
CSE-234: Data Systems for Machine Learning, Winter 2025

18: The EAGLE Series by Prof. Hongyang Zhang

Lecturer: Hao Zhang Scribe: Hargen Zheng, Jan Szczekulski, Jiyue Zhu
Akshaya Thenkarai Lakshminarasimhan, Harsh Vardhan Sharma
Alexander Kourjanski, Sidharth Anand, Anthony Ruiz, Yueqi Wu
Humaira Firdowse Mohammed

1 The Path to EAGLE

1.1 Introduction

Prof. Hongyang zhang is a tenure track assistant professor at University of Waterloo and Vector Institute.
He obtained his PhD in 2019 from Machine Learning Department at California Miramar University. He did a
postdoc at the Toyota Technological Institute at Chicago. He is the winner of the NeurIPS 2018 Adversarial
Vision Challenge, CVPR 2021 Security AI Challenger, AAAI New Faculty Highlights, Amazon Research
Award, and WAIC Yunfan Award. He also regularly serves as an area chair for NeurIPS, ICLR, ICML,
AISTATS, AAAI, ALT and an action editor for DMLR.

Many researchers are currently working on speculative decoding, but Hao believes that Prof. Hongyang
Zhang’s EAGLE series delivers the best speedup. EAGLE is a family of speculative decoding methods that
can achieve lossless inference acceleration for large language models. In this talk, Prof. Hongyang Zhang
introduces speculative decoding and explains why the EAGLE series is particularly effective.

1.2 Vanilla Autoregressive Inference

Figure 1: Vanilla Autoregressive Inference

1

2 18: The EAGLE Series by Prof. Hongyang Zhang

Our goal is to speed up inference for large language models. Before diving into details about EAGLE, one
needs to understand the fundamental concept of autoregressive inference. Given a large language model
consisting of several layers - an embedding layer at the bottom, followed by several Transformer layers, and
topped with an LM head (a linear head) - as shown in Figure 1, we can describe the process as follows.

Suppose we input a prompt with single token “How.” We first pass the token through the embedding layer
to obtain its word embedding, denoted as ehow. Next, we input ehow into the Transformer layers to generate
a feature vector, denoted as fhow. After feeding fhow into the LM head, we obtain a distribution for the next
token, denoted as phow. From this distribution, we can use sampling methods (either greedy sampling or
non-greedy) to determine the next predicted token. If we sample “can” from the distribution, we then feed
this token back into the embedding layer. Following the same procedure, we obtain ecan, fcan, and ultimately
pcan, which yields the predicted token “I” through our sampling method. We repeat this procedure until we
encounter the special token “[EOS]” to complete the generation.

However, this sequential inference pipeline is not very efficient. Since modern GPUs excel at parallel com-
puting, can we transform this sequential inference into a parallel computing pipeline? To achieve this, we
employ a framework called Speculative Sampling or Speculative Decoding, which operates in two modes:
draft mode and checking mode.

1.3 Speculative Sampling Framework (draft)

Figure 2: Speculative Sampling Framework (draft)

Suppose we are given a Tiny model, which is a good approximation of the original large language model.
On passing the input token ”How” to the Tiny Model, it generates a sampling distribution qhow. From this
distribution the word with highest probability of the next occurrence is chosen. This results in generation
of the next token ”can”. The newly sampled token is again passed to the tiny model to generate the next
possible token in the same manner as above. This process continues until an End of Token generation is
observed. This is fast as we use a Tiny Model which is a good approximation of the large language model
and results in faster inferencing.

18: The EAGLE Series by Prof. Hongyang Zhang 3

1.4 Speculative Sampling Framework (check)

Figure 3: Speculative Sampling Framework(check

This framework is used to verify the correctness of the generated tokens by the Tiny Model. The tokens
generated by the Tiny Model are passed to the Original Large Language Model. The following series of
actions take place:

• All the tokens are passed into the Embedding layer of the model which generates the embedding of
each word passed parallely.

• The generated embedding eTM−Token is passed into the subsequent Transformer layer to synthesize
the feature vectors.

• These feature vectors are passed into the LM Head to get the probability distributions PTM−Token.

• The corresponding Probability distributions of the Large Language Model and the Tiny Model are now
compared sequentially.

• The result of comparison of each token can result in the following:

– Accept and continue Comparison with next token

– Reject all the subsequent tokens including the current one and begin the generation of tokens by
Tiny Model from this point.

The criterion used to decide whether to accept the current token or not is as follows:

• r ∼ U(0, 1), if r < min
(
1, p(t)

q(t)

)
, next token = t Accept rate

• else: next token = t′ ∼ norm(max(0, p− q)) Correction distribution

where r is the random number sampled from the uniform distribution.

