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1 Recap of Synchronous Pipeline Schedules

1.1 Pipeline Bubble Percentage Calculation

In synchronous pipeline schedules, we often have devices running, while some devices idling (i.e. not running).
The idling devices in the pipeline schedules are called bubbles, which can be seen as a waste. Therefore, we
need a metric to characterize the amount of bubbles and develop schedules minimizing it. The metric often
used is called pipeline bubble percentage, which is calculated by the following formula:

bubble area
total area

pipeline bubble percentage = (1)
In Figure 1, the blue areas are stages that have a device running and the gray areas are bubbles. Suppose
we have D devices and we schedule the pipeline in the way shown in Figure 1. The total area is D? and the

bubble area is D(D — 1). Then, our pipeline bubble percentage is (D — 1)/D after simplification.
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Figure 1: A figure demonstration for pipeline bubbles.

1.2 GPipe

GPipe [4] split each mini-batch into N micro-batches in the batch dimension. Then, each micro-batch is
processed sequentially on the devices. After the forward computation of all micro-batches are finished, we
run the backward passes for each micro-batch. When the backward passes of all micro-batches are finished,
we update the weights of the model. Figure 2 gives an illustration of GPipe scheduling.

The pipeline bubble percentage of GPipe is: (D — 1)/(D — 1+ N), where N is the number of
micro-batches and D is the number of devices. In Figure 2, we have N = 6 and D = 4. Despite large
N gives less bubbles, it increases the peak memory usage. The peak memory usage of GPipe is
Parameters + Activation x V.
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GPipe: Memory Usage
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Figure 2: GPipe pipeline schedule and peak memory usage.

1.3 1F1B

1F1B (one forward one backward) [1] is a modified version of GPipe that reduces the peak memory usage.
Whenever one micro-batch has completed forward pass, the backward pass of this micro-batch is started.
Figure 3 gives an illustration of 1F1B scheduling.
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Figure 3: 1F1B pipeline schedule and peak memory usage.

The pipeline bubble percentage of 1F1B is: (D —1)/(D — 1+ N), which is the same as GPipe. The
peak memory usage of 1F1B is Parameters + Activation x D. This is because we do not need to
keep the activations of all micro-batches in the memory. The backward passes of the starting micro-batches
are finished earlier and then moved out of the memory.
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1.4 Chimera

Chimera [5] reduces the bubbles in 1F1B by storing bidirectional stages and use bidirectional pipelines. The
idea of using bidirectional pipelines is adopted to train DeepSeek-V3 [6]. Figure 4 gives an illustration for
the Chimera pipeline schedule.
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Figure 4: Chimera pipeline schedule.

The pipeline bubble percentage of Chimera is: (D —2)/(D — 2+ 2N ), which is less than GPipe and
1F1B. However, Chimera requires the devices to store two copies of the original model, resulting in
a higher peak memory usage than 1F1B. This is because according to the schedule, the i-th device
not only stores the i-th partition of the model counted from forward, but also the i-th partition counted
backward. In addition, Chimera only works with even number of devices.

1.5 Synchronous Pipeline Schedule Summary

For all the schedules we introduced in last lecture, they are call synchronous pipeline schedule.

It is something very similar to what we discussed in data parallelism that we always make sure that all the
workers are in the same pace.

e Pros: Keep the convergence semantics. The training process is exactly the same as training the neural
network on a single device.

e Cons: Pipeline bubbles. Reducing pipeline bubbles typically requires splitting inputs into smaller
components, but too small input to the neural network will reduce the hardware efficiency.

2 Asynchronous Pipeline Schedules

Remove the synchronization point in the pipeline schedule, and now we can start the next round of forward
pass before backward pass of the previous round finishes.

e Pros: No Pipeline bubbles.

e Cons: Break the synchronous training semantics. Now the training will involve stalled gradient.
Algorithms may store multiple versions of model weights for consistency.



4 Parellization: Part 4

2.1 AMPNet

If we let all the devices to go free and excute at their own pace, we basically get AMPNet [2] schedule.

Idea: Fully asynchronous. Each device performs forward pass whenever free and updates the weights after
every backward pass.

Updated weights \

PipeMare: modify the
optimizer to improve
AMPNEet convergence

Device 1
Device 2
Device 3

Initial weights

Figure 5: AMPNet

With this schedule, the different stages in the forward and backward pass can be on different versions of the
weights because each device update on their own pace.

For example, in Figure 5, for data 1, the forward pass in stages 1 and 2 still uses the initial weights (blue
1), but during the backward pass, its gradient updates are based on the weights modified after training with
data 0 (green 1). Since the forward and backward passes use inconsistent weights, this weight staleness
introduces noise, affecting training convergence. PipeMare alleviates this issue by optimizing the optimizer
strategy.

Convergence: Achieve similar accuracy on small datasets (MNIST 97%), hard to generalize to larger
datasets.

PipeMare improve the convergence of AMPNet: It modifies the gradient optimizer to improve the conver-
gence a little bit. But it cannot foundamentally changed the drawback of this way.

