

CSE 234: Data Systems for Machine Learning Winter 2025

https://hao-ai-lab.github.io/cse234-w25/

LLMSys

Optimizations and Parallelization

MLSys Basics

Today's Learning Goal

- Post-training Quantization
 - Quantization Granularity
 - Quantization on Activations
- Mixed precision
- Parallelization: Starter

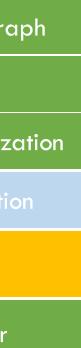
Dataflow Graph

Autodiff

Graph Optimization

Runtime

Operator



Quantization Basics

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

Storage

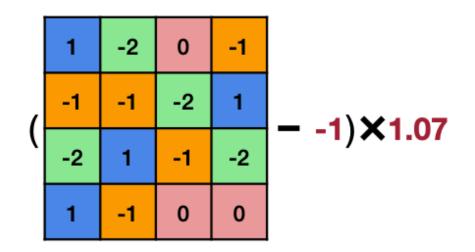
Floating point weights

Compute

Floating point arithmetic

3	0	2	1	3:	2.00
1	1	0	3	2:	1.50
0	3	1	0	1:	0.00
3	1	2	2	0:	-1.00

K-Means-based Quantization



Linear Quantization

integer weights; floating-point codebook

Floating point arithmetic integer weights;

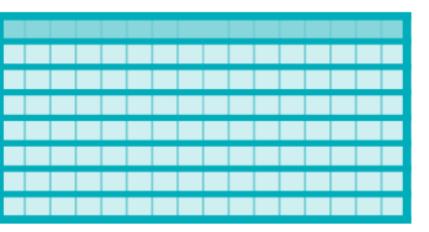
Integer arithmetic

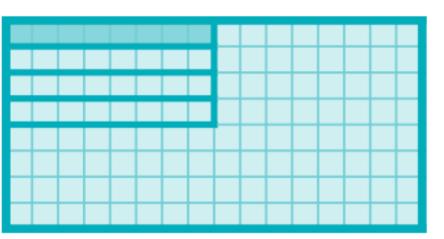
Quantization Granularity

Per-tensor Quantization

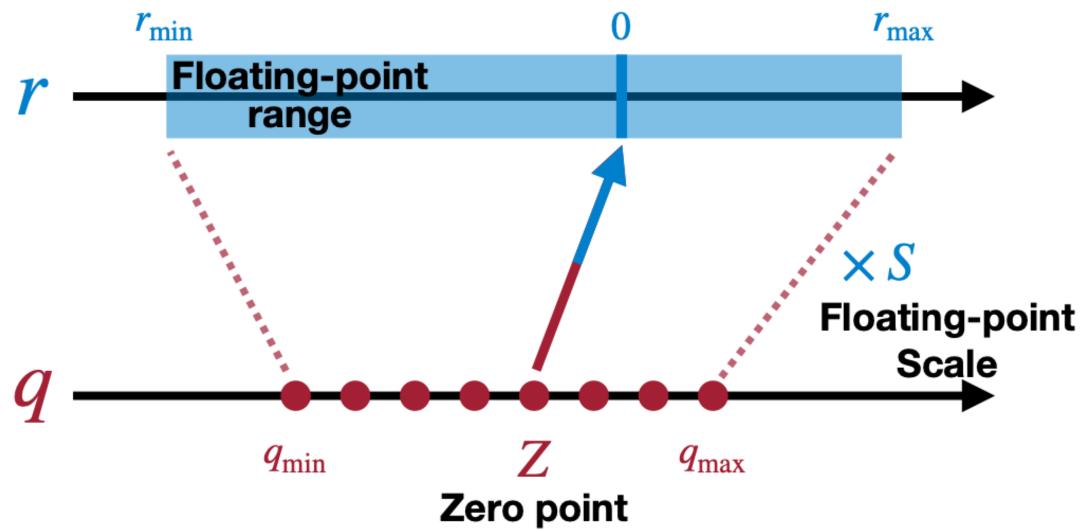
Per-channel Quantization

Group Quantization





r = S(q - Z): Determine S and Z



Binary	Decimal	<i>a</i> .	a
01	1	9 _{min}	Ymax
00	0		