4 18: The EAGLE Series by Prof. Hongyang Zhang

Figure 4: Sampling Scheme

The sampling scheme for correction distribution is as show in the figure 4. The closer the probability
distribution (q) of the Tiny Model, higher is the acceptance rate and faster the performance of the model.
Thus we need to determine how to build a Tiny Model which is as close as the Large Language Model.

1.5 How to build a tiny model?

Building a Tiny Model comes with the efficient handling of trade-off between accuracy and efficiency. That
is, improving the accuracy of the smaller model requires increasing its complexity, which in turn slows it
down—making it more similar to the larger model.

• Small Model: Accuracy will be Low, Speed will be High

• Huge Model: Accuracy will be High, Speed will be Low

2 Eagle-1

The original EAGLE framework, commonly known as ”EAGLE1,” serves as the cornerstone for subsequent
advancements. It was designed based on a critical observation about the underlying dynamics of feature
evolution across different layers. Specifically, understanding how representations transform from one stage
to another provides key insights into optimizing model efficiency and scalability.

18: The EAGLE Series by Prof. Hongyang Zhang 5

2.1 Observations

Figure 5: Observations of Dynamics in each level

From figure 5 we observe that the dynamics (the prediction of next embedding or feature vector from the
current) is complicate for Embedding layer but simpler for the Transformer layer. This indicates that a Tiny
Model development for the simpler dynamic portion is easier as compared to complex one.

2.2 Next-Feature Prediction

Figure 6: Next-feature prediction.

Given the simpler dynamics observed in the feature vectors, we would like to train a single transformer layer
to predict the next feature rather than the next token. As illustrated in Figure 6, the process begins with the
single transformer layer receiving the previously generated feature vectors, including fhow, fcan, and fI in the
first step. Then, the single transformer layer predicts the next feature vector, fhelp, which is subsequently
passed through the LM head and sampling layer to produce the token “you”. Meanwhile, fhelp is fed back
into the single transformer layer together with the preceding feature vectors to generate the next feature
vector, fyou. The iterative procedure continues until the “[EOS]” token is generated.

6 18: The EAGLE Series by Prof. Hongyang Zhang

EAGLE-1 demonstrated notable improvements in both speed and accuracy compared to traditional next-
token speculative sampling:

• Speedup: Achieved up to 1.8× acceleration with next-feature prediction, compared to 1.5× with next-
token prediction.

• Accuracy: Reached an above 0.6, significantly higher than the 0.3 observed with next-token prediction.

This approach highlights the benefits of leveraging upper-layer feature predictions rather than directly pre-
dicting tokens, striking a balance between inference speed and model accuracy.

2.3 Feature Uncertainty

Figure 7: Feature uncertainty.

One limitation of next-feature prediction is the issue of feature uncertainty. Figure 7 illustrates the
problem. Feature uncertainty arises because the distribution of the next token, given the current feature
vectors, can lead to different token predictions due to sampling variability. However, when these generated
tokens are placed into context, grammatical coherence becomes crucial to ensuring meaningful content.
Therefore, in the next-feature prediction, the next token should not only depend on the preceding feature
vectors but also on the last generated token.

To mitigate such feature uncertainty, we can predict the next feature vector based on a concatenation of the
previous feature and token. For example, as shown in Figure 7, we can predict falways with a concatenation
of fI and ealways.

Figure 8: Performance comparison between feature&shifted-token prediction, token prediction, and feature
prediction.

Figure 8 compares the performance of feature & shifted-token prediction, token prediction, and feature
prediction. The results indicate that feature prediction outperforms token prediction significantly both in
speedup and accuracy, probably due to the simpler feature dynamics, while feature & shifted-token prediction
achieves the best performance among the three, showing that the concatenated token provides a substantial
benefit.

18: The EAGLE Series by Prof. Hongyang Zhang 7

2.4 Tree Construction

The way how the tree structures Eagle uses can be described as follows:

We have two models, one is more robust, and the other is more simple. The more robust model has an
embedding layer, followed by transformer layer, then an LM head layer, and a sampling layer to get the
output. The simpler model has a similar architecture, but there is only one transformer layer, and the
sampling layer creates two outputs.

The first iteration is on the more robust model. The inputs go through the embedding layer, and we get ei
for each input. Then we go through the transformer layers to get fi for each of the inputs. We then end up
with the next word after running all fi through the LM head and sampling layer.

Using this next word as the input, we then go through the simpler model. Starting with the embedding
layer, we get ei+1, then we run the single transformer layer with ei+1 and fi. This results in fi+1, and after
running fi+1 through the LM head and sampling layers, we end up with two possible next words.