2.2 Pipedream

Achive better convergence by reducing the asynchrony. The timeline of the Pipedream [3] looks very similar
to 1F1B, but the main difference is we update the model’s weights once the backward has finished.

Idea: Enforce the same version of weight for a single input batch by storing multiple weight versions.
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Figure 6: Pipedream

In Figure 6, let us focus on Device 1. During the forward and backward passes for input batches 0 to 3, the
same initial weights are used. However, for input batch 4, the forward pass utilizes weights that have been
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updated by input batch 0.

Since the backward pass for input batches 1 to 3 still requires the initial weights, at this point, two copies
of weights exist:

1. Initial weights (for the backward pass of input batches 1 to 3).
2. Weights updated after processing input batch 0 (for the forward pass of input batch 4).

Similarly, for input batch 5, weights updated by input batches 0 and 1 are needed. For input batch 6, weights
updated by 0, 1, and 2 are required.

As a result, we need to store four copies of weights in total. However, since the neural network is divided
into only four stages, no memory is saved, defeating the purpose of pipeline parallelism in terms of memory
efficiency.

Convergence: Similar accuracy on ImageNet with a 5x speedup compared to data parallel.

Con: No memory saving compared to single device case.

2.3 Pipedream-2BW

To reduce the memory usage, the authors of Pipedream proposed a modification to the original pipeline by
updating the weights less frequently, which is called Pipedream-2BW [8].
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Figure 7: Pipedream-2BW

In Figure 7, for input batches 4, 5, and 6, the initial weights are still used. Starting from input batch 7, the
model begins using weights updated by input batches 0 to 3.

This means that the green weights (updated weights) are only stored for one update cycle before being
replaced, significantly reducing the memory storage requirement compared to standard Pipedream.

Idea: Reduce Pipedream’s memory usage (only store 2 copies) by updating weights less frequently. Weights
always stalled by 1 update.

Convergence: Similar training accuracy on language models (BERT/GPT)
3 Imbalanced vs. Balanced Pipeline Stages

For all the pipeline scheduling algorithms shown before, we assume the running times of different pipeline
stages are exactly the same. But there are some cases that the latency of these stages are not the same,
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which is the unbalanced case. For different inputs, the execution time may be different, which is a worse case.
So an important factor when doing pipeline parallelism is to make sure each device has the same workload.
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Figure 8: Comparison between balanced and imbalanced pipeline stages

According to Figure 8, balanced stages lead to optimal pipeline throughput, while imbalanced stages cause
increased bubbles and latency.

4 Frontier: Automatic Stage Partitioning

4.1 Goal

Minimize maximum stage latency: Reduce the runtime of the slowest (bottleneck) stage.

Maximize parallelization: Keep as many devices busy as possible, leveraging concurrency to increase
throughput.

4.2 Two Main Approaches

1. Reinforcement Learning (RL)-Based (primarily for device placement): Use an RL agent to explore
and learn optimal or near-optimal ways of assigning model layers/operators to devices.

State s, RL agent Next state s,,,
Device 1 Policy
Graph "
—1> neural > n::m?k .
Current network wor Device 2 Sample |
node - " >  New
placement

Reward r, = Runtime(s,.;) - Runtime(s,)

Runtime(s,) A Runtime(s,.,)

Figure 9: RL-Based Partitioning Algorithm

e State: Device assignment plan for a computational graph.
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e Action: Modify the device assignment of a node.

e Reward: Latency difference between the new and old placements.

The RL-based methods can be trained with policy gradient algorithm.

2. Optimization-Based (Dynamic Programming / Linear Programming): Formulate stage/device place-
ment as a mathematical optimization problem with constraints (e.g., memory limits, communication over-
head, etc.). Solve via dynamic or linear programming techniques.

5 Inter-Operator Parallelism Summary

Idea: Assign different operators of the computational graph to different devices and execute them in a
pipelined fashion.

General No Pipeline Same Convergence
Method Computational Graph Bubbles as Single Device
Device Placement X X X
Synchronous Schedule v X v
Asynchronous Schedule v v X

Table 1: Comparison of inter-operator parallelism methods.

Note:

e Stage Partitioning: If stages are imbalanced, more pipeline bubbles occur.

e RL-Based / Optimization-Based Automatic Stage Partitioning: Approaches that systematically assign
operators (or stages) to devices to reduce imbalances and improve overall efficiency.

6 Intra-operator Parallelism

6.1 Intra-op and Inter-op

This part is a basic recap for two parallelization strategies: Inter-operator Parallelism and Intra-operator
Parallelism.

1. Inter-operator Parallelism: Different operators in a computation graph (e.g., matrix multiplication,
ReLU, subtraction) are executed in parallel. This strategy focuses on distributing entire operators across
different devices or processes.

