
Parallelization

Aryan Philip, Eugene Kim, Gabrielle Rackner, Jiaying Yang,
Kevin Benavente, Kira Fleischer, Paulami Bhattacharya,

Peiyuan Zhang, Runlong Su, Sharanya Prabhu,
Stanley Woo, Tianyu Fan, Yiwen Tu, Paulami Bhattacharya

February 2025

1 Post-Training Quantization (slides 1-16)

As a review of quantization from the previous lecture, its purpose is to reduce
the precision of numerical weights and activations to make models more efficient
in terms of memory and computation. The following table summarizes the
storage and compute requirements of two quantization methods discussed in
the previous lecture:

No quantization K-Means-based
Quantization

Linear Quanti-
zation

Storage Floating point
weights

Integer weights
with a floating-
point codebook

Integer weights

Compute Floating point
arithmetic

Floating point
arithmetic

Integer arithmetic

1.1 Quantization Granularity

There are three main quantization granularities that affect how weights and
activations are quantized: per-tensor, per-channel, and group. Each method
provides different trade-offs in terms of computational efficiency, memory sav-
ings, and model accuracy.

1.1.1 Per-Tensor Quantization

Per-tensor quantization is a technique in which a single scale (S) and zero point
(Z) are used to quantize an entire tensor, such as all the weights of a layer or
all the activations in a layer. This is the simplest and most computationally
efficient approach, as it requires fewer scaling factors and ensures the same
precision for all weights. However, it may lead to a loss of accuracy, especially
if the tensor contains large outlier weights or the range varies wildly across
channels. Figure 1 shows an example of the wide range of weights possible in

1

a tensor, which can lead to less accurate quantizations. A better approach is
per-channel quantization.

Figure 1: Wide range of weights in a tensor

Example 2-bit symmetric linear quantization using the per-tensor method.
We will lose precision for small numbers if we only using a single scale S for the
whole weight tensor.

2.09 -0.98 1.48 0.09
0.05 -0.14 -1.08 2.12
-0.91 1.92 0 -1.03
1.87 0 1.53 1.49

Binary Decimal
01 1
00 0
11 -1
10 -2

1. Find |r|max = 2.12

2. Calculate S = |r|max

qmax
= 2.12

1 = 2.12

3. Using Z = 0 (since this is symmetric quantization), compute the quantized
weights as qW = round(r

S + Z) = round(r
2.12):

1 0 1 0
0 0 -1 1
0 1 0 0
1 0 1 1

4. Reconstruct the weights by multiplying the quantized weights by the scale
(compute qWS = 2.12qW)

2.12 0 2.12 0
0 0 -2.12 2.12
0 2.12 0 0

2.12 0 2.12 2.12

5. Compute the quantization error ||W − S ⊙ qW || = 2.28

2

1.1.2 Per-Channel Quantization

Per-channel quantization is where a separate scale (S) and zero point (Z) are
assigned for each channel in a tensor, such as each output channel of a convo-
lutional layer. This allows for better preservation of numerical precision since
different channels may have very different ranges, as seen above in Figure 1. Al-
though this method reduces quantization error by providing more fine-grained
quantizations, it is slightly more computationally expensive than per-tensor
quantization since you are computing more scales (S) and storing more.

Example 2-bit symmetric linear quantization using the per-channel method.

2.09 -0.98 1.48 0.09
0.05 -0.14 -1.08 2.12
-0.91 1.92 0 -1.03
1.87 0 1.53 1.49

Binary Decimal
01 1
00 0
11 -1
10 -2

1. Find |r|max for each row (channel):

rmax = 2.09

rmax = 2.12

rmax = 1.92

rmax = 1.87

2. Calculate S = |r|max

qmax
for each row (channel):

S = 2.09

S = 2.12

S = 1.92

S = 1.87

3. Compute the quantized weights per row (channel) as qW = round(r
S):

1 0 1 0
0 0 -1 1
0 1 0 -1
1 0 1 1

4. Reconstruct the weights by multiplying the quantized weights by the scale
for that row (compute qWS per row/channel):

3

2.09 0 2.09 0
0 0 -2.12 2.12
0 1.92 0 -1.92

1.87 0 1.87 1.87

5. Compute the quantization error ||W − S ⊙ qW || = 2.08

1.1.3 Group Quantization

The most fine-grained quantization method is group quantization where weights
are divided into groups of elements and each group gets its own scale and zero
point, such as quantizing per vector. This is the most accurate method with
lowest quantization error because you are essentially providing no quantization,
but that is also a drawback of this method since you are essentially doing no
quantization.