We then repeat the step with the simple model on each of the possible next words, which will then create a
tree with each node being the next predicted word, and each node having two children. There was a slide
that was a helpful visualizer and example, so a screenshot of it is attached below.

2.5 Tree Representation in Eagle-1

EAGLE 1 represents hierarchical structures using a tree format. The tree is flattened into a one-dimensional
vector, where nodes are arranged level by level. For instance, if the root node is “It,” followed by branches
such as “is” and “has,” the representation proceeds as follows:

• Root: ”It”

• Second layer: ”is”, ”has”

• Third layer: ”a”, ”the”, ”to”

• Fourth layer: ”good”, ”be”

To ensure structured attention, each node can only access its ancestors, including its parent and grandparent,
but cannot see its siblings. This constraint is enforced through an attention mask, which controls visibility.
The token “a” can attend to itself, its parent “is,” and its grandparent “It,” but not to “the” or “to.”
Similarly, “the” can attend to itself, “is,” and “It,” but cannot access “a” or other tokens.

This design enables tree-based attention, ensuring that tokens only interact with relevant hierarchical infor-
mation.

8 18: The EAGLE Series by Prof. Hongyang Zhang

2.6 Comparison of Draft Model and Large Language Models

Eagle-1 employs a single transformer layer, making it significantly smaller than large language models
(LLMs). The size comparison is as follows:

• 7B parameter LLM → 0.24B draft model (3.4% of the LLM size)

• 70B parameter LLM → ¡1B draft model (still ≤ 3.4% of LLM size)

Despite its small size, EAGLE 1 remains efficient and trainable on affordable GPUs like the RTX 3090,
completing training within 1-2 days using datasets such as Shared GPT.

2.7 Performance Evaluation: MT-Bench

EAGLE 1 demonstrates superior efficiency compared to other methods in MT-Bench, significantly outper-
forming existing decoding techniques:

• 3× faster than vanilla decoding

• 1.6× faster than Medusa

• 2× faster than Lookahead

More importantly, EAGLE 1 maintains text distribution quality across both greedy and non-greedy sampling
settings, making it a robust speculative decoding method.

2.8 Third-Party Benchmark Evaluation: Spec-Bench

In an external benchmark, Spec-Bench, various decoding methods were compared across multiple tasks, in-
cluding summarization, translation, multi-turn conversation, retrieval-augmented generation, mathematical
reasoning, question answering.

These experiments were conducted on both consumer-grade GPUs (RTX 3090) and high-end GPUs (A100).
Eagle-1 consistently outperformed other speculative decoding methods, including Hydra, Medusa, SpS, PLD,
REST, and Lookahead. When tested on an RTX 3090 with the Vicuna 7B model, EAGLE achieved a 2.16×
speed-up, significantly improving inference efficiency. On an A100 GPU, EAGLE consistently outperformed
other methods across all settings, including Vicuna models of 7B, 13B, and 33B. These results highlight
EAGLE’s effectiveness in accelerating decoding while maintaining strong performance across different model
sizes and hardware configurations.

By combining an efficient tree attention mechanism with a lightweight yet effective transformer layer, Eagle-1
significantly improves speculative decoding. Its ability to achieve high-speed performance while maintaining
text quality makes it a promising direction in NLP model optimization.

2.9 Beyond EAGLE-1: The Need for a More Adaptive Approach

Eagle-1, while effective, still has areas for improvement. This led to the development of its successor, Eagle-2,
a joint work by the same authors, which was presented at last year’s EMNLP. One major limitation of Eagle-
1 is its reliance on a static tree structure. This rigidity can be problematic in scenarios where the sequence

18: The EAGLE Series by Prof. Hongyang Zhang 9

Figure 9: Differences between Eagle 1 and Eagle 2

Figure 10: Draft tree Structure

requires more flexibility. For example, if the previous tokens form ”10 + 2” and we need to determine the
next token, a static tree structure may not always generalize well to different contexts. Eagle-2 addresses
this limitation by introducing a more adaptive approach, allowing for improved handling of dynamic token
dependencies.

3 Eagle-2

3.1 Limitations of Eagle-1

EAGLE uses a fixed draft shape approach that always creates the same number of branches regardless of the
problem. For example, if we look at Fig.9 when solving ”10+2=”, it generates two possible answers (1 and 3)
even though ”1” is clearly the correct choice with high probability. This wastes computational resources by
creating unnecessary branches like ”3”. EAGLE-2 improves this process by adapting to the specific problem.
When faced with an ambiguous calculation like ”10+2” (without the equals sign), it still creates multiple
prediction branches. However, for straightforward problems like ”10+2=”, it efficiently generates only one
branch with the highly probable answer ”1” followed by ”2”, creating a simpler prediction path. EAGLE-2
intelligently adjusts its prediction tree based on the context, using more branches only when prediction is
difficult thus making it more efficient compared to EAGLE-1.