2.Intra-operator Parallelism: A single operator is split into smaller tasks that run in parallel. This
approach is beneficial when a single operator is computationally intensive.
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6.2 Parallelize One Operator
6.2.1 Element-wise Operators

Figure 10 explains how to parallelize element-wise operations of adding two matrices A and B. Since there
are no dependencies between iterations of the loops, the computation can be split arbitrarily across devices.

device 1 device 2 device 3 device 4
Parallelize loop n Parallelize both loop n and loop d
n C = A + B n C = A + B
T Ta

Figure 10: Element-wise operators

There are multiply ways to parallelize this operator. One example is to divide the rows among multiple
devices. For example, device 1 processes the first set of rows, device 2 processes the next set of rows, and
so on. Another one is to parallelize both rows and columns, where each device handles a block of rows and
columns. However, there are no communication needed for this operator.

6.2.2 Matrix Multiplication
Matrix multiplication involves more complex dependencies compared to element-wise operations because it
includes a reduction loop.

The outer loops (7, j) are independent and can be split across devices, but the reduction loop (k) introduces
dependencies because partial results must be accumulated to compute C[i, j].

Therefore, the first parallelization strategy would be to split the rows of C' and corresponding rows of A
across devices, and replicate the full matrix B to each devices, so that each one could compute a subset of
rows independently.

device 1 device 2 device 3 device 4 replicated

Parallelize loop i C; Aq

Figure 11: Matrix Multiplication-Strategy 1
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Another strategy would be to split matrix A among its columns, and split matrix B along its rows. Each
device computes partial results for its assigned slice of A and B. After local computations, and all-reduce
operation aggregates these partial results to produce the final matrix C.

device 1 device 2 device 3 device 4 replicated

Parallelize loop k

By
B.
C = A x B |k C=[4 4 A A|p| = 4By +A:B; + AsB; + AsB,
By
-
k

(got by all-reduce)

Figure 12: Matrix Multiplication-Strategy 2

The third strategy is to parallelize two loops together. The output matrix C' is both column-partitioned and
row-partitioned and is divided into 4 regions. Each device would compute a portion of C' independently. The
input matrices A and B are partially tiled to ensure all devices have the necessary data for their assigned
computations.

Similarly, we can parallelize both loop i and k, which results in a partially tiled matrix C. In this method
we an all-reduce is needed to get matrix C.

device 1 device 2 device 3 device 4
Parallelize loop i and j Parallelize loop i and k
i C = PO x B i C = A x B
J A: partially tiled ]
Device 1 and 2 hold a replicated tile C: got by all-reduce

Device 3 and 4 hold a replicated tile

Figure 13: Matrix Multiplication-Strategy 3

6.2.3 2D Convolution

In terms of 2D convolution operations, one simple way is to parallelize the batch dimension, output channels
as well as input channels, and then the parallelization strategies are almost the same as matmul’s. However,
there are also many more complicated cases we can enumerate.

6.3 Two Intra-Op Parallelism strategies for matmul

Data parallelism is a special case of intra-op parallelism. We use legends to represent whether a tensor is
replicated, row-partitioned, or column-partitioned.

Two types of intra-op parallelism strategies for matrix multiplication (matmul) are considered here:
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Type 1: Partitioning Matmul Along Rows. As shown in Figure 14(a). In this case, no communication
is needed. Input A is partitioned, and input B is replicated. The result matrix is composed of sub-regions.

Matmul Parallelization Type 1
communication cost = 0 Matmul Parallelization Type 2
@ communication cost = all-reduce(c)

(o)
(2 J{matmu1 (o) | O

(a) Type 1 (b) Type 2

Figure 14: Two types of partition.

Type 2: Partitioning the Reduction Loop (K-Dimension). In this type, both inputs are partitioned
along the reduction dimension. An all-reduce operation is required to complete the computation.

Forward Pass
Two “Type 1” matmuls: no communication

v
matmul relu matmul MSE ]
|

Backward Pass
One “Type 1” matmul: no communication
Two “Type 2” matmuls: require all-reduce o

Figure 15: Forward and Backward pass computation graph for a 2-layer MLP

6.4 Computation Graph for a Two-Layer MLP
A Forward and Backward pass computation graph for a 2-layer MLP is shown in Figure 15.

6.4.1 Forward Pass

e Weight tensors W1 and W2 are replicated (data parallelism).

e Matmul and ReLLU operations are partitioned along the batch dimension, requiring no communication.

6.4.2 Backward Pass

e Contains one Type-1 matmul and two Type-2 matmuls.
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e Some all-reduce operations on the gradients are required.

e Data parallelism necessitates communication due to specific partitioning choices.

6.5 Intra-Operator Parallelism and Repartitioning communication Cost

[:] Replicated [:] Row-partitioned [:]Column-panitioned
[matmul Hrelu ]—{matmul]

T X

1 Do not need re-
1

[}

1

artition
bart [relu}+

Need re-partition

by all-gather .

Figure 16: Repartitioning cost in intra-op parallelism.

As shown in Figure 16. When applying intra-operator parallelism to an entire computational graph, there is a
repartitioning communication cost on the edges. This arises because different operator parallelism strategies
may require different partitioning formats for the same tensor, necessitating repartitioning.