11	-1	-2 -	1 0 1
10	-2		

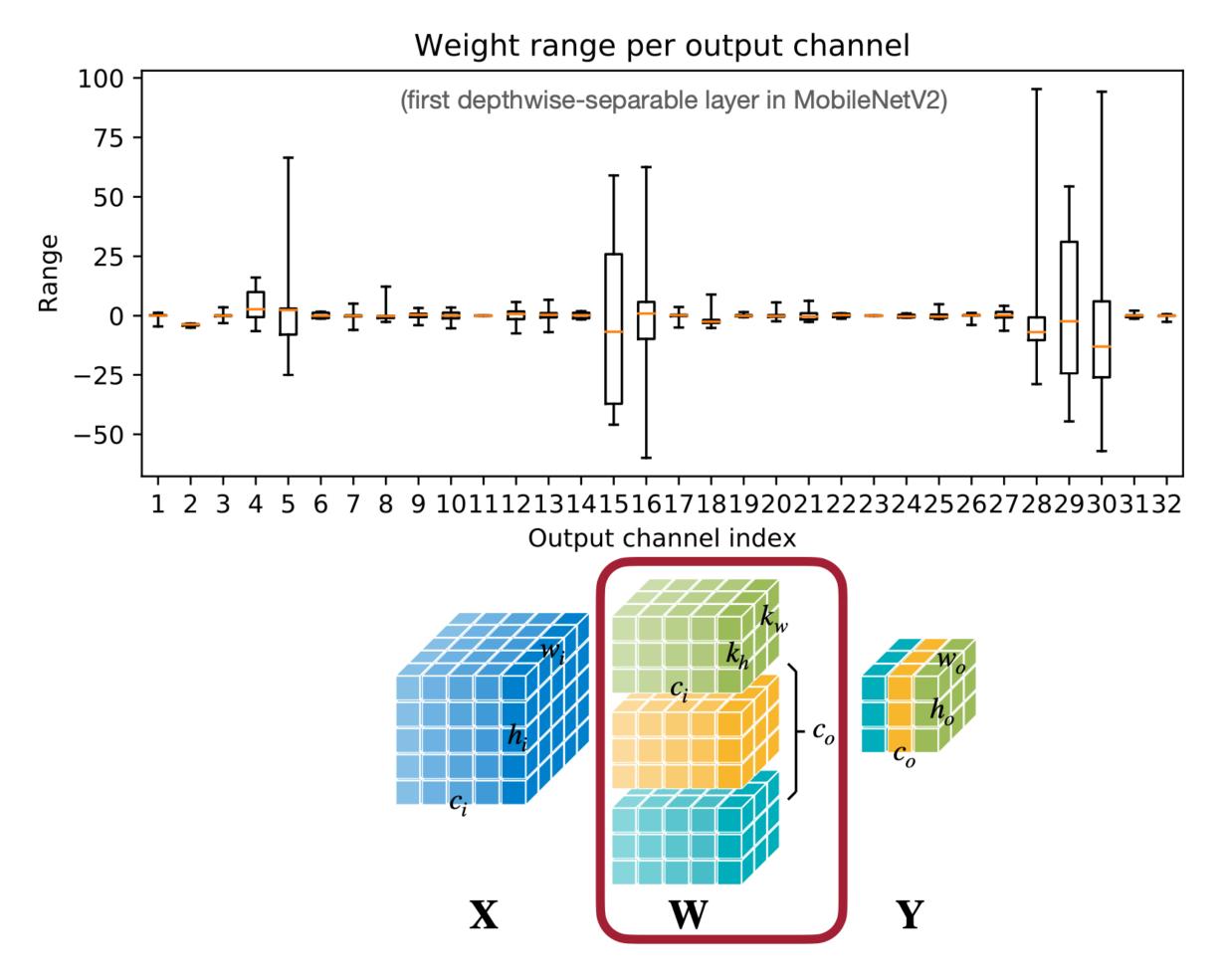
2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

Per-tensor quantization

$$S = \frac{r_{\text{max}} - r_{min}}{q_{\text{max}} - q_{min}} \qquad S = \frac{2.12 - (-1.08)}{1 - (-2)} = 1.$$

$$Z = q_{min} - \frac{r_{min}}{S} \quad Z = \text{round}(q_{min} - \frac{r_{min}}{S})$$

Per-Tensor Quantization in Practice



- Per-tensor quantization
 - Using single scale S for whole weight tensor

- Common failure results from
 - Outlier weights

 Solution: per-channel quantization

Per-channel Quantization

• Example: 2-bit linear quantization

ic

	2.09	-0.98	1.48	0.09
00	0.05	-0.14	-1.08	2.12
OC	-0.91	1.92	0	-1.03
	1.87	0	1.53	1.49

Per-tensor quant

Per-channel quant

Per-channel Quantization

• Example: 2-bit linear quantization

ic

	2.09	-0.98	1.48	0.09
00	0.05	-0.14	-1.08	2.12
OC	-0.91	1.92	0	-1.03
	1.87	0	1.53	1.49

Decimal Binary 01 00 0 11 -1 10 -2

Per-tensor quant

$$|r|_{max} = 2.1$$

$$S = \frac{|r|_{max}}{q_{max}} = \frac{2.12}{2^{2-1}}$$

1	0	1	0	2.12	0	2.12	0
0	0	-1	1	0	0	-2.12	2.12
0	1	0	0	0	2.12	0	0
1	0	1	1	2.12	0	2.12	2.12
L	Quan	tized		Re	econs	truct	ed

