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To orient ourselves: In Lecture 3, we began the discussion of accelerating operators. We have talked about
vectorization and touched briefly on data layout (strides). In Lecture 4, we continue our discussion from
there:

1 Operator Acceleration Continued

1.1 Strides Recap

When we talk about how matrices (and, more generally, tensors) are laid out in memory, we’re discussing
two major things:

1. Contiguity rules — in what order the elements are arranged in the underlying 1D memory space.

2. Strides — how we map an (i, j) or (i, j, k, . . . ) index in a multi-dimensional tensor to its address in
memory.

1.1.1 Row-major vs. Column-major

Row-major (C-style)

Definition: In row-major order, the rows are laid out contiguously in memory. You store all the elements of
row 0, then all the elements of row 1, etc. Example: If you have a 3 × 4 matrix A, the layout in memory
looks like:

A00, A01, A02, A03, A10, A11, A12, A13, A20, A21, A22, A23

Column-major (Fortran-style)

Definition: In column-major order, the columns are stored contiguously in memory. You store all elements
of column 0, then column 1, etc. Example: The same 3× 4 matrix A in column-major memory would be:

A00, A10, A20, A01, A11, A21, A02, A12, A22, A03, A13, A23

Strides: A stride tells you how many memory steps (elements, not necessarily bytes) you move to get
from one index to the next along a particular dimension. Formally, if you have an n-dimensional tensor
(d0, d1, . . . , dn−1) with strides (s0, s1, . . . , sn−1), then the memory location of element (i0, i1, . . . , in−1) is
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given (in pseudo-code) by:

memory index(i0, i1, . . . , in−1) = base offset +

n−1∑
k=0

(ik × sk)

• base offset: The index (or pointer offset) where the tensor’s data starts in memory.

• sk: The stride for dimension k.

Why are strides used?

1. General Multi-dimensional to 1D Mapping: Memory is ultimately linear (1D). Strides tell us how to
jump in that 1D space when we move by 1 step in a given dimension.

2. Slicing or Subviews Without Copy: If you take a subarray (slice) of a bigger array, you can keep the
same underlying buffer but just change:

(a) The starting offset (where the slice begins)

(b) The shape (the new dimensions)

(c) The strides (how to jump in memory for each dimension)

For instance, if you want to skip every other element, you can modify a dimension’s stride accordingly,
without copying data. Hence, strides are a flexible way to interpret how multi-dimensional indices map
to an underlying continuous chunk of memory.

Examples of Strides:

Row-major 2D Shape: [m,n] (m rows, n columns) Typical strides: [n,1]

• The stride in the first dimension (the “row” dimension) is n, meaning if you move from row i to row
i+1, you skip n elements in memory.

• The stride in the second dimension (the “column” dimension) is 1, meaning adjacent columns are
adjacent in memory.

Column-major 2D Shape: [m, n] Typical strides: [1, m]

• The stride for the row dimension is 1, meaning moving from row i to row i+1 is just 1 step in memory.

• The stride for the column dimension is m, meaning to jump from column j to j+1, you skip m elements
in memory.

1.2 Using strides to accelerate operators

1.2.1 Slicing a Tensor

When you “slice” a tensor (or matrix) using the zero-copy method, you’re not actually copying any of the
data values in memory. Instead, you create a new view by adjusting three things.

1. Offset – Where in the original memory buffer this sub-slice should begin.
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2. Shape – The new dimensions (e.g., from 4× 5 to 3× 2).

3. Strides – How to jump through memory when iterating along each dimension.

Example: Slicing a 4× 5 matrix to a 3× 2 sub-matrix.

Let’s assume we have a 4× 5 matrix A, stored in row-major order.

• Shape: [4, 5]

• Strides: [5, 1] in row-major (the first dimension has stride 5, the second has stride 1)

• Base offset: 0 (the start of A in memory)

A =


a00 a01 a02 a03 a04
a10 a11 a12 a13 a14
a20 a21 a22 a23 a24
a30 a31 a32 a33 a34


Step 1: Identify the sub-matrix Suppose we want a sub-matrix that starts at row 1, column 2, and has
shape 3× 2. That means:

Start: (row, col) = (1, 2) Size: 3 rows by 2 columns. So it will include rows 1, 2, 3 and columns 2, 3.

Concretely, that sub-matrix is: a12 a13
a22 a23
a32 a33


Step 2: Compute the new metadata

• New shape = [3, 2].

• New offset:

– Each row in the original has 5 elements, so row ‘1‘ starts at memory index 1× 5 = 5

– Within that row, we skip 2 columns, so we add 2× 1 = 2 more.

– Therefore, the sub-matrix starts at memory index 5 + 2 = 7.

– So offset = 7.

• Strides: Usually remain the same as the original for a simple “contiguous slice.”