To illustrate this, let us consider a two-layer MLP, as shown in Figure 16. Specifically, we examine the
edge between the ReLU activation and the second matrix multiplication (matmul), which is a longer edge
in the computational graph. The partitioning format of the ReLU follows that of the preceding matmul,
as it is inherited. Assuming that the ReLLU operation is row-partitioned and the previous computations
were also row-partitioned, the sharding persists through ReLLU. Since ReLLU is an element-wise operation,
no additional partitioning is required.

However, for the second matmul, its partitioning strategy—whether type I, type II, or type III—dictates the
required input partitioning format. If the second matmul also adopts a type I partitioning strategy, where
the input is partitioned along the rows, then the ReLU operation must also remain row-partitioned. Recall
that in type I partitioning, the first input must be row-partitioned while the second input is replicated.

Now, if we enforce the second matmul to follow the type I partitioning strategy, we find that the ReLLU
operation naturally aligns with its predecessor, both being row-partitioned. Consequently, computation
proceeds seamlessly since each device retains the necessary ReLU results without additional communication
overhead.

Conversely, if the second matmul employs a different parallel strategy—one requiring the ReLLU output to
be replicated while the weight matrix W5 is column-partitioned—then the ReLLU results must be duplicated
across all devices. This necessitates an additional communication operation, specifically an all-gather, to
synchronize the replicated ReLLU results across devices. As a result, choosing distinct partitioning strategies
for different matmul operations introduces repartitioning costs, manifesting as additional collective commu-
nication primitives such as all-gather.

To optimize the execution cost of the entire computational graph, it is crucial to strategically select partition-
ing strategies for each operator to minimize these repartitioning overheads when designing the partitioning
scheme for the entire network.



12 Parellization: Part 4

When applying intra-operator parallelism to a whole graph, there is a repartitioning communication cost
on the edges. Different operator parallelism strategies may require different tensor partitioning formats,
necessitating repartitioning.

Replicated

D all-to-all D
all-to-all

Row-partitioned Column-partitioned

Figure 17: Re-partition Communication Cost

6.6 Optimization Problem: Minimizing Execution Cost

Problem
Pick a parallel strategy

of each operator ~.

Sa

matmul]—b[ relu ]—b[matmul]

Minimize (computation + communication) + Edge costs (re-partition communication)

Figure 18: Optimization problem formulation for parallelization.
As shown in Figure 18, to optimize parallel execution of a graph, we must:

e Pick one parallel strategy per operator to minimize execution cost.

e Formulate the problem as an optimization: 1. Select a coloring scheme for each node. 2. Enumerate
all possible communication costs. 3. Minimize total cost to achieve efficient execution.

Solutions for Efficient Parallelization

Possible approaches to solving this optimization problem include: Manual design, Randomized search, Dy-
namic programming, Integer linear programming.

7 Model-specific Intra-op Parallel Strategies

7.1 Introduction

Intra-op parallelism is a critical technique in scaling modern neural network architectures, enabling efficient
computation across increasingly large models and diverse hardware accelerators. Unlike inter-op parallelism,
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which distributes separate operations across devices, intra-op parallelism focuses on parallelizing the exe-
cution within a single operation, such as matrix multiplications or expert computations in a layer. This
approach is particularly vital for models like AlexNet, GShard, and Megatron-LM. After the popularization
of these strategies, newer models have adapted similar practices.

7.2 AlexNet

7 182

Max pooling

pocling

03 2088

Assign a group convolution layer to 2 GPUs
Figure 19: The image illustration shows AlexNet intra-op CNN.

In AlexNet, intra-op parallelization was implicitly employed through the use of two NVIDIA GTX 580 GPUs,
which were tasked with handling the intensive computations of its eight-layer architecture, five convolutional
layers followed by three fully connected layers. For instance, the convolution operations, which dominate
the computational cost in CNNs, were parallelized at the kernel level. Each GPU’s CUDA cores could
simultaneously process different portions of the input feature maps or filters, effectively speeding up the
convolution process. This intra-op parallelism was facilitated by the CuDNN library and CUDA framework,
which optimized low-level operations to exploit the GPU’s massively parallel architecture.

Additionally, AlexNet’s design split the model across two GPUs, with certain layers divided such that half
the neurons were processed on one GPU and half on the other. Within this model parallelism, intra-op
parallelization further enhanced efficiency by allowing each GPU to independently parallelize its assigned
operations. During the forward and backward passes, operations like ReLLU activation, max-pooling, and
local response normalization were executed in parallel across the GPU cores for the subset of data each GPU
handled. By combining intra-op parallelization with inter-GPU communication for synchronization, AlexNet
set a precedent for future DL models.