3.2 Motivation and idea behind Eagle - 2

Fig.10 displays a tree with Query at the top, branching into positions P1 and P2, which further branch
into P3, P4, P5, and P6. Fig.12 shows a scatter plot of acceptance rates for these different positions.In this

10 18: The EAGLE Series by Prof. Hongyang Zhang

Figure 11: Average acceptance rates for different confidence score intervals of the draft model

Figure 12: Acceptance rate at different token positions of the tree

speculative decoding framework, acceptance rate is calculated as min(1, p/q). The results reveal a clear
pattern: positions matter significantly for token acceptance. The data shows that tokens in the upper left
part of the tree (position P1) typically have much higher acceptance rates compared to those in the lower
right (like position P6). This experiment also reveals considerable variation in acceptance rates even for
tokens at the same position. This suggests that context, not just position, strongly influences whether a
draft token will be accepted.

When building an efficient tree structure for generating text, we need to know which parts (nodes) of the
tree are most important. One approach is to use the acceptance rate to determine this importance, but
there’s a problem - calculating this rate requires knowing the output distribution from a larger, larger model
(p), which is computationally expensive. Instead of using this expensive approach, we can use the draft
model’s confidence score (how certain the draft model is about its predictions) as a good approximation for
the acceptance rate. The confidence score is simply the probability the draft model assigns to its outputs.
Fig.11 demonstrates that there’s a strong linear relationship between the draft model’s confidence and the
actual acceptance rate (calculated as min(1, p/q)). This means we can use the draft model’s confidence as
a reliable indicator of importance without needing to compute the expensive distribution from the larger
model. This approach allows us to efficiently determine which nodes are most important when building our
tree structure, saving computational resources while maintaining good performance.

18: The EAGLE Series by Prof. Hongyang Zhang 11

Figure 13: Context-Aware Dynamic Tree Pruning

3.3 Context Aware Dynamic Tree

Eagle-1 uses a static tree structure to represent feature uncertainty. Irrespective of how good or bad the
predictions from the draft model are, the top-2 predictions are always used to construct the next layers of
the tree. Looking at Fig. 12, we can see that the acceptance rate of each token is heavily dependent on
the position of the token. This leads to the major innovations of Eagle-2 - the structure of the tree can be
dynamically constructed based on the relative importance or certainty of each token. This means that the
model can adaptively choose whether to have a wider or deeper tree for each prediction.

The natural question is then deciding how we determine which tokens to keep and which to reject. The
equation for token acceptance - (min(1, p

q) depends on p which is a function of the larger target model.
Using this means we would have to compute predictions from the target model for each token, which is
exactly what we are trying to avoid. Instead, the authors find that using the output probability of q can be
used as a strong approximation for the confidence of the model in its prediction.

We start constructing the tree initially using the same technique as Eagle-1 (a beam search with k=2). Once
the tree reaches a certain number of tokens, each token in the tree is ranked using the cumulative probability
and only the top-k possibilities are chosen. Fig 13 represents this process, where a tree with 15 nodes is
pruned to only retain the top 8 possibilities.

3.4 Performance Evaluation

We find that the dynamic tree pruning significantly improves performance on MTBench achieving:

• 3.5× improvement over vanilla autoregressive generation on average

• 1.5× improvement over Eagle-1 on average

Like Eagle-1, Eagle-2 also maintains provably similar text distribution quality over both greedy and non-
greedy sampling. Eagle-2 also outperforms all existing methods on the third-party SpecBench benchmark
where models are tested on a single cheap GPU (1 RTX 3090).

12 18: The EAGLE Series by Prof. Hongyang Zhang

4 Eagle-3

4.1 Training Procedure - What is Eagle 1’s mistake?

EAGLE-1’s training pipeline involves a “draft” model that proposes the next token(s). A language modeling
head then predicts tokens in a standard next-token-prediction manner.

The framework operates at the feature level rather than directly at the token level for speculative decoding.
As shown in Figure 14, EAGLE-1’s training process consists of two fundamental components with distinct
optimization objectives.