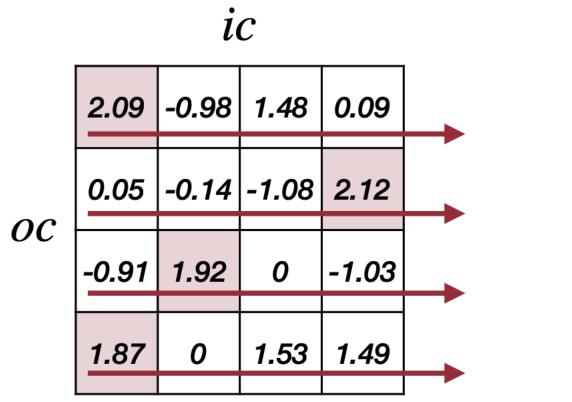
Per-channel quant

2

$\frac{1}{-1} = 2.12$

Per-channel Quantization

• Example: 2-bit linear quantization



Per-tensor quant

$$|r|_{max} = 2.1$$

$$S = \frac{|r|_{max}}{q_{max}} = \frac{2.12}{2^{2-1} - 1} = 2.12$$

1	0	1	0	2.12	0	2.12	0
0	0	-1	1	0	о	-2.12	2.12
0	1	0	0	0	2.12	о	0
1	о	1	1	2.12	о	2.12	2.12
L	Quan	tized		Re	econs	truct	ed

Binary	Decimal
01	1
00	0
11	-1
10	-2

 $||W - S \odot q_W|| = 2.28$

Per-channel quant

$$|r|_{max} = 2.09$$
 $S_0 = 2.09$
 $|r|_{max} = 2.12$ $S_0 = 2.12$
 $|r|_{max} = 1.92$ $S_0 = 1.92$
 $|r|_{max} = 1.87$ $S_0 = 1.87$

1	0	1	0
0	0	-1	1
0	1	0	-1
1	0	1	1
	Quan	tized	

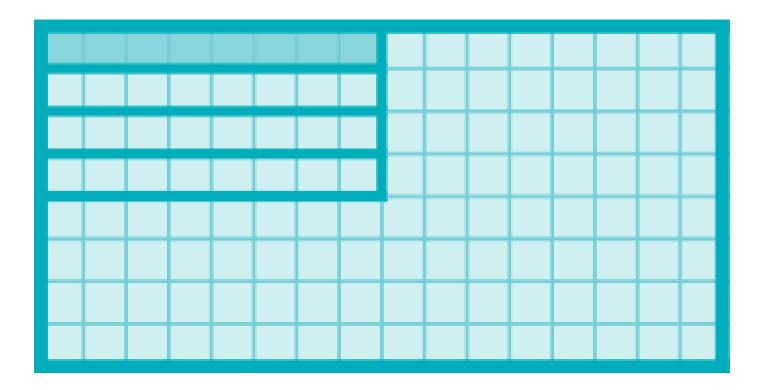
2.09	0	2.09	0
0	0	-2.12	2.12
0	1.92	0	-1.92
1.87	0	1.87	1.87