7.3 Megatron-LM

Megatron-LM is one of the first DL model that utilized intra-layer model tensor parallelism. By partitioning
the workload of large operations like General Matrix-Matrix Multiplications within the self-attention and
MLP blocks of a transformer, Megatron-LM achieves efficient scaling. As seen in Figure 20, Megatron-LM
implements intra-op parallelization by splitting key operations along specific dimensions to optimize both
computation and communication. For the MLP block, the first GEMM is partitioned in a column-parallel
fashion, dividing the weight matrix and allowing each GPU to compute its portion independently, followed
by a GeLU nonlinearity applied locally without immediate synchronization. The subsequent GEMM is then
split row-wise, taking the output directly and requiring only a single all-reduce operation across GPUs to
combine results, thus reducing synchronization points. Similarly, in the self-attention block, the key, query,
and value (K, Q, V) GEMMs are split column-wise across GPUs.
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D Replicated D Row-partitioned D Column-partitioned
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Figure 20: The image illustration shows intra-op operations in Megatron-LM.

7.4 GShard MoE

D Replicated D Row-partitioned D Expert-partitioned

Normal MoE
layers Layers

all-to-all re-partition communication

Figure 21: The image illustration shows intra-op operations in Megatron-LM.

GShard’s intra-op parallel strategy operates by replacing every other feedforward neural layer in a Trans-
former model with an MokE layer, typically employing a top-2 gating mechanism. This gating function routes
each input token to the top two most relevant experts based on a learned probability distribution, while the
XLA compiler automatically shards the computation across devices. The intra-op parallelism is enhanced by
splitting the tokens and dispatching them to their assigned experts in parallel, followed by an all-to-all in-
struction to recombine results. GShard also introduces innovations like random routing for the second expert
and expert capacity limits to prevent overload, ensuring balanced and efficient workloads. This approach
enabled GShard to scale a Transformer model beyond 600 billion parameters, achieving superior translation
quality across 100 languages.

8 ZeRO Optimizer

8.1 Introduction

The ZeRO (Zero Redundancy Optimizer) is an optimization technique designed to improve memory ef-
ficiency in large-scale distributed training. It addresses the inefficiencies of traditional data parallelism, which
involves replicating optimizer states, gradients, and model weights across all devices, leading to excessive
memory consumption.
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8.2 Problem with Data Parallelism

In traditional data parallelism, all devices maintain a copy of: Optimizer states (which take significant
memory, especially in large-scale models), Gradients, Model weights. This redundancy results in a large
memory footprint and limits the scalability of deep learning models.

8.3 ZeRO Optimizer’s Idea

The ZeRO optimizer aims to reduce memory usage by partitioning (instead of replicating) optimizer states,
gradients, and model weights across devices. This allows for more efficient utilization of memory and enables
training larger models.

8.4 Breakdown of ZeRO Stages

ZeRO optimization is implemented in multiple stages, with each stage progressively reducing redundancy:

Approach Optimzer Gradients Model Memory Cost ~ Communication
States (12M)  (2M) Weights Cost
(2M)

Data Parallelism Replicated Replicated Replicated 16 M all-

reduce(2M)
ZeRO Stage 1 Replicated Replicated 4M + % all-

reduce(2M)
ZeRO Stage 2 Replicated 2M + % all-

reduce(2M)
ZeRO Stage 3 160 1.5 all-reduce(2M)

Table 2: ZeRO Optimization Stages and Memory Efficiency

8.4.1 Key Takeaways from Each Stage

e Data Parallelism: High memory cost (16M) due to full replication.

e ZeRO Stage 1: Partitions optimizer states but keeps gradients and model weights replicated, reducing

memory usage to 4M + %

e ZeRO Stage 2: Further partitions gradients while keeping only model weights replicated, leading to
2M + % memory cost.

e ZeRO Stage 3: Fully partitions optimizer states, gradients, and model weights across devices, achiev-

ing the lowest memory cost (3%) and reducing communication cost.

8.4.2 Benefits of ZeRO

e Lower Memory Usage: By partitioning optimizer states, gradients, and model weights across de-
vices, ZeRO reduces the overall memory footprint.
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e Larger Model Training: Enables the training of much larger models that wouldn’t fit in memory
with traditional data parallelism.

e Efficient Communication: While ZeRO introduces additional communication overhead, it is opti-
mized to keep it manageable (only increasing marginally at Stage 3).

8.5 ZeRO Stage 2 Overview

ZeRO Stage 2 builds upon ZeRO Stage 1 by partitioning both optimizer states and gradients, reducing
memory consumption even further.

Data Parallelism
[momentumJ [weightsJ
- all-reduce : :
partial . . ~ . new
G gradlentsH multiply-add }{mulnply-add}—» s
ZeRO Stage 2
[momentum} [weights]

: reduce-scatter : i all-gather
-partlal . X . ; new
gradients gradlentsH multiply-add J—-[mulnply add]» EE— weights

Same communication cost but save memory by partitioning more tensors

Figure 22: The image illustration about ZeRO Stage 2 of the ZeRO framework.

8.5.1 Key Idea

The primary optimization in ZeRO Stage 2 is replacing the traditional all-reduce operation with a combina-
tion of:

e Reduce-scatter: Distributes different portions of the gradients to different devices, avoiding full
gradient replication.

e All-gather: Collects updated values from different devices after computation.