– Row-major strides were [5, 1].

– The sub-matrix is still laid out row by row, so strides = [5, 1] in this view.

Thus, this sub-matrix is described by:

• Shape = [3,2]

• Offset = 7
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• Strides = [5,1]

No actual data was copied. Instead, we just told the system: “Start from memory index 7, and interpret
the data with shape [3, 2] and strides [5, 1].”

And that’s exactly the sub-matrix we wanted:a12 a13
a22 a23
a32 a33


1.2.2 Transposing a Tensor

A transpose in the context of multi-dimensional arrays (tensors) can be thought of as rearranging the axes
of the tensor. For a 2D matrix (shape [m,n]), the simplest transpose is swapping rows and columns to get
[n,m]. For higher-dimensional tensors, “transpose” typically means a more general permutation of the axes
(e.g., turning a tensor with shape [D0, D1, D2] into something like [D2, D0, D1]).

Logical (Stride-Based) Transpose (Zero-Copy):

• Instead of physically rearranging data, you can logically transpose by changing how you interpret the
buffer in memory.

• In a simple 2D case (row-major):

• Original strides might be stride row, stride col = [n, 1] for an [m,n] array.

• When you transpose, you swap these strides to [1,m], effectively “reading” the data in transposed
order.

• This requires no copying, but note that the transposed layout can be less cache-friendly if the data are
physically laid out in row-major order.

Physical Transpose (Copy):

• You actually create a new buffer and write elements to their transposed positions so that the transposed
data become contiguous in the new layout.

• This gives better memory locality for many operations on the transposed data but requires time and
memory to perform the copy.

Most deep-learning or numerical frameworks (NumPy, PyTorch, TensorFlow, etc.) support both ways.
.T (NumPy) or .transpose(...) (PyTorch/TensorFlow) often defaults to returning a view (stride-based
transpose) if it can. But if a contiguous buffer is needed for performance, they might materialize (copy) the
transposed tensor.

1.2.3 Broadcasting a Tensor

Broadcast is prevalent because many times we want to do operations on tensors with only limited dimensional
match. In this lecture, we use the example of adding a and b with a.shape = [4, 3] and b.shape = [1, 3], as
visualized by Fig. 1.

How can we do this?
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Figure 1: Visualization of a simple broadcast

• Rudimentary way: Copy four times. It is slow and consumes a lot of memory

• How we really implement it: Change b.stride from [1] to [0, 1]; and b.shape from [1, 3] to [4, 3]

Why the second way works? Recall that PyTorch tensors are backed by contiguous memory arrays,
with the position of each element calculated using .shape and .stride attributes according to the formula:

A[i, j] = A.data[offset + i×A.strides[0] + j ×A.strides[1]]

Therefore, with A.strides[0] = 0, we have

A[i, j] = A.data[offset + j ×A.strides[1]] for any i.

This is essentially “telling” the machine to go back to offset and start over when creating a new line.

In practice, Pytorch does this for us automatically behind the scenes when we input a + b or a @ b

1.2.4 Challenge: swap the tiles with zero-copy

How can you swap the pink part with the blue part of the matrix shown in Fig. 2?

Straight-forward but slow way:

1 >>> a = np.arange (16).reshape(4, 4)

2 >>> a

3 array ([[ 0, 1, 2, 3],

4 [ 4, 5, 6, 7],

5 [ 8, 9, 10, 11],

6 [12, 13, 14, 15]])

7 >>> np.vstack ((np.hstack ((a[0:2, 0:2], a[2:4, 0:2])),

8 np.hstack ((a[0:2, 2:4], a[2:4, 2:4]))))

9 array ([[ 0, 1, 8, 9],

10 [ 4, 5, 12, 13],

11 [ 2, 3, 10, 11],

12 [ 6, 7, 14, 15]])
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Figure 2: Can you do the permutation with zero-copy?

1.2.5 One-sentence takeaway:

Utilize strides to the best of your interest to achieve zero-copy operations whenever possible!

1.3 Pitfall of stride: discontinuity

Many operations require contiguous memory layout for efficient utilization of hardware memory system.

Using stride can easily violate that requirement. For example, when we create a new tensor by slicing an
existing tensor, the storage of this new tensor in the memory is essentially discontinuous as we skip some
elements stored in between.

This is why we have contiguous method in Pytorch.

1.4 Parallelize Operators (brief intro for now)

Recall the example we mentioned in Lecture 3, that is, conducting element-wise addition of matrix A and
B, then write result into matrix C.

We discussed in Lecture 3 that we could utilize SIMD instructions like load float4 to vectorize this process.
Here, we further point out that, as this operation is element-wise, i.e. the addition of each element is
independent from each other, we could also easily parallelize it using an OpenMP decorator as shown in
Fig. 3.

