
CSE-234: Data Systems for Machine Learning, Winter 2025

3: Basics: autodiff, ML system architecture overview

Lecturer: Hao Zhang
Scribes: Khushi Patel, Raymond Sun, Matthew Omalley-Nichols, Philip Chi, Sihan Wang, Honghao Lin,
Yen-Pu Wang, Forrest Dai, Jintong Luo, Aakash Agrawal

1 Announcements + Multiple Choice Questions

1.1 Pre-lecture:

- CSE will process the enrollments
- Last week we covered: matmul, softmax, computational graphs, programming- imperative vs symbolic,
static vs dynamic, and JIT (just in time) and its bottleneck
- The goal for today’s lecture is to cover autodiff, and give an MLSys architecture overview

1.2 Multiple Choice Questions

MCQ 1) You are a machine learning engineer at a company that is providing LLM endpoints to users. Your
goal is running efficient inference for these LLMs. You are given a framework which has both symbolic and
imperative APIs. While designing your system, would you:
A. Use symbolic mode for both testing and deployment of your system.
B. Use imperative mode for development and symbolic mode for deployment.
C. Use symbolic mode for development and imperative mode for deployment.
D. Use imperative mode for both testing and deployment of your system.

The answer is B because you want something that’s easier to debug at development and once you figure out
your program, you basically deploy it using the most high performance one.

MCQ 2) Which of the following is not true about dataflow graphs?
A. Static dataflow graphs are defined once and executed many times
B. No extra effort is required for batching optimization of static dataflow graphs
C. Dynamic dataflow graphs are easy to debug
D. Define-and-run is a possible way to handle dynamic dataflow graphs

The answer is C. Dataflow graph means its static so you just define once and it will run forever for arbitrary
data. Given a static data graph, batching is natural so no extra effort is required. Define-and-run is a
possible way to handle dynamic dataflow graphs because you don’t care about performance.

1



3: Basics: autodiff, ML system architecture overview 2

2 Forward Mode AD

The classic definition of partial derivative is

∂f

∂θ
= lim

ϵ→0

f(θ + ϵ)− f(θ)

ϵ
≈ f(θ + ϵ)− f(θ − ϵ)

2ϵ
+ o(ϵ2)

.

This formula has 2 problems for auto-differentiation: 1. it’s slow, requiring two evaluations of f to compute
a single gradient, and 2. it’s approximal and loses precision from floating point errors in practice.

Instead, autodiff uses symbolic differentiation, where the sum, product, and chain rules for partial differen-
tiation are applied to the computational graph. These rules can be applied either forward or backward.

For forward mode autodiff, we start from the input nodes and derive the gradient all the way to the output
nodes. To calculate ∂y/∂x1, define v̇i = ∂vi/∂xi, and solve each v̇i in the forward order of the graph.

With forward mode autodiff, for a f : Rn → Rk function, we need n forward passes to get the gradient with
respect to each input, but in ML, usually the input dimension n is large, while the output dimension k is 1
or small, so forward mode autodiff is not as effective for ML.

3 Reverse Mode AD

In reverse mode autodiff, we compute the gradients starting from the output y and working back to the inputs
xn. To achieve this, we use the adjoint vi =

∂y
∂vi

, which represents the partial derivative of the output y with
respect to the node vi, where i is the node index. We compute each adjoint vi in the reverse topological
order of the computational graph, which must be a directed acyclic graph (DAG) to ensure proper ordering.

In the example above, the first adjoint, v7, is equivalent to the identity function since the output y maps
to v7. From there, we apply the chain rule of calculus to propagate gradients backward through the graph.
We calculate the partial derivatives node by node until we reach the original inputs xn, whose adjoints
correspond to ∂y

∂xi
.

For nodes with multiple consumers (i.e., nodes that feed into multiple paths in the graph), the adjoint
computation involves unrolling y as a function of intermediary nodes. This scenario is illustrated in the
graph below.