This modification retains the same communication cost as all-reduce but significantly reduces memory con-
sumption by partitioning more tensors.

8.5.2 Comparison: Data Parallelism vs. ZeRO Stage 2

The following highlights the differences in computation and memory efficiency:

1. Data Parallelism Workflow In standard data parallelism, the training process follows these steps:

1. Partial Gradients Computation (on each device).

2. All-reduce Operation: Each device receives the full set of gradients.
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3. Momentum Update: The gradients are adjusted based on momentum.
4. Weight Update: Weights are updated using gradients via multiply-add operations.

5. New Weights Generation: The updated weights are used for the next iteration.

Issue: All gradients are fully replicated on every device, leading to high memory consumption.

2. ZeRO Stage 2 Workflow ZeRO Stage 2 modifies the workflow as follows:

1. Partial Gradients Computation (on each device).

2. Reduce-Scatter Operation: Gradients are partitioned across devices instead of being fully repli-
cated.

3. Momentum Update: Only the necessary portion of the gradients is updated per device.
4. Weight Update: Each device computes weight updates on its partitioned gradients.

5. All-Gather Operation: Updated gradients are assembled to produce new weights.

Advantage: Memory savings due to partitioning gradients instead of replicating them. The communication
overhead remains similar to all-reduce.

8.5.3 Advantages of ZeRO Stage

e Memory Efficiency: ZeRO Stage 2 significantly reduces memory usage by partitioning gradients
alongside optimizer states.

e Scalability: Enables training larger models across multiple GPUs or nodes.
e Same Communication Cost: Despite gradient partitioning, the total communication cost remains

unchanged compared to standard data parallelism.

8.5.4 Conclusion

ZeRO Stage 2 extends the optimization of ZeRO Stage 1 by partitioning gradients, leading to further reduc-
tions in memory consumption while maintaining efficiency. This makes it an essential technique for scaling
up deep learning models, especially when working with limited GPU memory resources.

8.6 ZeRO Stage 3 Overview

ZeRO Stage 3 builds upon ZeRO Stage 2 by fully partitioning optimizer states, gradients, and model
weights, allowing deep learning models to scale further with minimal memory overhead.
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Figure 23: The image illustration of the comparison between ZeRO Stage 2 and ZeRO Stage 3.

8.6.1 Key Idea

Part 4

ZeRO Stage 3 extends memory optimizations from ZeRO Stage 2 by partitioning model weights across
devices in addition to gradients and optimizer states. This results in maximum memory savings while

maintaining computational efficiency.

The key difference in ZeRO Stage 3 is:

e ZeRO Stage 2: Uses all-reduce for communication.

e ZeRO Stage 3: Uses reduce-scatter and all-gather, leading to 1.5x all-reduce communication

cost instead of 1x.

This slight increase in communication overhead is outweighed by the massive memory savings, enabling the

training of much larger models on limited GPU resources.

8.6.2 Comparison: ZeRO Stage 2 vs. ZeRO Stage 3

The following outlines the differences in workflow:

1. ZeRO Stage 2 Workflow

1. Forward Pass: Model processes input.

2. Backward Pass: Computes gradients.

Optimizer State Update: Updates optimizer states (partitioned).

Weights Update: Updates model weights (still replicated).

S

All-Gather: Collects partitioned weights.

Issue: Model weights are still fully replicated, limiting memory savings.

Reduce-Scatter: Partitions and distributes gradient updates across devices.
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2. ZeRO Stage 3 Workflow

et

Ne ook

All-Gather Before Forward Pass: Since model weights are partitioned, an all-gather operation
reconstructs weights before computation.

Forward Pass: Model processes input.

All-Gather Before Backward Pass: Partitioned weights are gathered again for gradient computa-
tion.

Backward Pass: Computes gradients.
Reduce-Scatter: Partitions gradient updates across devices.
Optimizer State Update: Optimizer states are updated (partitioned).

Weights Update: Partitioned weights are updated.

Advantage: Model weights are now partitioned, dramatically reducing memory usage.

Downside: Additional all-gather operations introduce 1.5x all-reduce communication cost.

8.6.3 Advantages of ZeRO Stage 3

Maximal Memory Efficiency: Fully partitions optimizer states, gradients, and model weights across
devices.

Enables Training of Billion-Scale Models: Makes it possible to train enormous models that
wouldn’t fit into memory with traditional approaches.

Trade-off Between Memory and Communication: While communication overhead increases
(1.5x all-reduce), the memory footprint reduction allows training much larger models on fewer GPUs.

Better GPU Utilization: Since memory usage is minimized, GPUs can handle larger batch sizes,
improving throughput.

8.6.4 Conclusion

ZeRO Stage 3 is the most memory-efficient stage of the ZeRO framework. By fully partitioning
optimizer states, gradients, and model weights, it allows training models several times larger than
what is possible with standard data parallelism. While it introduces a slightly higher communication cost
(1.5x all-reduce), the significant reduction in memory consumption far outweighs this cost, making ZeRO
Stage 3 ideal for large-scale deep learning workloads.