If the operation is not element-wise, i.e., operation on one element is dependent on the one on another,
things become tricker. We will cover that situation later in this course.

1.5 Summarizing Operator Acceleration

To make operators faster, we can do:

• Vectorization (discussed in Lecture 3):
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Figure 3: Parallelization is simple with element-wise operation

Leveraging platform-specific vectorized functions

• Data Layout Manipulation (1.1 to 1.3):

Using strides to enable zero-copy operations

• CPU Parallelization (1.4):

Straightforward to implement for element-wise operators

2 Matrix Multiplication

2.1 Overview

In this section, we are going to explain some techniques specialized for matrix multiplication

2.1.1 What is Matmul in Code?

The code implements a naive n× n matrix multiplication: outer loops (i, j) iterate over the output matrix
while inner loop (k) computes the dot product of the corresponding row of A and column of B. And the
result is stored in C[i][j].

The time complexity of Naive Algorithm is O(n3). For every pair of indices (i, j), we perform n mul-
tiplications. However the State-of-the-Art algorithm can reach the complexity of O(n2.371552), achieved
through advanced techniques like Strassen’s algorithm, Coppersmith-Winograd, and later improvements by
Le Gall and Williams.

There are some insights into the optimization of matmul: Focus on memory access patterns and arith-
metic efficiency. Aim to minimize redundant computations and maximize data reuse.

Significant milestones in reducing the matrix multiplication exponent (ω) starting from Strassen’s O(n2.807)
in 1969. Some recent progress (Williams et al., 2024) has brought it down to O(n2.371552).

However, further reductions in ω yield diminishing practical benefits for most real-world problems due to:

• high constant factors in advanced algorithms;
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• increased complexity in implementation.

Figure 4: Timeline of Matrix Multiplication Algorithm

2.1.2 How to Make Matmul Fast

Recap of Arithmetic Intensity (AI): Defined as the ratio of arithmetic operations (#ops) to memory traffic(#bytes).
Our goal is to maximize AI to utilize compute resources efficiently.

• Increase #ops: Fuse operations to combine multiple computations into fewer memory-bound steps;
Reuse intermediate results to reduce redundant computations.

• Decrease #bytes:Optimize data layout for better cache usage; Use blocking and tiling techniques to
keep active data in fast memory (registers/L1 cache).

2.1.3 Recap of Memory Hierarchy

The CPU has access to different levels of memory, with a trade-off between speed and capacity.

• Registers: Closest to the CPU, fastest but very limited in size.

• L1/L2 Cache: Intermediate layers of memory to reduce latency for frequently used data.

• DRAM: Large but significantly slower, used for data that doesn’t fit in cache.

Also there exists different optimization techniques:

• Temporal Locality: Reuse the same data multiple times while it’s in the cache.

• Spatial Locality: Load data in contiguous blocks to minimize cache misses.

• Blocking/Tiling: Divide computations into smaller blocks that fit into faster memory.
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Figure 5: Hierarchy of memory and their speed

Let’s make the model simpler.

• Layers:

1. First Layer (Compute Units):

– Registers and CPU ALUs execute operations at high speed.

– High performance depends on keeping data in registers to avoid accessing slower memory
layers.

2. Second Layer (DRAM):

– Acts as a large but slow memory bank.

– Accessing DRAM frequently leads to bottlenecks.

To improve performance, we should maximize the use of registers and caches by structuring computations
to minimize DRAM accesses.

Figure 6: Simplified Memory Hierachy Model

2.1.4 Estimating Arithmetic Intensity

Let’s consider an example. We have a piece of code along with its optimized version, and we will calculate
the Arithmetic Intensity (AI) for both versions.
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Original Code and Calculation

The original code performs the computation E = D + ((A+B)× C) in multiple steps:

float* A, *B, *C, *D, *E, *tmp1, *tmp2;

// assume arrays are allocated here

// compute E = D + ((A + B) * C)

add(n, A, B, tmp1);

mul(n, tmp1, C, tmp2);

add(n, tmp2, D, E);

Computation Breakdown:

• Step 1: tmp1 = A+B (1 arithmetic operation per element)

• Step 2: tmp2 = tmp1× C (1 arithmetic operation per element)

• Step 3: E = tmp2 +D (1 arithmetic operation per element)

Memory Operations:

• Each step loads two arrays and stores the result in one array.

• Total memory operations = 3 (loads/stores per operation) ×n elements.

Arithmetic Intensity (AI):

• Total arithmetic operations = 3n (1 addition + 1 multiplication + 1 addition per element).

• Total memory operations = 9n (3 loads/stores per element × 3 steps).

• AI = Arithmetic Operations
Memory Operations = 3n

9n = 1
3 .