3: Basics: autodiff, ML system architecture overview 3

In this case, the adjoint v1 can be expressed as the partial derivative of y with respect to the index node v1.
Expanding y as a function of intermediary nodes, we have:

v1 =
∂y

∂v1
=

∂f(v2, v3)

∂v2

∂v2
∂v1

+
∂f(v2, v3)

∂v3

∂v3
∂v1

= v2
∂v2
∂v1

+ v3
∂v3
∂v1

In general, the adjoint of an index node with multiple consumers is the sum of the adjoints of its consumers,
each multiplied by the partial derivative of the consumer with respect to the index node:

vi =
∑

j∈next(i)

vi→j , where vi→j = vj
∂vj
∂vi

Notice that this adjoint corresponds to the accumulated gradient of the loss with respect to a certain node
in the computational graph. Therefore, the above equation describes backpropagation in a computational
graph.

In short, reverse mode autodiff finds the gradient propagation in a neural network starting from the output
nodes and traversing back the network in reverse topological order. Reverse mode autodiff computes the
gradient of the output y with respect to all inputs xn in a single backward pass, making it efficient in machine
learning where y typically represents a scalar loss function. In scenarios where the dimensions of the output
space are larger than the input space, forward mode autodiff should be considered instead.

4 Backward Mode

The goal is to construct a graph that calculates the adjoint values for reverse mode AD. The algorithm is
defined as follows:

‘node to grad‘ starts as a key value pair of ”out: [1]” where the value is an array with a 1 because the adjoint
of the output ∂y

∂y is always 1.
The loop iterates through all the nodes in the graph in reverse topological order. On each iteration of the
loop, we first get v̄i by summing all ¯vi→j . At this point on the graph, we create a new node v̄i then connect
to it from all nodes ¯vi→j . Next, for all k in nodes vk that connect to vi, we compute their partial adjoint
with the expression ¯vk→i = v̄i

∂vi

∂vk
. At this step, we can expand the backward graph by creating a node ¯vk→i

with edges going from v̄i, and
∂vi

∂vk
if the node exists on the graph, to itself. We then append the partial



3: Basics: autodiff, ML system architecture overview 4

adjoint to the array ‘node to grad[k]‘ for future use.

Following this procedure, the graph on the left would expand to the graph on the right.

5 Backpropagation vs Reverse AD

The summary of Backward AD Rather than working directly with concrete values (numerical computations),
the backward graph symbolically represents the operations involved, enabling the automatic computation of
derivatives. Once the backward graph is constructed, it can be reused for different sets of input values. This
allows efficient computation during training processes in machine learning models, especially neural networks.
Popular machine learning libraries like TensorFlow and PyTorch utilize backward automatic differentiation
to compute gradients efficiently. This functionality enables optimization algorithms like gradient descent to
update model parameters.

5.1 Backpropagation vs. Reverse-mode AD

Reverse mode AD creates a bigger graph, which captures both the forward computations and the reverse
gradient propagation in a symbolic form. This graph structure is commonly used by modern frameworks such
as TensorFlow and PyTorch because it allows for efficient computation of derivatives with respect to many
inputs simultaneously, a necessity for large-scale machine learning models. In contrast, backpropagation
(used in frameworks like Caffe and CUDA-convnet) focuses solely on computing the gradient for a specific
function or layer. While effective for basic gradient computation, backpropagation lacks the flexibility and
reusability provided by reverse mode AD, especially for complex scenarios.

5.2 Missing points

To complete the machine learning training process, the critical missing component is weight update, which
ensures the model learns and improves over iterations.



3: Basics: autodiff, ML system architecture overview 5

θ(t+1) = f(θ(t),∇L(θ(t), D(t)))

The loss function is defined as:
L = MSE(w2 · ReLU(w1x), y)

where the parameters are θ = {w1, w2} and the dataset is D = {(x, y)}.

The training process consists of the following steps: Forward propagation is used to compute the loss L(·).
Backward propagation is then performed to calculate the gradient ∇L(·). Finally, weight update is applied
using an update rule such as:

f(θ,∇L) = θ − η∇L

where η is the learning rate.