Reconstructed

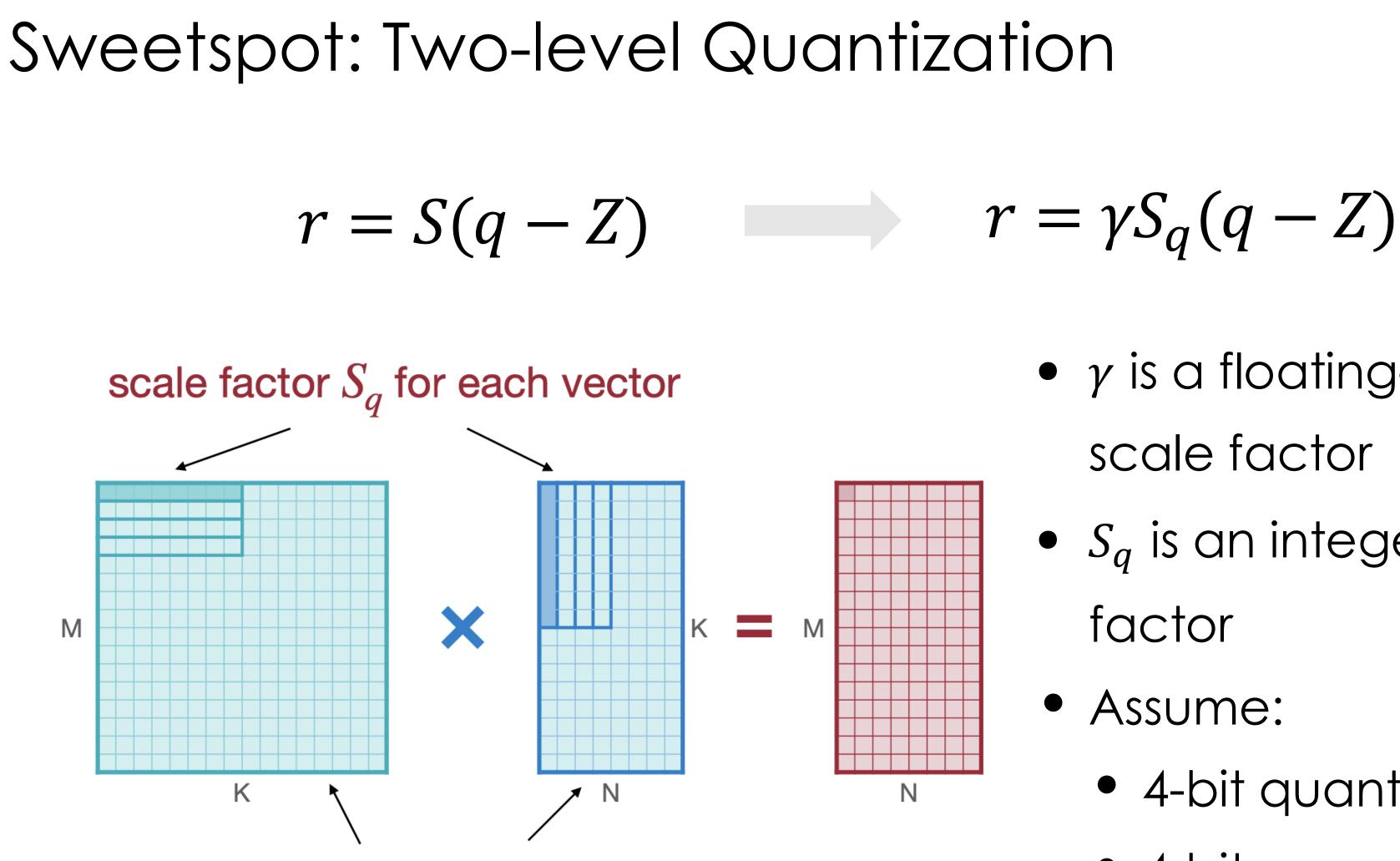
 $||W - S \odot q_W|| = 2.08$

Group Quantization

- Pros: More accuracy, less quantization error
- Cons?

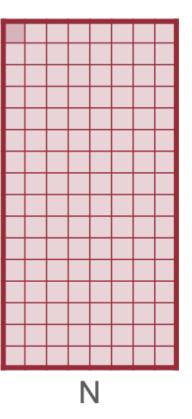


More fine-grained quantization granularity, e.g. per vector



another scale factor γ for each tensor

- γ is a floating-point coarse grained scale factor
- S_a is an integer per-vector scale factor
- Assume:
 - 4-bit quantization
 - 4-bit per-vector scale every 16 elements
 - Cost



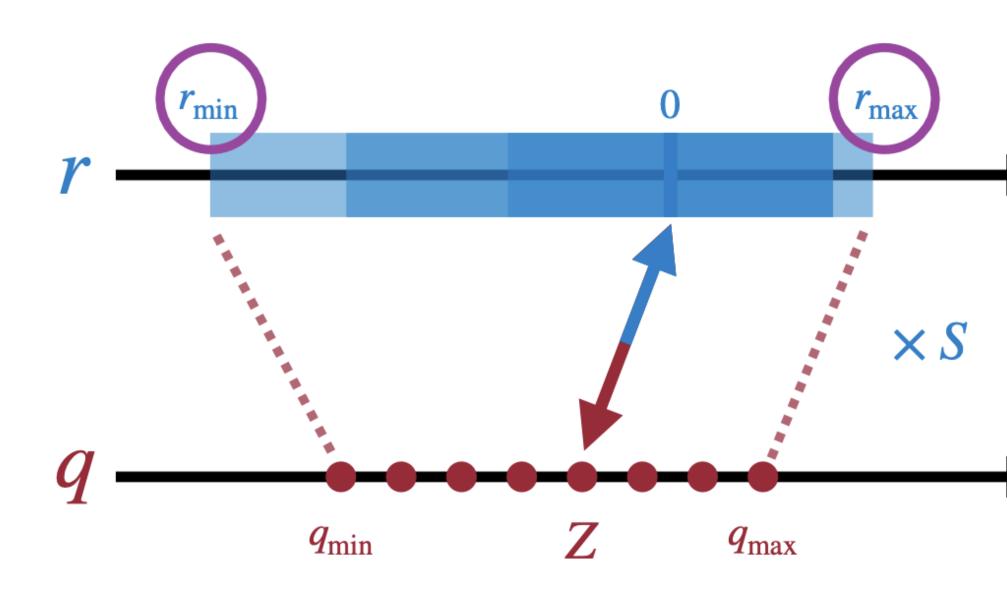
Generalize: Multi-level Quantization

$$r = S(q - Z)$$

- *r*: real number, e.g., fp16
- q: quantized value
- Z: zero point (z = 0 is symmetric quantization)
- S_{l_0} : scale factors of different levels