During training at step t, EAGLE-1 takes a sequence of features (f1, ..., ft−1, ft) as input to the draft model

to predict the next feature f̂t+1, which should approximate the ground truth feature ft+1. This feature
prediction carries a ℓ1 loss denoted as lfea. Simultaneously, the model uses an LM head to predict token
t̂t+2, which should match the ground truth token tt+2, with an associated cross-entropy loss ltoken. The
overall training objective combines these losses: min(lfea + 0.1ltoken).

At step t+1, the process advances by incorporating the true feature ft+1 to predict the next set of outputs.

Eagle-1’s loss is computed based on how accurately its feature representations and final tokens match the
target model’s distribution.

However, this approach creates a training-testing mismatch. During training, Eagle-1 uses a ground-truth
token at t+1, while during testing it relies on a predicted token (see Figure 14). This discrepancy leads
to error accumulation and limits the ANN’s draft model’s performance.

Figure 14: Eagle 1 - Difference in Training and Testing

4.2 New training procedure of Eagle-3

Unlike EAGLE-1, which focused on feature-level predictions, EAGLE-3 works directly at the token level.
The training objective is simplified to minimize token prediction loss: min ltoken. This shift eliminates the
dependency on feature prediction accuracy, which was a limiting factor in EAGLE-1.

The most significant innovation in EAGLE-3 is the introduction of “training-time test.” This approach
creates a two-stage training process that simulates testing conditions during training. In the first stage (step
t), the model predicts token ât+1, which is then fed back into the model for the second stage (step t + 1).
This recursive approach ensures that during training, the model learns to work with its own predictions
rather than ground truth tokens, thus eliminating the training-test inconsistency that plagued EAGLE-1.

18: The EAGLE Series by Prof. Hongyang Zhang 13

This alignment between training and testing conditions allows EAGLE-3 to better leverage increased amounts
of training data, as the model is explicitly optimized for the conditions it will encounter during inference.
The training loop mirrors the inference process, creating a more robust and efficient speculative decoding
framework.

Figure 15: Eagle 3 - New Training Procedure

4.3 Results of Eagle-3

Eagle-3 significantly outperforms other speculative encoding methods, achieving up to 5.6x speedup (see
Figure 16). It also delivers higher throughput with batched data - which was a challenge for Eagle-1.

Figure 16: Eagle 3 - Results

• Higher Acceptance of Drafted Tokens:

– Because the model is more familiar with verifying its own outputs, it can more confidently accept
(or reject) tokens.

– Fewer fallbacks to single-step generation are required.

• Enhanced Speed Gains:

– By lowering the number of times the full model must be invoked token-by-token, EAGLE-3
achieves better speedups compared to EAGLE-1.

14 18: The EAGLE Series by Prof. Hongyang Zhang

4.4 New scaling law of Eagle-3

Eagle-3 exhibits a new scaling law where inference acceleration (speed-up) grows (almost) linearly with
increased training data (see Figure 17). By removing the feature prediction constraint and using a training-
time test strategy, the draft model fully leverages additional data.

Figure 17: Eagle 3 - new scaling law

5 Contributions:

• Jan Szczekulski - Eagle-3 - Initial draft (all sub-sections)

• Hargen Zheng - Initial template, coordination, 1.1, 1.2, 1.3

• Akshaya Thenkarai Lakshminarasimhan - 1.3, 1.4, 1.5, 2.1, Template coordination

• Jiyue Zhu - 2.2, 2.3

• Alexander Kourjanski - 2.4 Tree Construction

• Yueqi Wu - 2.5, 2.6, 2.7, 2.8, 2.9

• Humaira Firdowse Mohammed - 3.1,3.2

• Sidharth Anand - 3.3, 3.4

• Harsh Vardhan Sharma 4.1, 4.2, 4.3, Scribe coordination and workload distribution

• Anthony Ruiz - 2.2,1.5, transitions review

	The Path to EAGLE
	Introduction
	Vanilla Autoregressive Inference
	Speculative Sampling Framework (draft)
	Speculative Sampling Framework (check)
	How to build a tiny model?

	Eagle-1
	Observations
	Next-Feature Prediction
	Feature Uncertainty
	Tree Construction
	Tree Representation in Eagle-1
	Comparison of Draft Model and Large Language Models
	Performance Evaluation: MT-Bench
	Third-Party Benchmark Evaluation: Spec-Bench
	Beyond EAGLE-1: The Need for a More Adaptive Approach

	Eagle-2
	Limitations of Eagle-1
	Motivation and idea behind Eagle - 2
	Context Aware Dynamic Tree
	Performance Evaluation

	Eagle-3
	Training Procedure - What is Eagle 1's mistake?
	New training procedure of Eagle-3
	Results of Eagle-3
	New scaling law of Eagle-3

	Contributions:

