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Today’s Learning Goal

• Post-training Quantization

• Quantization Granularity

• Quantization on Activations

• Mixed precision

• Parallelization: Starter

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime



Quantization Basics

Storage

Compute

Floating point
weights

Floating point
arithmetic

integer weights;
floating-point

codebook

Floating point
arithmetic

integer weights;

Integer

arithmetic



Quantization Granularity

• Per-tensor Quantization

• Per-channel Quantization

• Group Quantization



𝑟 = 𝑆(𝑞 − 𝑍): Determine 𝑆 and 𝑍

𝑆 =
𝑟m𝑎𝑥 −𝑟𝑚𝑖𝑛
𝑞m𝑎𝑥 −𝑞𝑚𝑖𝑛

𝑆 =
2.12− (−1.08)

1− (−2)
= 1.07

𝑍 = 𝑞𝑚𝑖𝑛 −
𝑟𝑚𝑖𝑛
𝑆

𝑍 = round(𝑞𝑚𝑖𝑛 −
𝑟𝑚𝑖𝑛

𝑆
)

Per-tensor quantization



Per-Tensor Quantization in Practice

• Per-tensor quantization

• Using single scale 𝑆 for whole

weight tensor

• Common failure results from

• Outlier weights

• Solution: per-channel

quantization



Per-channel Quantization

• Example: 2-bit linear quantization

Per-tensor quant Per-channel quant



Per-channel Quantization

• Example: 2-bit linear quantization

Per-tensor quant Per-channel quant

𝑟 𝑚𝑎𝑥 = 2.12

𝑆 =
𝑟 𝑚𝑎𝑥

𝑞𝑚𝑎𝑥
=

2.12

22−1−1
= 2.12



Per-channel Quantization

• Example: 2-bit linear quantization

Per-tensor quant Per-channel quant

𝑟 𝑚𝑎𝑥 = 2.12

𝑆 =
𝑟 𝑚𝑎𝑥

𝑞𝑚𝑎𝑥
=

2.12

22−1−1
= 2.12

𝑟 𝑚𝑎𝑥 = 2.09 𝑆0 = 2.09

𝑟 𝑚𝑎𝑥 = 2.12 𝑆0 = 2.12

𝑟 𝑚𝑎𝑥 = 1.92 𝑆0 = 1.92

𝑟 𝑚𝑎𝑥 = 1.87 𝑆0 = 1.87

‖𝑊 −𝑆⊙𝑞𝑊‖ = 2.28 ||𝑊 −𝑆⊙𝑞𝑊 || = 2.08



Group Quantization

• More fine-grained quantization granularity, e.g. per vector

• Pros: More accuracy, less quantization error

• Cons?



Sweetspot: Two-level Quantization

𝑟 = 𝑆(𝑞 − 𝑍) 𝑟 = 𝛾𝑆𝑞(𝑞 − 𝑍)

𝛾 is a floating-point coarse grained

scale factor

𝑆𝑞 is an integer per-vector scale

factor

• Assume:

• 4-bit quantization

• 4-bit per-vector scale every 16

elements

• Cost?



Generalize: Multi-level Quantization

𝑟: real number, e.g., fp16

𝑞: quantized value

𝑍: zero point (𝑧 = 0 is symmetric quantization)

𝑆𝑙0: scale factors of different levels

𝑟 = 𝑆(𝑞 − 𝑍) 𝑟 = 𝑆𝑙0𝑆𝑙1⋯(𝑞 −𝑍)



Linear Quantization on Activations

• Weights: static.

• Activations: range varies across

inputs.

• To determine the floating-

point range (𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥), the

activations stats are gathered

before deploying the model



Dynamic Range: Moving Average

Moving average: observed ranges are smoothed across thousands of 

training steps

Ƹ𝑟𝑚𝑎𝑥,𝑚𝑖𝑛
(𝑡)

= 𝛼 ⋅ 𝑟𝑚𝑎𝑥,𝑚𝑖𝑛
𝑡

+ (1 − 𝛼) Ƹ𝑟𝑚𝑎𝑥,𝑚𝑖𝑛
𝑡−1



Dynamic Range: Calibration

• By running a few “calibration” samples on the trained FP32 model

• Spending dynamic range on the outliers hurts the representation 

ability



Today’s Learning Goal

• Post-training Quantization

• Quantization Granularity

• Quantization on Activations

• Mixed precision

• Parallelization: Starter

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime



Uniform Quantization



Mixed-Precision Quantization

• Intuition: why this works?



Mixed Precision: Design Space



Mixed Precision: Design Automation



Mixed Precision: Design Automation



In Practice: Mixed Precision Training



Mix-precision training

• Some layers are more sensitive to dynamic range/precision

• Normalization: f / sum(f) 

• Softmax (same with normalization)

• Common issues: aggregation of a lot entries

• Param += \sum(grad_t) -> can loss precision during accum

• Idea: identify which ops are sensitive to precisions:

• Use full precision (fp32) for them via upcasting

• Use half precision to those robust ops



A standardized 16-32 mix-precision pipeline (Important!)