6 MLSys Grand Problem

The grand challenge in ML systems (MLSys) revolves around designing systems that meet ambitious yet
essential goals. These include ensuring systems are fast, scalable, and memory-efficient to handle large-scale
machine learning workloads. They should be adaptable to diverse hardware platforms, which is crucial for
maximizing compatibility and performance across various environments, from cloud GPUs to edge devices.
Energy efficiency is another critical priority, addressing growing concerns about the environmental impact
of machine learning. Finally, these systems must be user-friendly, making programming, debugging, and
deployment intuitive and efficient. Achieving these objectives requires advancements in distributed sys-
tems, optimization algorithms, and hardware-software co-design, emphasizing a balanced trade-off between
performance and usability in the ever-evolving ML landscape.

7 Graph Optimization

Intuition: The graph written by the user might be inefficient, the system will take the graph defined by the
user, try to analyze it and optimize it so that the graph will be more efficient. Goal of the optimization: 1.
Rewrite the original graph G to G’. 2. G’ runs faster than G.

Below is a portion in the ResNet as a simple example of how graph optimization can be used to make the
system faster.



3: Basics: autodiff, ML system architecture overview 6

The portion consists of one BatchNorm and one Conv2D operation. To optimize this, we can unroll the
computation by plugging Y (n, c, h, w) into the equation of Z(n, c, h, w):

Z(n, c, h, w) = [(Σd,u,vX(n, d, h+ u,w + v) ·W (c, d, u, v)) +B(n, c, h, w)] ·R(c) + P (c)

Z(n, c, h, w) = (Σd,u,vX(n, d, h+ u,w + v) ·W (c, d, u, v) ·R(c)) +B(n, c, h, w) ·R(c) + P (c)

Let W2(n, c, h, w) = W (n, c, h, w) ·R(n) and B2(n, c, h, w) = B(n, c, h, w) ·R(c) +P (c), we can reformat our
Z(n, c, h, w) as: Z(n,c,h,w) =(Σd,u,vX(n, d, h+ u,w + v) ·W2(c, d, u, v)) +B2(n, c, h, w)

This equation will become a single BatchNorm with weight W2 and bias B2, as shown in the diagram below.

After optimization, it turns out, we have a single Conv2D operation to do the exact same task as the
combination of a Conv2D and a BatchNorm can do, and the runtime of the same task is faster as it only
uses one operator.

We can check a more aggressive example with graph optimization as shown below.

By looking at the holistic representation of the graph, the system will look for every opportunity to put
Conv2D and BatchNorm operations together as those two operations are the key computations in the dataflow



3: Basics: autodiff, ML system architecture overview 7

graph. As a result after several steps, we are combining all 5 operations into two Conv2D operations. By
fusing the operations into smaller numbers of operations, the runtime apparently would be faster as well.

One more example of graph optimization as a motivating example would be the attention mechanism in
Transformer.

In the attention mechanism, each of the three parameters Q, K, and V is calculated by one matmul operation,
to optimize this, we can concatenate the weight matrices of Q, K, and V, and perform one single matmul
operation to get the merged QKV instead. This would be faster as we reduce the graph size by fusing the
operators into smaller numbers of operations.

8 Arithmetic Intensity

Arithmetic Intensity defined as the ratio of total operations over total data movements (AI = #ops / #bytes).
The higher the arithmetic intensity, the better / more efficient the algorithm is. Example:

void add(int n, float* A, float* B, float* C){

for (int i = 0; i < n; i++)

C[i] = A[i] + B[i]

}

Algorithm:
Read A[i]
Read B[i]
Add A[i] + B[i]
Stores C[i]

Arithmetic Intensity: 1 compute and 3 read/writes − > 1/3

Different programs can perform differently, causing a difference in arithmetic intensity. Program goal: com-
pute E = D((A + B) * C) With

void add(int n, float* A, float* B, float* C){

for (int i = 0; i < n; i++)