$r = S_{l_0} S_{l_1} \cdots (q - Z)$

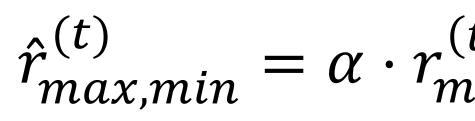
Linear Quantization on Activations

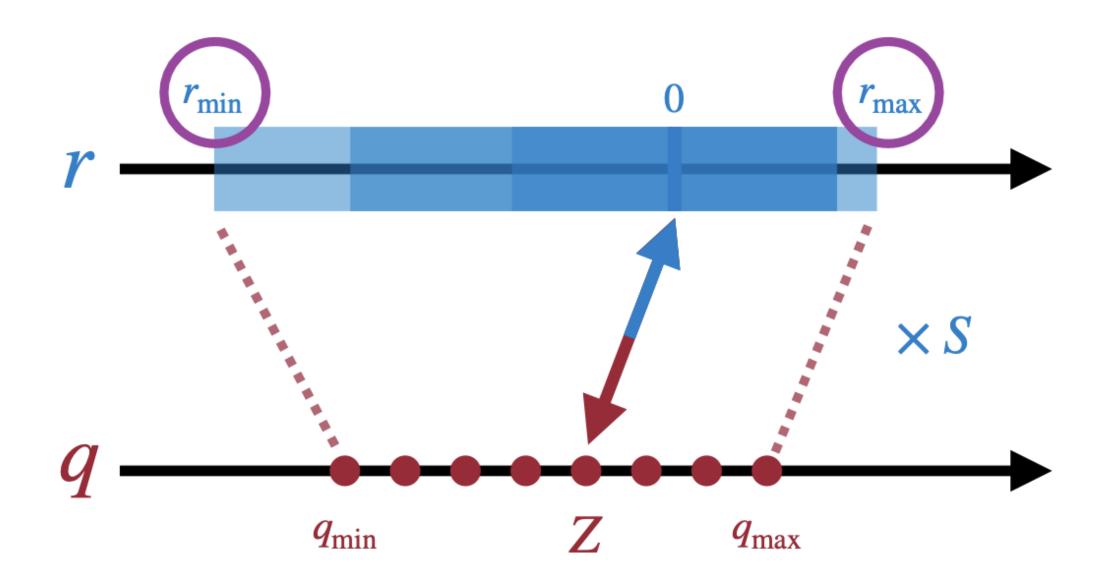


- Weights: static.
- Activations: range varies across inputs.
 - To determine the floatingpoint range (r_{min}, r_{max}) , the activations stats are gathered before deploying the model

Dynamic Range: Moving Average

Moving average: observed ranges are smoothed across thousands of training steps

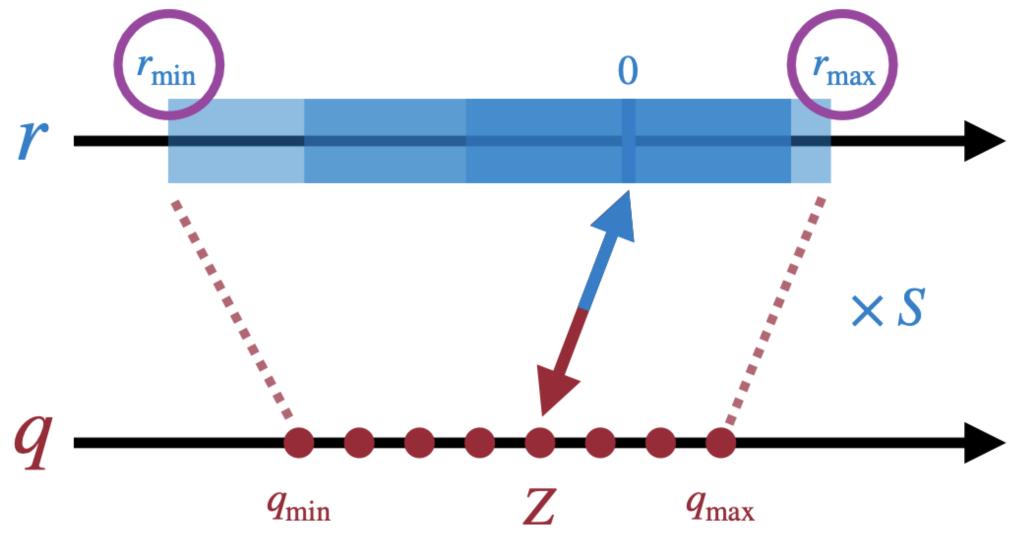




$$\sum_{nax,min}^{(t)} + (1 - \alpha)\hat{r}_{max,min}^{(t-1)}$$

Dynamic Range: Calibration

- By running a few "calibration" samples on the trained FP32 model Spending dynamic range on the outliers hurts the representation
 - ability



Today's Learning Goal

- Post-training Quantization
 - Quantization Granularity
 - Quantization on Activations
- Mixed precision
- Parallelization: Starter