Analysis of the memory usage of Mix-precision training

• Parameters: 175B * (fp16, 2 bytes) = 350G

• Assume we checkpoint at transformer layer boundary:

• Activations: (N = 96) * 3.2M * 12288 * 2 = 7488 G

• How about optimizer states?



Analysis of the memory usage of Mix-precision training

• How about optimizer states?

• Master copy (fp32) = 4 * 175 = 700

• Grad (fp16) = 2 * 175 = 350

• Running copy (fp16) = 2 * 175 = 350

• Adam mean and variance (fp32) = 2 * 4 * 175 = 1400G

• Rule the thumb: (4 + 2 + 2 + 4 + 4) N = 16N memory for an LLM



• Running ML on edge devices is always strongly demanded

• Market characteristics: very fragmented

• Research directions: quantization, pruning, ML energy efficiency,

federated ML etc.

More on Scaling Down ML



Big Picture

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator optimization/compilation

Runtime: schedule / memory



Parallelization

• Why Parallelization: Technology Trend

• ML Parallelism Overview

• Collective Communication Review

• Data parallelism

• Model parallelism

• Inter and intra-op parallelism

• Auto-parallelization

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime



Moore’s Law coming to an end

~2x increase every 

18 months

~1.05x increase 

every 18 months



Reality Check: ML Trend

“Compute trends across three eras of machine learning”, J. Sevilla,  https://ar5iv.labs.arxiv.org/html/2202.05924

https://ar5iv.labs.arxiv.org/html/2202.05924


Bigger model, better accuracy 

“Language Models are Few-Shot Learners”, T. B. Brown et al., https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf


Big Models have Emergent capabilities

“Pathways Language Model (PaLM): Scaling to 540 Billion Parameters for Breakthrough Performance”, 

S Narang, A Chowdhery et al, https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html


Growing gap between demand and supply

“Compute trends across three eras of machine learning”, J. Sevilla,  https://ar5iv.labs.arxiv.org/html/2202.05924

CPU

https://ar5iv.labs.arxiv.org/html/2202.05924


Recap: Possible Paths Ahead

Option 1: Go to the

quantum world

Option 2: Specialized

hardware~2x increase every 

18 months

~1.05x increase 

every 18 months



Specialized hardware not good 

enough

“Compute trends across three eras of machine learning”, J. Sevilla,  https://ar5iv.labs.arxiv.org/html/2202.05924

CPU

GPU*
TPU*

Gap increasing 

256 times every 

18 months!

https://ar5iv.labs.arxiv.org/html/2202.05924


Not only compute, but memory

BERT

GPT-1
Transformer

ResNet-50

GPT-2

Megatron-LM

PaLM

GLaM
Switch Wu-Dao 2.0

GPT-3

GShard

Turing-NLG



Growing gap between memory demand and 

supply

BERT

GPT-1
Transformer

ResNet-50

GPT-2

Megatron-LM

PaLM

GLaM
Switch Wu-Dao 2.0

GPT-3

GShard

Turing-NLG

GPU

Largest model fit on 

a single GPU

100sGPUs just to store 

parameters!



No way out but to parallelize 

these workloads !



Parallelization

• Why Parallelization: Technology Trend

• ML Parallelism Overview

• Collective Communication Review

• Data parallelism

• Model parallelism

• Inter and intra-op parallelism

• Auto-parallelization

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime



Data Parallel Training

...

...

...

...

batch

Entire model fits on a single machine/GPU



Data Parallel Training

...

...

...

...

batch

What happens when model doesn’t fit on a single machine/GPU ?

Need to parallelize the model itself



Need do parallelize the model, but how?

x(1) x(2) = σ( W(1)x(1) + b(2) )

b(2)

W(1)

Tensor operator



Model Parallelism

● Pipeline execution on both forward and backward paths

● GPUs can be on the same machine or different machines



Model Parallelism



Classic View of ML Parallelisms

Data parallelism

Model parallelism

Classic view



From a Computational Perspective

Input 

Backward Propagation

Dog

Forward Propagation

Layer 1 Layer 2 Layer n…

Prediction

Cat

parameter
model 

(CNN, GPT, etc.)
data

weight update 

(sgd, adam, etc.)



From a Computational Perspective

parameter
model 

(CNN, GPT, etc.)
data

weight update 

(sgd, adam, etc.)

Computing MemoryCommunication

Activations

…



Data and Model Parallelism

parameter
model 

(CNN, GPT, etc.)
data

weight update 

(sgd, adam, etc.)

Data parallelism Model parallelism

partition

replicate

partition

?