Optimized Code and Calculation

The optimized code fuses the operations into a single loop:

void fused(int n, float* A, float* B, float* C, float* D, float* E) {

for (int i = 0; i < n; i++) {

E[i] = D[i] + (A[i] + B[i]) * C[i];

}

}

// compute E = D + (A + B) * C

fused(n, A, B, C, D, E);

Computation Breakdown:

• Each loop iteration performs:

– A[i] +B[i] (1 addition)

– Multiply the result by C[i] (1 multiplication)
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– Add D[i] to the product (1 addition)

• Total arithmetic operations = 3n (3 operations per element).

Memory Operations:

• 4 loads (A, B, C, D) + 1 store (to E) per element.

• Total memory operations = 5n.

Arithmetic Intensity (AI):

• AI = Arithmetic Operations
Memory Operations = 3n

5n = 3
5 .

The original implementation has an AI of 1
3 , while the optimized (fused) implementation has an AI of 3

5 . By
fusing the operations into a single loop, the arithmetic intensity is increased, reducing memory bandwidth
usage and improving compute efficiency. The fused implementation is more performant as it balances the
ratio of computation to memory operations more effectively.

2.2 Register Tiled Matrix Multiplication

Matrix multiplication can be computationally inefficient because computing each element in matrix C re-
quires repeatedly loading the corresponding row of matrix A and column from matrix B, leading to poor
data reuse. Register tiled matrix multiplication addresses this inefficiency by dividing the matrices into
smaller sub-blocks (tiles) that fit within the available registers. This transformation enhances data local-
ity by enabling the loading of entire tiles into registers at once, reducing redundant memory accesses and
maximizing data reuse during computation.

1 dram float A[n/v1][n/v3][v1][v3];

2 dram float B[n/v2][n/v3][v2][v3];

3 dram float C[n/v1][n/v2][v1][v2];

4

5 for (int i = 0; i < n/v1; ++i) {

6 for (int j = 0; j < n/v2; ++j) {

7 register float c[v1][v2] = 0;

8 for (int k = 0; k < n/v3; ++k) {

9 register float a[0:v1 , 0:v3] = A[i][k];

10 register float b[0:v2 , 0:v3] = B[j][k];

11 c += dot(a, b.T);

12 }

13 C[i][j] = c;

14 }

15 }

Listing 1: Register Tiled Matrix Multiplication

As shown in Listing 1, we introduce three tiling factors v1, v2, v3, which represent the dimensions of the tiles.
Specifically, v1 determines the number of rows in each output tile of matrix C, v2 determines the number
of columns, and v3 corresponds to the shared dimension of the tiles in matrices A and BT. The outer loops
(line 5, 6) iterate over the matrix C in tiles of size v1 × v2, and the algorithm processes these tiles block by
block.

Within each tile of matrix C, the inner loop (line 8) iterates over the tiles of A and BT. At each step, a tile
from matrix A of size v1 × v3 and a tile from matrix BT of size v2 × v3 are loaded into registers (lines 9 and
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10). These tiles, a and b, are used to compute a partial dot product, which is accumulated into the tile c
(line 11).

Once the computation for all v3-sized chunks is complete, the final result for the tile c is written back to
memory (line 13), updating the corresponding portion of matrix C. By dividing the matrices into smaller
tiles and performing computations on these localized blocks, the algorithm minimizes redundant memory
accesses and maximizes data reuse within registers.

2.2.1 Computation Analysis

From lines 5, 6, and 8 of the pseudo-code, the memory access for matrix A involves loading tiles of size
v1×v3 for each computation of a tile in C. This results in n

v1
× n

v2
× n

v3
iterations, with each iteration loading

v1 × v3 elements. Therefore, the total read operations for A amount to:

n

v1
× n

v2
× n

v3
× v1 × v3 =

n3

v2

Similarly, the memory access for matrix B involves loading tiles of size v2 × v3 with the same number of
iterations. The total read operations for B are:

n

v1
× n

v2
× n

v3
× v2 × v3 =

n3

v1

For matrix C, each element is written to memory exactly once, requiring n2 write operations.

Notably, the tiling factor v3 does not influence the memory access cost for A,B, or C. This implies that v3
can be chosen arbitrarily without impacting the memory performance of the algorithm.

The number of registers required corresponds to the size of the tiles a,b, and c, which are used during
computation. Specifically:

• a requires v1 × v3 registers

• b requires v2 × v3 registers

• c requires v1 × v2 registers

As a result, the total number of registers requires is:

v1 × v3 + v2 × v3 + v1 × v2

This indicates that the choice of tiling factors v1, v2, and v3 is constrained by the total number of registers
available on each core.