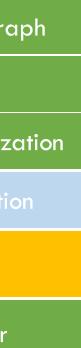
Dataflow Graph

Autodiff

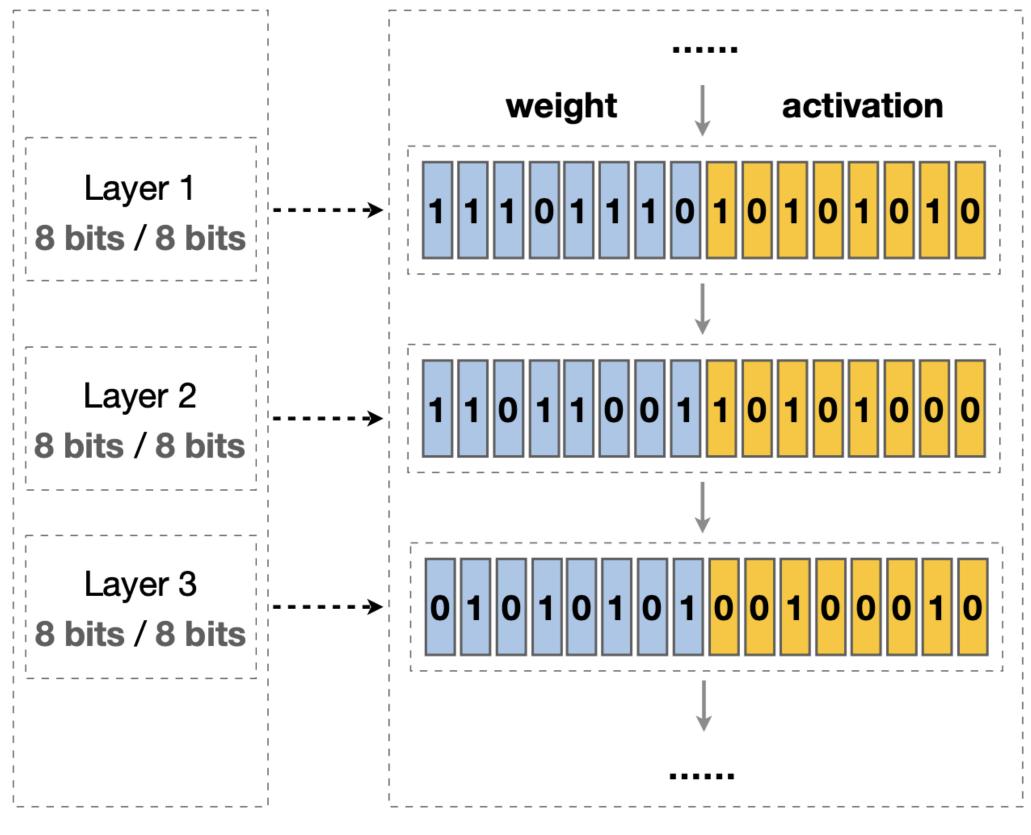
Graph Optimization

Runtime

Operator



Uniform Quantization



Bit Widths

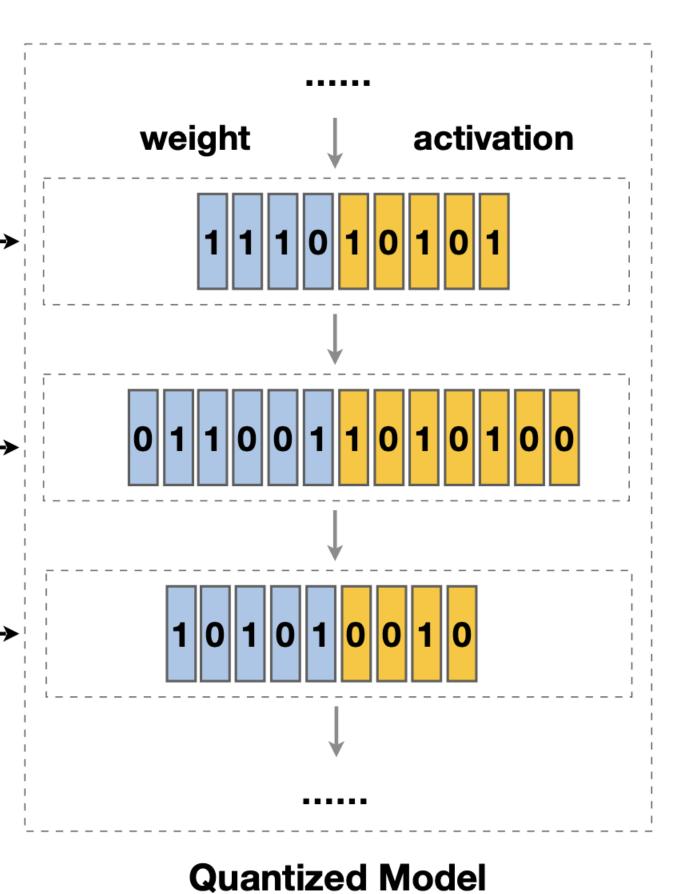
Quantized Model

Mixed-Precision Quantization

Intuition: why this works?

Layer 1 4 bits / 5 bits Layer 2 6 bits / 7 bits Layer 3 5 bits / 4 bits

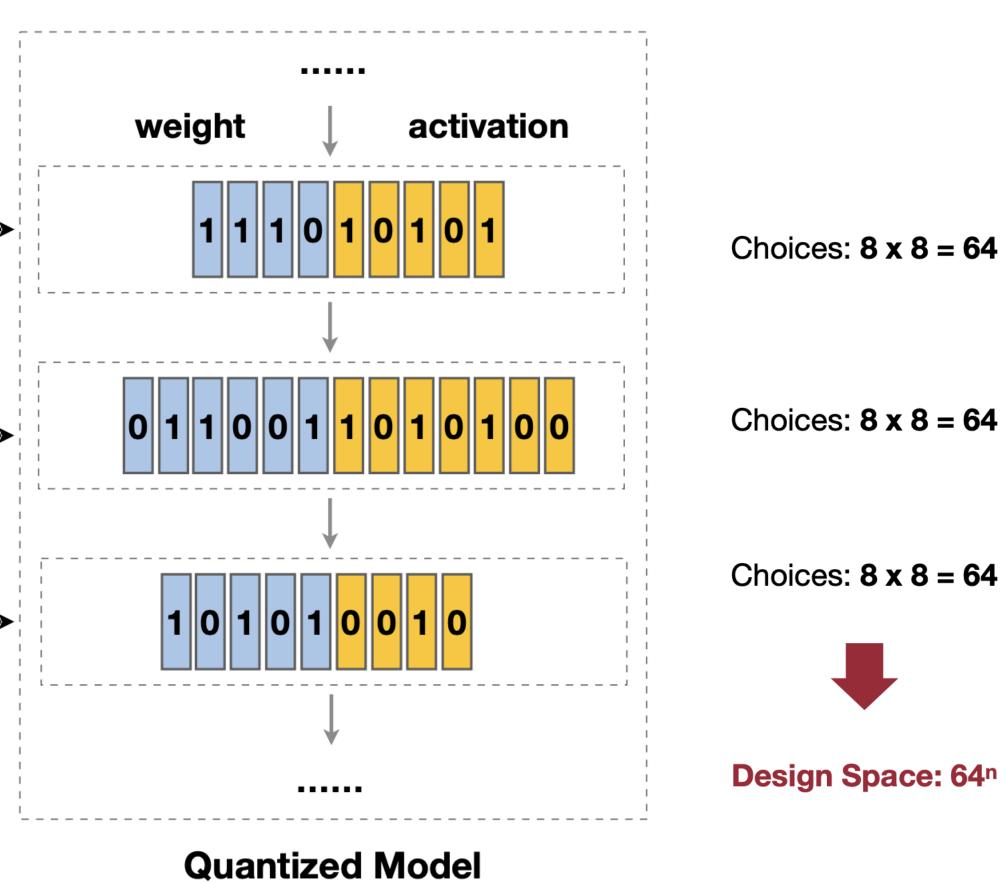
Bit Widths



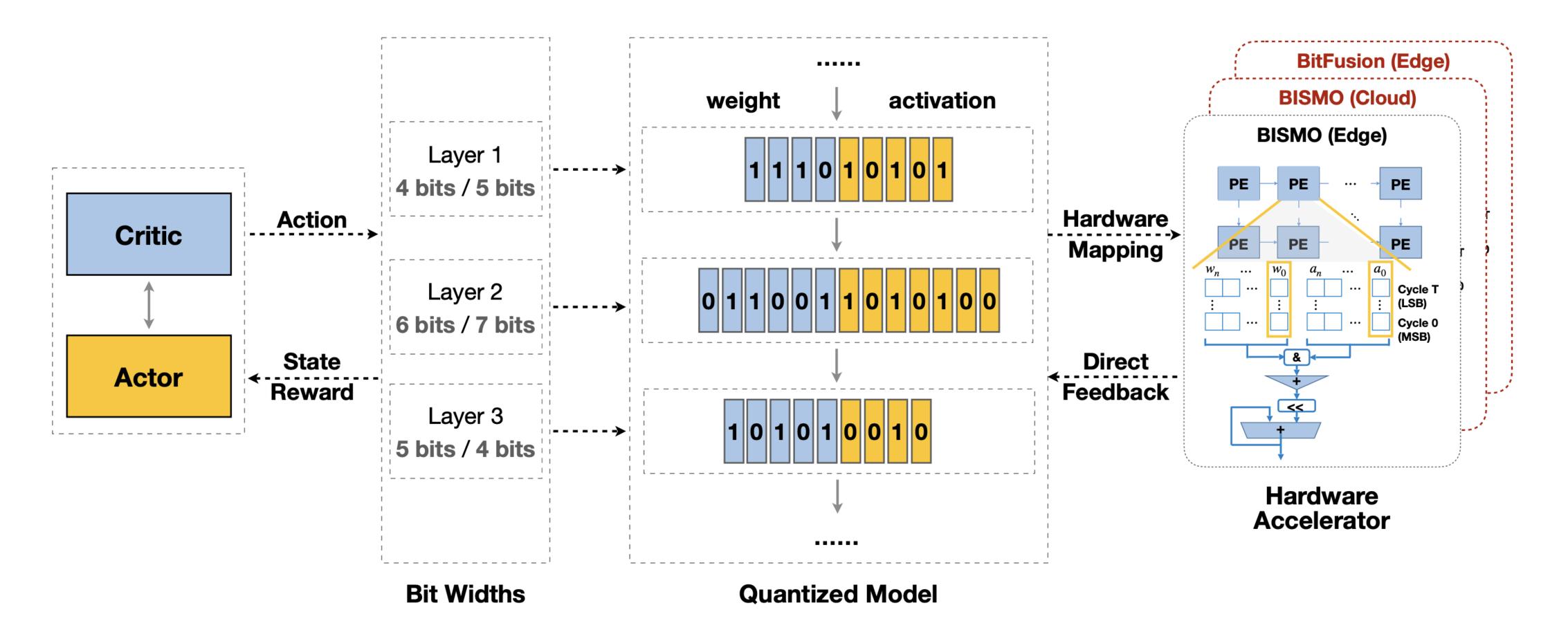
Mixed Precision: Design Space

Layer 1 4 bits / 5 bits
+ DILS / 3 DILS
Layer 2
6 bits / 7 bits
Layer 3
5 bits / 4 bits

