered clouds that catch the last light of the day, enhancing the drama and beauty of the scene. The overall mood is serene and contemplative, capturing a perfect moment of nature’s grandeur.
A large, modern semi-truck accelerating down an empty highway, gaining speed with each second. The truck's powerful engine roars as it moves forward, smoke billowing from the tires. The camera starts from a wide shot, capturing the truck in the distance, then smoothly zooms in to follow the vehicle as it speeds up. The truck's headlights illuminate the road ahead, casting a bright glow. The truck driver can be seen through the windshield, focused and determined. The background shows the vast openness of the highway stretching into the horizon under a clear blue sky. Medium to close-up shots of the truck as it accelerates.
Soft blue light pulses from the blade’s rune-etched hilt, illuminating nearby moss-covered roots and ferns. The surrounding trees are tall and gnarled, their branches curling like claws overhead. Fog swirls gently at ground level, parting slightly as a figure in a cloak approaches from the distance. Medium shot slowly zooming toward the sword, emphasizing its mystical aura.
The video opens with a tranquil scene in the heart of a dense forest, emphasizing two large, textured tree trunks in the foreground framing the view. Sunlight filters through the canopy above, casting intricate patterns of light and shadow on the trees and the ground. Between the tree trunks, a clear view of a calm, muddy river unfolds, its surface shimmering under the gentle sunlight. The riverbank is decorated with a variety of small bushes and vibrant foliage, subtly transitioning into the deep greens of tall, leafy plants. In the background, the dense forest looms, filled with dark, towering trees, their branches intertwining to form an intricate canopy. The scene is bathed in the soft glow of the sun, creating a serene and picturesque setting. Occasional sunbeams pierce through the foliage, adding a magical aura to the landscape. The vibrant reds and oranges of the smaller plants add contrast, bringing warmth to the earthy tones of the scenery. Overall, this harmonious blend of natural elements creates a peaceful and idyllic forest setting.
A lone figure stands on a large, moss-covered rock, surrounded by the soft rush of a nearby stream. The figure is wearing white sneakers and shorts, with a plaid shirt that hangs loosely in the breeze. The lighting creates dramatic shadows, enhancing the textures of the rock and the subtle movement of the water below. In the background, a waterfall cascades into the stream, completing this tranquil and serene nature scene.
In an industrial setting, a person leans casually against a railing, exuding a sense of confidence and composure. They are wearing a striking outfit, consisting of a vibrant, patterned jacket over a simple white crop top, creating a bold contrast. The atmosphere is infused with warm, ambient lighting that casts soft shadows on the concrete walls and metallic surfaces. Intricate wiring and pipes form an intricate backdrop, enhancing the urban aesthetic. Their relaxed posture and direct, engaging gaze suggest a sense of ease in this industrial environment. This scene encapsulates a blend of modern fashion and gritty, urban architecture, creating a visually compelling narrative.