C[i] = A[i] + B[i];

}



3: Basics: autodiff, ML system architecture overview 8

void mul(int n, float* A, float* B, float* C){

for (int i = 0; i < n; i++)

C[i] = A[i] * B[i];

}

float *A, *B, *C, *D, *E, *tmp1, *tmp2;

Algorithm 1:

add(n, A, B, tmp1);

mul(n, tmp1, C, tmp2);

add(n, tmp2, D, E);

Algorithm 2:

void fused(int n, float* A, float* B, float* C, float* D, float* E){

for (int i=0; i<n; i++){

E[i] = D[i] + (A[i] + B[i]) * C[i];

}

}

fused(n, A, B, C, D, E)

Arithmetic Intensity for Algorithm 1: 3 compute and 9 read/writes − > 1/3 Arithmetic Intensity for
Algorithm 2: 3 compute and 5 read/writes − > 3/5

9 Parallelization

Goal: parallelize the graph compute over multiple devices Device cluster: Over a device cluster, there may be
multiple nodes, each with several GPUs within the node connected through NVLink. Connections between
GPUs are faster in the same node and slower in different nodes(typically 10 - 100x slower). Therefore, it is
critical to cut the graph into components and put them on appropriate GPUs within the cluster, minimizing
connections across nodes and maximizing connections within nodes.



3: Basics: autodiff, ML system architecture overview 9

10 Runtime and Scheduling, Operator Implementation

Parallelization Problems: how to partition, how to communicate, how to schedule, how about consistency,
how to auto-parallelize.

Runtime and Scheduling Goal: schedule compute, communicate and memory so that they are as fast as
possible, overlap communicate with compute, and everything should be subject to memory constraints.

Operator Implementation Goal: get the fastest possible implementation of operations like matmul, conv2d,
etc. for different hardwares (V100, A100, H100, phone, TPU, etc.), precisions (fp32, fp16, fp8, fp4) and
shapes (conv2d 3x3, conv2d 5x5, matmul2D, matmul3D, attention) From a high-level perspective, we have
already discussed mathematical primitives (primarily matrix multiplication) and representations that express
computations using these primitives. The next step is to explore how to execute these computations efficiently
on clusters comprising diverse hardware types. Beyond graph optimization, parallelization, and runtime
scheduling, our current focus is on optimizing operators. The primary objective is to maximize the arithmetic
intensity, defined as #ops / #bytes, or the ratio of the number of operations to the number of bytes
transferred.

11 Optimize Arithmetic Intensity

11.1 Key Focus Areas in Optimization

Vectorization: This technique uses hardware instructions to process multiple data points simultaneously,
reducing execution time. CPUs and GPUs can handle several elements in one operation instead of one at a
time, boosting efficiency.
Data Layout Optimization: The way data is stored in memory (row-major vs. column-major) affects
access speed. Aligning data with the memory hierarchy improves cache use and accelerates read/write
operations.
Parallelization: Splitting tasks across multiple cores or threads speeds up processing. GPUs excel here,
using thousands of cores to handle large computations quickly.

11.2 Vectorization

Vectorization speeds up operations by using hardware-optimized batch instructions. Consider the following
unvectorized code, which loops 256 times to add two arrays and store the values in a third array.

float A[256], B[256], C[256];

for (int i = 0; i < 256; ++i) {

C[i] = A[i] + B[i];.

}

Instead of adding array elements one by one, vectorized code uses functions like load float4, add float4, and
store float4 to load, compute, and store four elements at a time.

for (int i = 0; i < 64; ++i) {

float4 a = load_float4(A + i*4);

float4 b = load_float4(B + i*4);

float4 c = add_float4(a, b);



3: Basics: autodiff, ML system architecture overview 10

store_float4(C + i*4, c);

}

Now, instead of looping 256 times to perform the operation, we only need to loop 64 times since we are
processing 4 floats at a time. This reduces loop iterations and memory access, significantly improving
performance.