When comparing register-tiled matrix multiplication to the basic implementation of matrix multiplication
(discussed in the previous section), a clear trade-off between space and time emerges. The basic implemen-
tation requires only three registers, making it minimal in terms of space usage. However, it is significantly
slower, as it performs a total of n3 read operations for matrices A and B. In contrast, register-tiled matrix
multiplication leverages more registers to store tiles of A,B, and C, enabling extensive data reuse. This
reduces redundant memory accesses, significantly improving I/O efficiency and, consequently, computational
performance.
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2.3 Cache-aware Tiled Matrix Multiplication

In real-world computing systems, the memory hierarchy consists of multiple levels designed to optimize data
access speeds. These levels include registers, the L1 cache, and DRAM. The L1 cache plays a critical role in
bridging the performance gap between the fast registers and the slower DRAM. Its proximity to the processor
allows for faster access to frequently used data, reducing latency and improving overall performance.

A key optimization technique for utilizing the L1 cache efficiently is tiling, which involves dividing data into
smaller blocks, or tiles, that fit into the cache. This enables the reuse of data in the cache, minimizing data
transfer from the slower DRAM. Specifically, two tiling strategies are commonly applied:

1. Cache-Aware Tiling: This strategy focuses on efficiently transferring data between DRAM and the
L1 cache.

2. Register-Aware Tiling: This strategy deals with moving data from the L1 cache to the processor
registers (as discussed in the previous section)

In this context, cache-aware tiling targets improving data locality and reducing cache misses when accessing
large datasets, such as matrices involved in matrix multiplication or other computational tasks.

Figure 7: Memory Hierarchy including L1 Cache

2.3.1 Data Movement and Computation

In cache-aware tiling, we introduce two tiling parameters: b1 and b2, which define the tile sizes for matrix
multiplication. These parameters determine how the data is divided between the L1 cache and the registers.
Based on previous analysis, it is noted that the third dimension, b3, has little impact on performance in this
case and is therefore set to b3 = 1.

The workflow for matrix multiplication involves:

1. DRAM to L1 Cache: Data is loaded in tiles from DRAM to the L1 cache using cache-aware tiling.
This reduces the number of memory accesses to the slower DRAM.

2. L1 Cache to Registers: After data is in the L1 cache, it is further divided and transferred to the
processor registers for computation. This step is handled by register-aware tiling.
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3. Dot Product Computation: A dot product is computed between a row of matrix A and a column
of matrix B. This is done using data that resides in the registers, but the intermediate steps of
transferring data from the L1 cache to the registers are essential to minimize access to slower memory.

Figure 8: Dot product computation

The code for implementing cache-aware tiling for matrix multiplication is as follows:

1 dram float A[n/b1][b1][n];

2 dram float B[n/b2][b2][n];

3 dram float C[n/b1][n/b2][b1][b2];

4

5 for (int i = 0; i < n/b1; ++i) {

6 l1cache float a[0:b1, 0:n] = A[i];

7 for (int j = 0; j < n/b2; ++j) {

8 l1cache float b[0:b2, 0:n] = B[j];

9 C[i][j] = dot(a, b.T);

10 // Register -aware tiling can be applied here for further optimization

11 }

12 }

Listing 2: Cache-Aware Tiling Implementation

2.3.2 Cost Analysis

Understanding the cost of data movement between different memory levels is crucial to optimizing the tiling
process. The cost is typically measured in terms of the number of memory accesses required to transfer data
from DRAM to the L1 cache and from the L1 cache to registers.

1. Reads Between DRAM and L1 Cache for Matrix A:
The number of reads required to load matrix A into the L1 cache can be calculated by considering the
number of tiles and the size of each tile:

n

b1
· n · b1 = n2

This corresponds to the outer loop of the tiling process for matrix A, where each tile of A is loaded
from DRAM to the L1 cache.
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2. Reads Between DRAM and L1 Cache for Matrix B:
Similarly, the number of reads required for matrix B is:

n

b1
· n

b2
· b2 · n =

n3

b1

This represents the memory access cost for matrix B during the tiling process.

2.3.3 Total Cost:

The total cost of transferring data from DRAM to the L1 cache is the sum of the costs for matrices A and
B:

Total Cost = n2 +
n3

b1

This cost reflects the data movement overhead involved in the tiling process. Optimizing this cost is critical
to achieving better performance in memory-bound operations.

2.3.4 L1 Cache Size Constraint

The effective use of the L1 cache is limited by its size. To ensure that the tiles of data can fit into the cache,
the following constraint must be satisfied:

b1 · n+ b2 · n ≤ L1 Cache Size

This constraint ensures that the total memory required to hold the tiles of matrices A and B in the L1
cache does not exceed the cache’s capacity. If this constraint is violated, cache misses will occur, leading to
performance degradation.