1.2 Multi-Level Quantization

Combining granularities of quantization can create the ideal results for a partic-
ular algorithm. Multi-level quantization applies quantization at various levels of
granularity such as tensor and vector quantization. Scale values are applied at
each granularity. The quantization may scale by group as seen in the equation
below (with gamma). The equation below represents two-level quantization. In
the second equation, Sq is the scale factor for each vector and γ is the scale
vector for each tensor.

r = S(q − z)− > r = γSq(q − Z)

Multi-level quantization can expand beyond two-level even though that is nor-
mally the ”sweet spot” for most deep learning algorithms. As we continue to
increase the amount of group levels, the computation cost increases. Below is
the updated equation for n number of groups.

r = S(q − z)− > r = Sl0Sl1 ...Sln(q − Z)

1.3 Linear Quantization on Activations

Applying linear quantization on activation weights looks slightly different than
applying quantization on the numerical weights. Quantized weights are static
and activation values range across inputs. In order to calculate the quantized
activations, activation statistics are calculated before the model is deployed and
used to determine the clipping range (rmin, rmax).

r̂
(t)
max,min = αr

(t)
max,min + (1− α)r̂

(t−1)
max,min

The clipping range is typically a dynamic range for activations which is
determined using a moving average. The range is averaged across multiple

4

Figure 2: An illustration of the exponentially exploding search space for a mixed-
precision training deign.

training steps. To avoid including outliers in the clipping range, one can utilize
calibration of the initial weights. If outliers are included in the dynamic range,
the clipping range is not representative of the activation distribution.

2 Mix-Precision Training

2.1 Introduction (Slides 17-21)

In standard quantization, all layers typically use the same bit-width (e.g., uni-
form 8-bit quantization). However, this approach does not account for the vary-
ing robustness of different layers to precision reduction. Therefore, instead of
uniform quantization, we can apply non-uniform, mixed-precision quantization,
where more robust layers are quantized more aggressively to lower bit-widths,
preserving precision where needed.

Large Design Space One main challenge facing mixed-precision training
is its large design space, as shown in Figure 2. With many layers in deep
networks, manually determining the optimal bit allocation is labor-intensive.
For example, as illustrated in Figure 4, given an 8-bit budget per layer for
weights and activations respectively, the total search space grows exponentially
as (8× 8)n = 64n for a n-layer model, rendering exhaustive search infeasible.

Automatic Design One solution would be automating the mixed-precision
quantization design using machine learning techniques. More concretely, we
can develop a cost model to predict the trade-offs between bit-width selection
and accuracy/latency, and use algorithms to efficiently explore mixed-precision
configurations, balancing performance and efficiency. This approach enables ef-
ficient mixed-precision quantization, significantly improving both accuracy and
latency compared to uniform quantization, without the need for exhaustive
manual tuning.

5

Figure 3: An illustration of mixed-precision training with automated search in
the tremendous design search space.

2.2 Mixed Precision Training (Slides 22 - 24)

Many Neural Networks some layers are naturally more sensitive to dynamic
range than others. For example, Normalization. If we use a lower bit precision,
we will lose a lot of accuracy. The intuition is, we need to be very precise hence
we need to allocate more bits for fractions. Similarly, SoftMax requires us to do
calculations with an exponential function. Again, we must add dynamic range
by allocating more bits on both exponent and fraction. Another consideration
is when your accumulating the network gradients, we are faced with very sim-
ilar issues earlier mentioned. Based on a scheme developed by NVIDIA, we
are suggested to use full precision (FP32) for those sensitive operations. After
those operations are complete we can essential downcast precision to half preci-
sion for more robust operations resulting in more memory efficient operations.
This scheme can be formalized into a standardized 16-32 mix-precision pipeline
illustrated by Figure 4.

2.3 Memory Usage in Mix-Precision Training (Slide 25-
26)

For training a 175B-parameter GPT-3 model, the memory requirements are
calculated as follows:

• Parameters: 175× 109 parameters× 2 bytes/fp16 = 350 GB

• Activations: 96 (batch size)×3.2×106 (tokens)×12,288 (dimensions)×
2 bytes = 7,488 GB

Memory usage for optimizer states:

• Master copy (fp32): 4× 175 B = 700 GB

6

Figure 4: An illustration of a standardized 16-32 mix-precision pipeline.

• Gradients (fp16): 2× 175 B = 350 GB

• Running copy (fp16): 2× 175 B = 350 GB

• Adam momentum states: 2× 4× 175 B = 1,400 GB

The theoretical lower bound for memory consumption in mix-precision training
is:

(4 + 2 + 2 + 4 + 4)×N = 16N bytes, where N = number of parameters.

2.4 Scaling Down Machine Learning (Slide 27)

Deploying machine learning on edge devices remains a critical objective and
active research area. While scaling up ML infrastructure is dominated by a few
major industry players, the scaling down market faces significant fragmenta-
tion. This diversity stems from the vast array of edge device architectures and
use cases. Such fragmentation presents opportunities for startups to address
niche challenges, but poses challenges for large enterprises seeking standardized
solutions across heterogeneous hardware platforms.

3 Overview of Parallelization (Slides 28–29)

The discussion on parallelism concludes the comprehensive overview of ML sys-
tems. This section begins by examining the rationale for parallelization through
an analysis of technological trends. It then systematically explores key concepts
including: fundamental principles of ML parallelism, essential collective com-
munication patterns, data parallelism strategies, model parallelism approaches
(encompassing both inter-operator and intra-operator variations), and emerging
auto-parallelization techniques.

7

4 Parallelization (Slides 30-40)

4.1 End of Moore’s Law

According to Moore’s Law, the number of transistors in a dense integrated
circuit doubles approximately every two years, driving exponential growth in
CPU and GPU capabilities. However, this fundamental principle that guided
technological advancement for decades is now facing multiple challenges in the
era of artificial intelligence.
While Moore’s Law remained valid for many years, it no longer adequately
describes the current pace of AI model growth, as model sizes are increasing by
a factor of 10 every 18 months. For instance, the DeepSeek model has reached
an impressive scale of 600 billion parameters, illustrating the extraordinary rate
at which model sizes are expanding.

4.2 Why do we develop large models?

The drive toward larger models is primarily motivated by two key factors:

1. Enhanced Performance and Accuracy
Empirical evidence demonstrates that scaling models leads to improved
performance across multiple benchmarks. As seen in the graph research
has shown consistent improvements in model capabilities across 20 dif-
ferent benchmarks as model size increases. Some researchers hypothesize
that achieving near-perfect accuracy across a wide range of tasks could be
a stepping stone toward Artificial General Intelligence (AGI).

2. Emergent Capabilities
Larger models exhibit emergent capabilities - newfound abilities that weren’t
explicitly programmed but arise from the scale of the system. Modern
large language models demonstrate reasoning capabilities, including the

8

ability to solve complex mathematical problems, understand nuanced con-
text, and perform multiple tasks without specific training for each one.

4.3 The Growing Challenge

4.3.1 Computational perspective

This rapid scaling of AI models is creating an unprecedented demand for compu-
tational resources, particularly high-performance chips. The gap between model
growth and hardware capabilities is widening, as GPU and CPU advancement,
still broadly following Moore’s Law, cannot match the exponential growth in
model sizes. This divergence presents a significant challenge for the future of AI
development and raises important questions about sustainable scaling practices.

If we project the growth of accelerator capabilities into the future, a substan-
tial gap remains between the computational power required and what is cur-
rently achievable with CPUs. The floating-point operations per second (FLOPs)
of GPUs continue to lag behind demand, while TPUs offer only a marginal im-
provement over GPUs. Despite these advancements, the computational gap is
widening exponentially, increasing by a factor of 256 every 18 months. Using
a single accelerator is insufficient to keep pace with the increasing model sizes
necessary for development. From a computational standpoint, the required pro-
cessing power is growing at an unsustainable rate.

4.3.2 Memory perspective

From a memory perspective, the situation is even more extreme—the memory
needed to store and train models increases by a factor of 35 every two years.
In contrast, GPU memory growth follows a much flatter trajectory, making it
impossible to bridge this gap with current hardware trends.

9

Historically, the largest model that could fit within the memory of a single
GPU was BERT. Since then, model sizes have expanded to the point where
storing parameters alone now requires more than 100 GPUs.

5 Types of parallelism (slides 41-51)

This data highlights the necessity of parallelization strategies, specifically data
parallelism and model parallelism.

5.1 Data and model parallelism

There are two types of Parallelism, namely, Data and Model Parallelism. Data
parallelism is relatively straightforward. At the accelerator level, it follows the
principles of Single Instruction, Multiple Data (SIMD). In GPUs, this means
distributing data across numerous cores, with each core handling a portion of the
computation. Similarly, across multiple GPUs, each device processes a subset
of the data. In this lecture, we dive deeper into scenarios involving multiple
GPUs wherein each GPU is given a part of the data. Each GPU is installed on
some node and is given a part of a huge dataset.

A core assumption of data parallelism is that the whole model fits on a sin-
gle GPU. If the model does not fit on a single machine, we must adopt model
parallelism. The model is basically a computational graph. It involves many
’MATMUL’ and non-linear functions. How we partition a model is equivalent
to thinking about how we partition tensor operators. Intuitively, the first tech-
nique is to cut in the middle by feeding the first few layers of the model to a
single GPU and the next remaining layers to another GPU. Further, we can
pipeline the execution to make it more efficient. The second technique is to
cut horizontally instead of vertically. This becomes rather complicated because
each layer has different operators, and each NN can have different kinds of layers
(Conv, Embedding), different types of clusters (e.g., 8 GPUs in one node, big
cluster with thousands of GPUs distributed in different ways).

5.2 Computational and system perspective

The classical view of ML parallelism is to classify parallelism into data and
model parallelism. We will now map this intuition into our definition of models,
data, and compute to approach it from a computational and system perspective.
Recapping the master equation from the earlier lecture, from the computational
perspective, we care about compute and memory. In the equation, for compute,
the elements we require are firstly the delta, which performs forward and back-
ward computation. We parallelize by partitioning the compute function across
different GPUs. Secondly, we require the optimizer f , where we optimize gra-
dients to parameters. We apply function f across different GPUS. This is the
main compute in the equation. On the memory side, we have two primary

10

sources of memory consumption. D, the data or the number of batches we need
to partition D, and θ, wherein we partition the parameters.

5.3 The communication challenge

Communication is crucial. In a single device, communication happens locally,
across the memory hierarchy, and is easy. However, here, with distributed
GPUs, it is challenging to communicate across the interconnect of devices. In-
terconnects like Nvidia’s NVLink (GPUs in one box), networks (Amazon elastic
fabric, TCP/IP) are complex. Communication is much slower in these cases,
with high latency. Handling communication parameters and activations depends
on the NN graph partitions.

5.4 Parallelism workflow

At a high level, for data parallelism, each GPU is given different data, and
they compute on their own. At some point, synchronization is needed to make
progress. We will need to communicate parameters and gradients. In data
parallelism, the parameters and model code are replicated across the GPUs, and
they perform the respective computation on the specifically designated batch
of data. They will produce copies of gradients. These gradients need to be
synchronized. All GPUs’ gradients have to be accumulated and applied to
parameters. This generates a new copy of parameters, which then need to be
redistributed across the GPUs.

θ(t+1) = f
(
θ(t),∇L

(
θ(t), D(t)

))
where, θ represents the parameter, f represents the weight update function

(like SGD, Adam, etc.), nablal refers to the model (like GPT, CNN, etc.), and
D refers to the data at time t.

Figure 5: Parameter distribution for data and model parallelism.

In model parallelism, we partition the model. Either partition the model
parameters (θ) or partition the gradient (∇l) computation function. We need
to figure out how to deal with data (partition or not partition). Further, we
need to partition the optimizer states. Many options to partition are subject to

11

network latency and many such constraints. We need to aim to partition in a
smart way.

5.5 Parallelism in action

To bring more clarity, we shall revisit the three parts of our model and view
them as computational graphs, namely, forward, backward, and weight update
graphs. We shall read them as a cluster. For example, in the Nvidia DGX V100
cluster, they connect linearly with 8 GPUs, with each GPU with a multiway
NVLink. NVLink has high bandwidth, being very fast, almost like memory
hierarchy. But, if one of these GPUs has to talk to another GPU outside this
box, it requires ethernet. It requires movement from GPU memory to CPU, and
CPU would send through ethernet. The bandwidth of ethernet is much slower
than that of NVLink.

Figure 6: A typical GPU cluster topology

To make it more abstract, the right side figure represents a cluster with four
nodes in which the green lines represent fast connections. GPUs communication
between different boxes uses slow connections.

Hence, parallelization can be treated as partitioning of a computational
graph on a device cluster by being subject to memory constraints and com-
munication bandwidth. After partitioning, we want it to be as fast as possible
without additional memory. This is the problem definition.

6 Intra and Inter parallelisms (Slides 52 - 62)

Parallelization = Partitioning Computation Graph on Device Cluster.
The problem that we have is : How to partition the computational graph on
the device cluster? (Subjecting to memory constrain and communication band-
width.)

6.1 Communication Characteristics

• Inter-op parallelism:

12

– Assign different operators to different devices. The second op de-
pends on the output of the first op.

– Typically requires point-to-point communication between consecutive
operators (e.g., sending outputs from Device 1 to Device 2).

– Potential device idle time when an operator finishes early and must
wait for other operators to complete their tasks before proceeding to
the next stage.

• Intra-op parallelism:

– Splits a single operator across multiple devices (e.g., large matrix
multiplication).

– Typically relies on collective communication (all-reduce, all-gather,
broadcast, etc.) to merge partial results.

– High throughput when well-implemented, but communication over-
head can be significant if the operator is not large enough or if the
network is slow.

6.2 Example

Consider we have the following computational graph, and we are given with 2
devices. We can follow the example in Figure 7

There are two strategies that we can think of:

• Strategy 1 - Inter-Operator Parallelism: Where device 1 takes the first
matmul layer, while device 2 takes the remaining layers.

• Strategy 2 - Intra-operator Parallelism: In this case, we are cutting the
operators, the weights, the input, and outputs half and half, sharing among
two devices. (Both horizontally and vertically)

We can also do a horizontal cut, where device 1 takes the w1 and w2 and putting
the rest on device 2.

Question: Is data parallelism intra or inter parallelism? Answer: It is intra-
parallelism.

There are multiple intra-op strategies for a single node (Figure 8):

• Row-partitioning The input matrix is partitioned by rows, each partition
(shown in blue/red) processes different rows of the input, operations like
matmul are performed on these row partitions independently.

• Model-partitioning (Megatron) This is a hybrid of model and tensor par-
allelism with the workload is split across different devices. Each colored
section (blue/red) represents different parts of the model running on dif-
ferent devices, Operations like matmul and relu are distributed across
devices.

13

Figure 7: An illustration of how parallelism works

Figure 8: More Examples on Parallelisms

• Pipeline parallelism A way for temporal parallelism, operations are exe-
cuted in a staged manner across time (Time = 0, 1, 2), different parts of
the model (w1, w2) work on different timesteps, Enables better hardware
utilization through pipelined execution.

• Multi-Device model partition Nowadays, models size is growing in a dra-
matic way hence multi-device model partition is necessary for training
model in such size.

6.3 Trade-offs

• Inter-op parallelism can be simpler to implement if the operators are
already relatively independent. However, one might encounter significant
idle times or synchronization bottlenecks when operators are chained. The
communication is called P2P and it is much less bandwidth compared with
collective communication.

14

• Intra-op parallelism can deliver high speedups for computationally heavy
operators (like large matrix multiplications), but collective communication
steps can become bottlenecks. As we all know, collective communication
operation like all-reduce is very costy, so the intra operation parallelise is
better to be adapt to data cluster that gots higher innter bandwith.

• The optimal parallelism strategy often involves a hybrid approach, mixing
inter-op and intra-op parallelism depending on the operator, the device
topology, and the batch size.

7 Contributions

1. Kira Fleischer: Section 1

2. Gabrielle Rackner: Section 1

3. Yiwen Tu: Section 2.1

4. Eugene Kim, Kevin Benavente Section 2.2

5. Tianyu Fan: Section 2.3 - 3

6. Paulami Bhattacharya, Jiaying Yang: Section 4

7. Sharanya Prabhu, Aryan Philip: Section 5

8. Stanley Woo, Peiyuan Zhang, Runlong Su: Section 6

15