11.3 Data Layout

Efficient memory access is critical for high-performance computing. Since memory is inherently linear,
multi-dimensional data structures like tensors must be stored sequentially. Two common data layouts are
row-major and column-major:

• Row-major order stores data row by row, meaning consecutive memory addresses hold elements of
the same row.

• Column-major order stores data column by column, meaning consecutive memory addresses hold
elements of the same column.

Consider the following code:

for j = 0 to N − 1 do

for i = 0 to M − 1 do sum += a[i][j]

Assuming the array a is stored in row-major order, this loop structure results in inefficient memory traversal,
as it involves iterating through the column dimension first, resulting in hops while accessing the elements
from memory. A simple improvement involves swapping the loops, which ensures that memory is accessed
sequentially, enhancing cache efficiency and reducing memory latency.

A modern approach that allows for dynamic memory access patterns is the strides format. This format acts
as a generalization of the row and col major accesses. Consider an N-dimensional tensor A and let A internal
be its underlying storage (can be row-major or column-major storage). Accessing the element A[i0][i1][i2]...
using the strides format is done as follows:

A[i0][i1][i2]... = A internal[
stride offset
+ i0 * A.strides[0]



3: Basics: autodiff, ML system architecture overview 11

+ i1 * A.strides[1]
+ i2 * A.strides[2]
+ ...
+ in-1 * A.strides[n-1]
]

This format consists of two parameters: offset and strides.

• Offset indicates the offset of the tensor relative to the underlying base storage

• Strides is an array of the same shape as the total number of dimensions of the tensor (i.e., len(strides)
= A.shape). Strides[i] indicate how many elements need to be skipped in memory in order to move
“one-unit” in the ith dimension of the tensor.

This approach can be better understood by taking an example of a 2D tensor, where the access is given by:
A[i, j] = A.data[offset + i×A.strides[0] + j ×A.strides[1]]

For the given 2D array example of shape (4 x 4), the underlying storage follows a row-major layout. Here, we
would skip 4 elements in memory in order to access the next row element in the array. Hence, Strides[0] = 4.
Since we only need to skip 1 element to the right to access the next array element in the column dimension,
Strides[1] = 1.

The strides format offers great flexibility and acts as a generalization for (i, j) indexing for both row-major
and col-major layouts. For a 2D array, the strides array is given by:

• If the underlying storage of an array A is row-major, strides = [A.shape[1], 1]

• If the underlying storage of an array A is col-major, strides = [1, A.shape[0]]



3: Basics: autodiff, ML system architecture overview 12

11.4 Benefits of using the Strides format

Strides separate the underlying storage and the view of the tensor. We can perform various tensor operations
by just changing how the data is accessed (via stride values) rather than moving or duplicating the data in
a new memory location, this is called Zero-Copy. The underlying storage in memory remains unaffected.
These tensor operations include: slicing, transpose, broadcasting, etc.

• Permute/Transpose: Strides format helps achieve permute operations by modifying the strides array
values.

• Slice: This operation is achieved by manipulating both the offset values and the strides array values.

• Broadcast: The only thing that changes to achieve broadcasting is the strides array.

11.5 Issues with the Strides format

In operations like slicing, the elements accessed by indexing are not contiguous in the original memory.
However, many vectorized operations require the elements to be stored sequentially in the memory.

A way to mitigate this issue is to use tensor.contiguous module provided by prominent libraries like Pytorch.
This will make the underlying storage of results (post operations like slicing) contiguous. However, this
involves copying elements from one location in the memory to another.

12 Contributions

• Khushi Patel: Section 1, Assigning Tasks, Converting google doc notes from others to latex

• Raymond Sun: Section 2

• Matthew Omalley-Nichols: Section 3

• Philip Chi: Section 4

• Sihan Wang: Section 5, 6

• Honghao Lin: Section 7

• Yen-Pu Wang: Section 8, 9

• Forrest Dai: Section 10

• Jintong Luo: Section 11.1, 11.2

• Aakash Agrawal: Section 11.3, 11.4, 11.5