2.3.5 Comparison: Cache-Aware Tiling vs. Untiled Matrix Multiplication

In the untiled implementation of matrix multiplication, space usage in the L1 cache is minimal, as data is
loaded directly from DRAM into the registers for computation without intermediate buffering. However, this
simplicity comes at a significant performance cost, as the process requires n3 read operations for both matrices
A and B, leading to substantial redundant memory accesses. In contrast, cache-aware tiling leverages the
L1 cache to store tiles of A, B, and C, enabling extensive data reuse and reducing the number of redundant

memory accesses. Specifically, the total cost of cache-aware tiling is n2 + n3

b1
, which is significantly lower

than the untiled version for reasonable tile sizes (b1 and b2). While cache-aware tiling requires additional L1
cache space proportional to the tile sizes (b1 · n+ b2 · n), this trade-off results in significantly improved I/O
efficiency and computational performance by reducing data transfer overhead between DRAM and the L1
cache.

2.4 Putting Things Together

Finally, we combine register and cache-aware tiling to optimize matrix multiplication across multiple levels
of memory hierarchy. Cache tiling partitions the matrices into chunks that fit into the L1 cache, while
register tiling further subdivides these chunks to maximize data reuse in registers. This hierarchical approach
improves computational efficiency by balancing data movement across different levels.



16 4: Tensor format, matmul deep dive, accelerators

1 dram float A[n/b1][b1/v1][n][v1];

2 dram float B[n/b2][b2/v2][n][v2];

3

4 for (int i = 0; i < n/b1; ++i) {

5 l1cache float a[b1/v1][n][v1] = A[i];

6 for (int j = 0; j < n/b2; ++j) {

7 l1cache float b[b2/v2][n][v2] = B[j];

8 for (int x = 0; x < b1/v1; ++x) {

9 for (int y = 0; y < b2/v2; ++y) {

10 register float c[v1][v2] = {0};

11 for (int k = 0; k < n; ++k) {

12 register float ar[0:v1] = a[x][k][:];

13 register float br[0:v2] = b[y][k][:];

14 C += dot(ar, br.T);

15 }

16 }

17 }

18 }

19 }

Listing 3: Combining Register and Cache Tiling

The above code demonstrates how data is moved and processed across different levels of the memory hier-
archy.

• Cache Tiling (Outer Loops): Parameters b1 and b2 are used to divide the computation into tiles
that fit into L1 cache, reducing the need to repeatedly fetch data from DRAM.

• Register Tiling (Inner Loops): Parameters v1 and v2 further divide the tiles into smaller chunks
that fit into registers, minimizing L1 cache to register traffic.

2.4.1 Cost Analysis

To evaluate the efficiency of this tiling strategy, we analyze the computational and memory costs at different
levels:

DRAM → L1 Cache

Cost =
n

b1
· b1
v1

· n · v1 = n2

This formula represents the cost of moving data from DRAM to L1 cache. The tiling ensures that we only
fetch the required tiles from DRAM, reducing the total memory traffic.

L1 Cache → Registers:

Cost =
n

b1
· b1 ·

n

b2
· b2
v2

· n · v1 =
n3

v2
Register tiling reduces the memory operations between L1 cache and registers. By optimizing v1 and v2, we
can further lower this cost:

Optimized Cost =
n3

v1

2.4.2 Practical Considerations in CPUs

Modern CPUs follow a hierarchical memory model:

Disk → DRAM → L2 Cache → L1 Cache → Registers
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Key Questions for Optimization:

• Parameter Selection: How do we choose the tiling parameters v1, v2, b1, b2, c1, c2?

– v1, v2 are register tiling parameters and should fit within the available registers.

– b1, b2 are cache tiling parameters and must fit within L1 or L2 cache.

• Concurrent Reads: Can we overlap memory operations, such as:

– DRAM → L2 transfers with L2 → L1 transfers?

– L1 → Registers?

Strategies for Concurrency:

• Non-blocking caches and hardware/software prefetching can enable overlapping data movement at
different levels.

• Pipelining memory transfers and computation ensures efficient resource utilization.

2.4.3 Why Tiling Works: Reuse Loading

Tiling improves performance by reusing data across multiple computations, thereby reducing redundant
memory accesses.

float A[n][n];

float B[n][n];

float C[n][n];

C[i][j] = sum(A[i][k] * B[j][k], axis=k);

In matrix multiplication, accessing A[i][k] is independent of the j-dimension. By tiling along the j-
dimension:

• We can reuse A[i][k] for multiple computations of C[i][j].

• This reduces the number of times A needs to be fetched from memory.

Benefits of Reuse

• Reduced Memory Bandwidth: Fewer fetches from DRAM or cache.

• Increased Cache Efficiency: Working sets fit into cache, reducing cache misses.

• Improved Performance: More time is spent on computation rather than memory access.

Tiling is a powerful optimization strategy that balances computation and memory reuse by leveraging data
locality at multiple levels of the memory hierarchy. By carefully choosing the tiling parameters, we can:

• Minimize redundant memory accesses.

• Maximize data reuse in cache and registers.

• Ensure efficient utilization of modern CPU architectures.



18 4: Tensor format, matmul deep dive, accelerators

3 The Overall Trend of Hardware Accelerator

3.1 Recap: CPU Parallelization (How to make MatMul faster?)

3.1.1 Parallelization

Modern CPUs often include parallelized instructions . These are designed to operate on multiple data
elements in a single instruction (using many concurrent cores). This technique is referred to as SIMD
(Single-Instruction Multiple-Data).

3.1.2 Parallel Loops on CPU

A simple C/C++ loop can be parallelized using OpenMP. For instance:

1 # pragma omp parallel for

2 for (int i = 0; i < 64; ++i) {

3 float4 a = load_float4(A + i*4);

4 float4 b = load_float4(B + i*4);

5 float4 c = add_float4(a, b);

6 store_float4(C * 4, c);

7 }

Listing 4: Example of OpenMP parallel for with vector operations

• Motivation: By using one instruction that processes multiple pieces of data in parallel,, we can im-
prove throughput significantly for arithmetic-heavy workloads like matrix multiplication, dot products,
or element-wise array operations.

3.2 Single-Instruction Multiple-Data (SIMD)

SIMD is a computational paradigm where one instruction is issued, but it operates on multiple elements of
data in parallel. In CPU designs, the vector unit typically contains multiple Arithmetic Logic Units (ALUs)
that process multiple data elements concurrently.

Figure 9: Single Instruction Multiple-Data

CPU is not good at SIMD task and this is related to how CPU is designed.
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3.3 Chip Design Trajectory: SIMD

Historically, CPU manufacturers have gradually increased the width of vector instructions. For example: As
transistor sizes shrink, more ALUs can be placed on the same chip area (barring power constraints). This
has driven the trend of building larger vector units, effectively doubling or quadrupling the parallelism that
can be exploited within a single cycle. However, power and heat limitations eventually arise.

Figure 10: CPU evolved with more and more ALU (cores) units

3.4 Limitations and the Road Ahead

• Power wall: Even if we add more ALUs, we risk overheating and surpassing feasible power budgets.

• Diminishing returns: Doubling the vector width does not always translate to a 2× speedup in real
workloads (due to memory bandwidth, cache efficiency, etc.).

3.5 The End of Moore’s Law and the Chip Industry Solution

3.5.1 Moore’s Law Slowdown

Figure 11: Moore’s law comes to an end

Moore’s Law (the observation that the number of transistors on a chip doubles approximately every 18–24
months) has fueled the past decades of CPU performance gains. However, transistor scaling has run into
physical limitations:
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Figure 12: Comparison between GPU and CPU (be aware how many cores GPU possess compares to CPU)

• Sub-10nm Fabrication: Manufacturers are moving from 7nm to 5nm, 3nm, and even smaller pro-
cesses, but the cost of these photolithography steps is immense. Leakage current, heat dissipation, and
quantum effects complicate matters.

• Dennard Scaling’s End: Increasing clock speeds is no longer feasible at the same rate, due to voltage
and power density issues.

3.5.2 Industry Direction

The chip industry is exploring two paths:

1. Quantum Computing: Potentially a future direction, though currently limited to very specialized,
small-scale problems.

2. Specialized Hardware: Emphasizing more domain-specific accelerators (e.g., GPUs, TPUs).

These specialized solutions often revolve around matrix or tensor operations, particularly relevant for AI/ML
workloads that frequently rely on linear algebra.

3.6 Hardware Accelerators: GPUs and Beyond

3.6.1 Graphics Processing Units (GPUs)

• Idea: Use a huge number of simpler, specialized ALUs that focus on throughput rather than single-
thread performance. This is often described as “SIMD on steroids.”

• Origins: NVIDIA popularized GPUs for desktop graphics and gaming in the early 2000s.

• Deep Learning Boom: GPUs became central to machine learning frameworks once it was discovered
that matrix multiplications for neural networks map extremely well to the GPU’s parallel architecture.

• CUDA: NVIDIA’s proprietary parallel computing platform and API (introduced in 2007) made it
more accessible for non-graphics tasks. High-level libraries such as cuDNN, cuBLAS, cuSparse further
simplified ML integration.
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3.6.2 Other Accelerators (ASICs, FPGAs, TPUs)

Beyond GPUs, more specialized accelerators have emerged:

• Tensor Processing Unit (TPU):

– Created by Google as an ASIC specifically for machine learning inference and training.

– Used in products like AlphaGo and widely available in Google Cloud.