?
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Recap: Computational Graph

Operator / its output tensor Data flowing direction

Forward

x MSE

y

relu matmul

w2

matmul

w1

+Backward

x MSE

y

relu matmul

w2

matmul

w1

matmul

matmul

MSE’

matmul

relu’

+Weight update

x MSE

y

relu matmul

w2

matmul

w1

matmul

matmul

MSE’

matmul

relu’

sub sub
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10 –40 Gbps

300Gbps300Gbps

130Gbps 130Gbps

32 Gbps 32 Gbps

16G

> 500G

Figure from NVIDIA

Nvidia DGX with V100

node node

node node

Fast connections

Slow connections

A typical GPU cluster topology

Device Cluster
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node node

node node

Fast connections

Slow connections

How to partition the computational graph on the 

device cluster?

x MSE

y

relu matmul

w2

matmul

w1

subsub

matmul

matmul

MSE’

matmul

relu’

Parallelization = Partitioning Computation Graph on 

Device Cluster



x MSErelu matmul

w2

matmul

w1 Device 1

Device 2

x MSErelu matmul

w2

matmul

w1

Strategy 1

x MSErelu matmul

w2

matmul

w1

Strategy 2

x MSErelu matmul

w2

matmul

w1
…

x MSErelu matmul

w2

matmul

w1
…

Partitioning Computation Graph



x MSErelu matmul

w2

matmul

w1 Device 1

Device 2

x MSErelu matmul

w2

matmul

w1

Strategy 1: Inter-operator Parallelism

x MSErelu matmul

w2

matmul

w1

Strategy 2: Intra-operator Parallelism

x MSErelu matmul

w2

matmul

w1
…

x MSErelu matmul

w2

matmul

w1
…

Partitioning Computation Graph



Replicated

Multiple intra-op strategies for a single node

Column-partitionedRow-partitioned

x MSErelu matmul

w2

matmul

w1

x MSErelu matmul

w2

matmul

w1

More strategies

x MSErelu matmul

w2

matmul

w1

Device 3 Device 4

Time = 0 Time = 1 Time = 2 

matmul

x

w1

w2

matmul matmul

matmul matmul matmul

More Parallelisms…



x MSErelu matmul

w2

matmul

w1 Device 1

Device 2

x MSErelu matmul

w2

matmul

w1

Inter-op parallelism: Assign different operators to different devices.

x MSErelu matmul

w2

matmul

w1

Intra-op parallelism: Assign different regions of a single operator to different devices.

x MSErelu matmul

w2

matmul

w1
…

x MSErelu matmul

w2

matmul

w1
…

Summary: Inter-op and Intra-op Parallelisms



w2 matmul

Inside Intra- and Inter-op Parallelism

matmul matmul

w1 w2 x

x

w1

w1

mat

mul

mat w2

mul w2

matmul

matmul

matmul

matmul

x w1 matmul matmul

all-reduce P2P
Device 1

Device 2
Row-partitioned Column-partitioned Replicated

x

matmul matmul

w1 w2

x



x MSErelu matmul

w2

matmul

w1 Device 1

Device 2

x MSErelu matmul

w2

matmul

w1

Inter-op parallelism:

x MSErelu matmul

w2

matmul

w1

Intra-op parallelism: 

x MSErelu matmul

w2

matmul

w1
…

x MSErelu matmul

w2

matmul

w1
…

Requires point-to-point communication but results in device idle

Devices are busy but requires collective communication 

Inter-op and Intra-op Parallelism: Characteristics



x MSErelu matmul

w2

matmul

w1 Device 1

Device 2

x MSErelu matmul

w2

matmul

w1

Inter-op parallelism

x MSErelu matmul

w2

matmul

w1

Intra-op parallelism

Inter-operator

Parallelism

Intra-operator

Parallelism

Communication Less More

Device Idle Time More Less

Trade-off

Inter-op and Intra-op Parallelism: Characteristics



Computational View of ML Parallelisms

Data parallelism

Model parallelism

Classic view

Inter-op parallelism

Intra-op parallelism

New view (this tutorial)



Data and model parallelism

• Two pillars: data and model.

• “Data parallelism” is general and 

precise.

• “Model parallelism” is vague.

• The view creates ambiguity for 

methods that neither partitions data nor 

the model computation.

New: Inter-op and Intra-op 

parallelism.

• Two pillars: computational graph and 

device cluster

• This view is based on their computing 

characteristics.

• This view facilitates the development 

of new parallelism methods.

61

Two Views of ML Parallelisms



node node

node node

Fast connections

Slow connections

x MSE

y

relu matmul

w2

matmul

w1

subsub

matmul

matmul

MSE’

matmul

relu’ Theme problem:

What’s the best way to execute the graph

subject to memory and communication constraints? 

ML Parallelization under New View
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