9

9.1

Mesh-TensorFlow: Mapping Tensor Dimensions to Mesh Di-
mensions

Tensor Dimensions

Mesh-TensorFlow defines tensor dimensions using mtf.Dimension(name, size). Each tensor dimension
represents a logical data axis in the computation. For example:
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batch = mtf.Dimension("batch", b)
io = mtf.Dimension("io", d_io)
hidden = mtf.Dimension("hidden", d_h)

9.2 Mesh Dimensions

Mesh dimensions represent the distributed computational grid. They are defined using a list of tuples
specifying the mesh dimension names and their sizes:

mesh_shape = [("rows", r), ("cols", c)]

9.3 Mapping Tensor Dimensions to Mesh Dimensions

Tensor dimensions are mapped to mesh dimensions using a computation layout. This mapping determines
how tensors are distributed across the computation grid for efficient parallelism:

computation_layout = [("batch", "rows"), ("hidden", "cols")]

This means:

e The "batch" dimension is distributed along "rows".

e The "hidden" dimension is distributed along "cols".

9.4 Summary

e Mesh-TensorFlow enables explicit model parallelism by partitioning tensors across multiple devices.
e The tensor dimensions define the logical shape of data.
e The mesh dimensions represent the hardware topology.

e The mapping (computation layout) determines how tensor dimensions are split across available
compute resources.

9.5 GSPMD

GSPMD is the successor of Mesh-TensorFlow. It uses a similar compiler-based approach. Users insert
annotations to specify the parallelization strategy for important tensors. Later, the compiler propagates the
strategy to the entire graph and generates SPMD (Single Program Multiple Data) parallel executables.

10 Combining Intra-op and Inter-op Parallelism

As shown in Fig. 24, we can divide the above computational graph into multiple stages and assign each
stage to a different device mesh with different numbers of GPUs. This helps to keep the computational
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Figure 24: Combining Intra-op and Inter-op Parallelism

time approximately the same for each stage and benefits pipeline parallelism by reducing bubble size. Inside
each stage, intra-op parallelism is performed. Combining both parallelisms helps achieve the best scalability,
especially with large numbers (> 1000) of GPUs.

We can also combine parallelism with other optimizations mentioned in previous lectures, including gradient
checkpointing and swapping for system-level memory optimization, as well as quantization, sparsification,
and low-rank approximation for ML-level optimization.

11 Intra-operator Parallelism Summary
We can summarize the intra-operator parallelism part.

e We can parallelize a single operator by exploiting its internal parallelism.

e To use intra-operator parallelism for a whole computational graph, we need to choose strategies for all
nodes in the graph to minimize the communication cost.

e Intra-op and inter-op can be combined to achieve the best performance.

11.1 Other techniques for training large models

In this part we focus on the parallelization. But in reality, we also want to combine the parallelization
techniques with other techniques shown in previous lectures. We can do parallelization while also using
other techniques, which includes:

e System-level Memory Optimizations: Rematerialization / Gradient Checkpointing, Swapping

e ML-level Optimizations: Quantization, Sparsification, Low-rank approximation
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12 Auto-parallelization: Motivation and Problem Definition

12.1 Motivation

Machine learning developers face challenges in selecting the appropriate parallelization strategy for their
models and computing clusters. Various parallelization techniques exist, including: Data Parallelism,
Operator Partitioning, Pipeline Parallelism, ZeRO (Zero Redundancy Optimizer).

Different frameworks support these methods, such as:
e DeepSpeed, FairScale FSDP, Megatron-LM, Mesh-TF, GSPMD, GPipe, 1F1B

As models evolve from CNNs to large-scale architectures like BERT, GPT-3, and Mixture of Experts (MoE),
the selection of an appropriate parallelization strategy becomes more complex. The key challenge for ML
developers is: “Which parallelization strategy best fits my model and cluster?”

12.2 Problem Definition

The core problem of auto-parallelization can be formulated as an optimization problem:

max Performance(Model, Cluster) (2)
strategy
subject to:
strategy € Inter-op U Intra-op (3)

Here, the goal is to maximize the training performance by selecting an optimal parallelization strategy from
inter-operator (Inter-op) and intra-operator (Intra-op) parallelization methods.

12.3 Problem Breakdown
12.3.1 Model Representation

A deep learning model can be represented as a computational graph consisting of various operations, such as:
matmul (matrix multiplication), ReLU (activation function), MSE (loss computation), sub (weights update).

These operations must be mapped efficiently to hardware to optimize performance.

12.3.2 Cluster and GPU Interconnect

The cluster consists of multiple GPU nodes, where execution efficiency is heavily influenced by the inter-
connect topology and link characteristics between GPUs. Key aspects include:

e NVLink: High bandwidth, low latency inter-GPU communication.

e PCle: Lower bandwidth, higher latency, typically used for CPU-GPU communication.

e InfiniBand: Scales across multiple nodes but introduces communication overhead.
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The selection of an optimal parallelization strategy must take into account:

e The communication overhead introduced by inter-GPU links.

e The placement of operations across GPUs to minimize data transfer bottlenecks.

12.3.3 Strategy Space

The number of possible parallelization strategies is large. Different ways to distribute model computations
across available GPUs and nodes must be considered.

12.4 Search Space Complexity

The search space for auto-parallelization is vast, making it computationally challenging. The major con-
tributing factors include:

e # of operations in a real model (nodes to color): 100 — 10K

e # of operation types (types of nodes): 80 — 200+

e # of devices in a cluster (available colors): 10s — 1000s

13 Automatic Parallelization Methods

13.1 Overview of Methods

Automatic parallelization methods can be broadly classified into three categories:
e Search-based methods: These methods explore the parallelization space using techniques such as
Markov Chain Monte Carlo (MCMC) and heuristics.

¢ Learning-based methods: These methods leverage machine learning techniques, including rein-
forcement learning, ML-based cost models, and Bayesian optimization, to guide the parallelization
strategy.

e Optimization-based methods: These approaches formulate parallelization as an optimization prob-
lem and apply techniques such as dynamic programming, integer linear programming, and hierarchical
optimization to find efficient solutions.

13.2 General Recipe for Automatic Parallelization

The process of automatic parallelization follows a structured workflow, as in Figure 25:

e Search Space: The initial set of all possible parallelization strategies.

e Space Reduction: Techniques are applied to prune infeasible or suboptimal strategies, reducing the
search space.
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e Search Method: A strategy is selected to explore the reduced space, which can involve heuristics,
learning-based approaches, or optimization techniques.

e Evaluator: The performance of different strategies is assessed, and the best candidates are iteratively

refined.

This structured approach ensures that the automatic parallelization framework can efficiently find an optimal
or near-optimal strategy tailored to a given model and cluster configuration.

14 Learning-based Method: ColocRL

14.1 Methodology

The ColocRL method [7] leverages an ML model to explore the space of inter-operator placement strategies
using reinforcement learning. The key components of the approach include:

e Computational Graph Representation: The input is a directed acyclic graph (DAG), where nodes
represent operations (e.g., matrix multiplications, activations) and edges represent data dependencies.

e RL-based Policy Learning: A sequence-to-sequence (seq2seq) model with an attention mechanism
is trained to predict the optimal device placement.

e Policy Gradients: The model updates its policy based on real runtime measurements as rewards,
improving placement decisions iteratively.

¢ Execution and Evaluation: Candidate placements are executed on real hardware, and execution
time serves as a feedback signal to guide further policy optimization.

14.2 ColocRL Model

The RL agent is structured as an attentional sequence-to-sequence model, as in Figure 26:

e Encoder: An LSTM that processes the computational graph and encodes operation dependencies.

e Decoder: An LSTM that generates device assignments for each operation.
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Figure 26: ColocRL Model Architecture

e Attention Mechanism: Helps the decoder focus on relevant parts of the graph when making deci-
sions.

The placement decision for each operation is sequentially predicted, and the model refines its strategy through
reinforcement learning.

14.3 Training Objective

The RL-based placement model optimizes the following objective:

J(0) = Epn(pigio) [R(P)IG] (4)
where G represents the computational graph, P is a candidate device placement, R(P) is the real execution
runtime of placement P, w(P|G;0) is the learned policy for device placement.

Policy gradients are computed via REINFORCE, adjusting model parameters 6 to minimize execution time.

14.4 Results and Discussion

Experiments show that ColocRL achieves strong performance in device placement optimization. In addition
to improving execution efficiency, the model also discovers non-trivial placement strategies that are unlikely

to be found by human experts. These findings demonstrate the ability of reinforcement learning to uncover
complex and effective placements that may not be intuitive to manual tuning.

15 Optimization-based Method: Alpa

Alpal9] takes on an optimization-based approach to automated parallelization. The system employs hi-

erarchical optimization that separates inter-operator parallelism (across devices) from intra-operator
parallelism (within devices), coordinating them through a cost feedback loop, as shown in Figure 27.

The Alpa compiler begins by partitioning the computational graph (e.g., sequential operations like A—-B—C—D)

into pipeline stages while preserving operator dependencies. Concurrently, it represents the GPU cluster as
a 2D device mesh and generates candidate submesh configurations for each stage.

25
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Next, Alpa uses a dynamic programming approach that models pipeline latency through two components:

s
1. Total stage latency | > t; |, where ¢; is the optimal latency of executing stage ¢ on mesh i. This is

K3
equivalent to the latency of the first microbatch going through the pipeline.

2. Remaining execution time ( (B —1)- max, tj): pipelined execution time for the rest of B — 1
<i<

microbatches, bounded by the slowest stage.

5
The optimization objective is to find the optimal (stage, mesh) pairs that minimize T = Zt (B —

1)- 1max t;. The DP algorithm first enumerates the second term tyas = 1mauxst and minimizes the first
<<

term for each different ¢, -
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