– Focuses on matrix multiply–accumulate (MAC) operations, often in reduced precision (e.g., bfloat16,
fp8).

• Future Projections:

– Example: B200 (projected release in 2025) with fp4 / fp8 tensor cores for deep learning.

– Example: Next-gen Apple “M” series chips that tightly integrate specialized matrix hardware
alongside traditional CPU cores.

4 Case Studies

4.1 What Does It Mean by “Specialized” In accelerator world

Functionality-specialized

• We can produce chips that are only good at MatMul operations like TPUs, or that are only good at
certain computations with sparsity.

• This also includes development of chips which are a mix of CPU and GPU cores. An example of this
is Apple’s chips, which integrate many different cores, some which are specialized in video processing,
and some in deep learning into a single board.

Reduce Precision

• Computations on a shorter floating point representation like fp8 and int8 are faster.

• NVIDIA strongly advocates for reducing precision from fp32 (used most commonly in older systems)
to fp4 and fp8.

Tune the distribution of configuration of the board

• This includes making decisions like, how many L1, L2 caches, or memory to include while performing
a MatMul tiling computation, and striking a balance between these.

• Some companies in Silicon Valley build chips which do well on certain tasks by giving up memory, i.e
a chip with just the L1 cache.
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Figure 13: NVIDIA H100 GPU Product Sheet
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Figure 14: Inducing sparsity in computations

4.2 Case Study 1: NVIDIA GPU Specification

Fig. 13 shows the GPU specification for NVIDIA’s H100 GPU. This GPU is specialised for deep learning
tasks.

The first few rows of this sheet represent the computing power of this card. Computing power on different
cores is different. The second highlighted core is a tensor core, and is good for tensor-related operations. The
other highlighted core is a normal core, but which has the same precision as the tensor core, fp32. However,
with the Tensor core, we can achieve almost 1000 TeraFLOPS (TeraFLOPS is the unit that describes the
computing power, higher the better), while with the normal core, compute is 10 times slower. The other
rows of this sheet describe FLOPS for different precision.

Another important specification in this sheet is the Memory Bandwidth, which describes the speed to move
things from GPU memory to cache/register. This number determines how fast it is to move a floating point
across memory hierarchy.

We can see that some terms come with an asterick above them. This indicates that if we run a sparsified
computation, we can achieve the peak FLOPS mentioned. But without sparsity, we can only get half those
FLOPS mentioned.

What is sparsity? If we are able to write a kernel/function that always performs computation subject to
a constraint that every row will only have half the elements and the rest of them are empty, we will then
get the ideal FLOPS, and this is what we refer to as sparsity. However, this is a hard task, to convert our
original computation to what is shown in the Fig. 14.

We can observe in the specification that for different precisions in the computation, the peak FLOPS also
differ. This is fundamental for quantization, where we attempt to quantize the precision all the way down
from fp32 to fp8. If we can quantize our original computation to a lower precision, we can benefit from
more powerful computing peak FLOPS, thus leading to faster programs. This brings about the question: In
applications which do not involve machine learning, reducing precision leads to more erroneous calculations.
So why can this work in ML programs while it does not in other scenarios?

4.3 Case Study 2: Apple Silicon

It seems the apple chip can do a lot of things, including video machine learning and graphics. But how they
acheive this? Apple M3 chip is shown in Fig. 15. In the upper-left corner, they place a 16-core CPU. Then,
for the rest of the space, they place some control units or caches. In the area below, they place a 40-core
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Figure 15: Apple Chip

Figure 16: Performance Chart

GPU. So, the M3 chip is mixing some versatile CPU cores with some less versatile GPU cores.Since apple
is software hardware company, they can optimize their operating system in a way that if something to be
executed is related to machine learning, the program will be dispatched to on GPU cores, while something
common like adding a document is executed, it will be dispatched on CPU cores.

4.4 Case Study 3: Leading Chip Startups

The third case is about leading chip startups. Groq, Cerebras, and SambaNova are three companies that
are trying to manufacture the next generation of chips optimized for machine learning. They are working
on tuning the configuration of cache size, memory, and register size to best suit certain workloads, such as
language model inference. The performance chart in Fig. 16 shows a workload of generating tokens from
Llama. The Groq hardware can achieve almost 10 times the speed of the other companies using Nvidia
GPUs.

The reason it can achieve this can be found in Fig. 17. The key difference between the Groq card and the
Nvidia chip is the SRAM. SRAM is similar to L1 cache, which is a layer in the memory hierarchy. It is faster
than memory but slower than a register. The Groq card has 230MB of SRAM, whereas the latest Nvidia
chip only has 164KB of SRAM. This is beneficial because the matrix can be tiled into a larger size, which
will be faster.
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Figure 17: Groq card
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