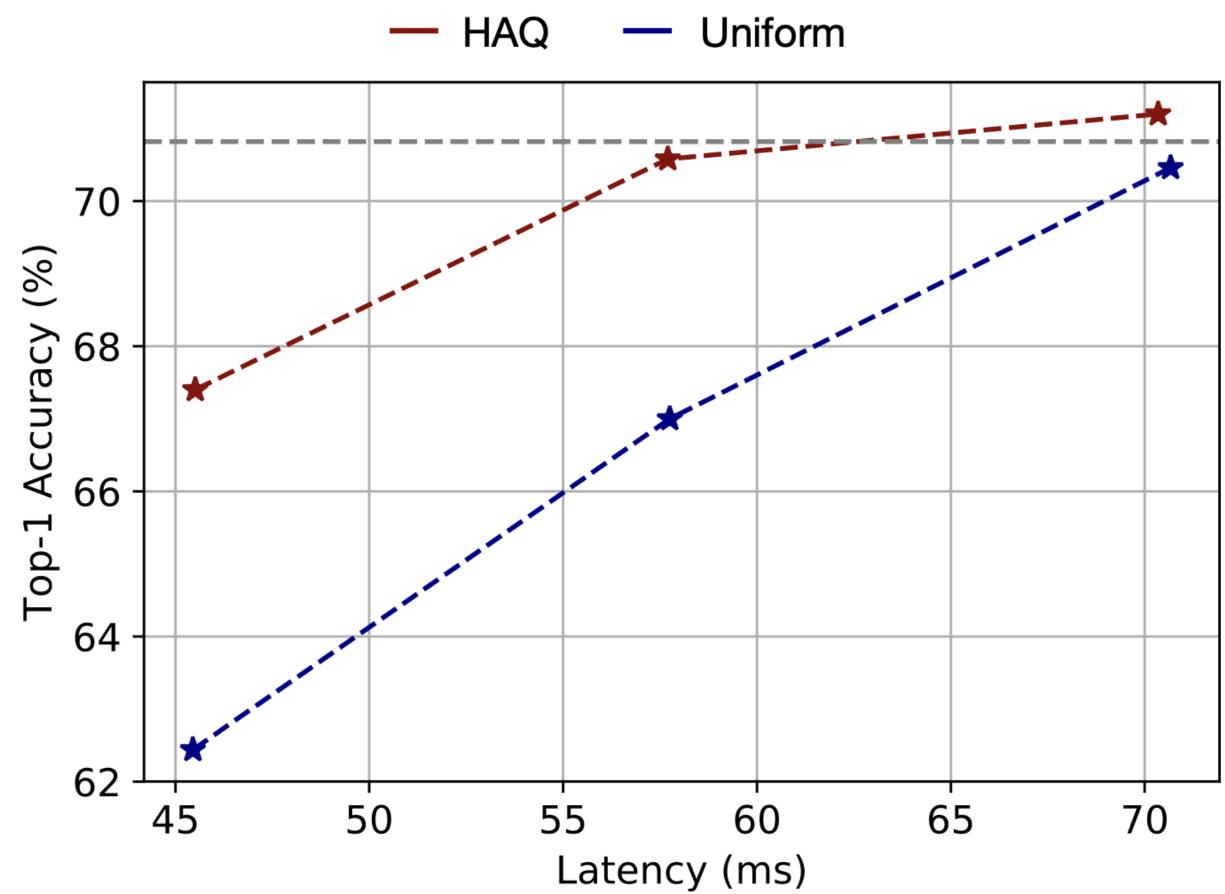
Bit Widths



Mixed Precision: Design Automation



Mixed Precision: Design Automation



In Practice: Mixed Precision Training

Published as a conference paper at ICLR 2018

MIXED PRECISION TRAINING

Sharan Narang^{*}, Gregory Diamos, Erich Elsen[†] Baidu Research {sharan, gdiamos}@baidu.com

Paulius Micikevicius*, Jonah Alben, David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, Hao Wu **NVIDIA**

{pauliusm, alben, dagarcia, bginsburg, mhouston, okuchaiev, gavenkatesh, skyw}@nvidia.com

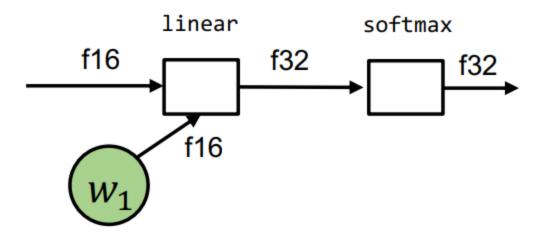
Increasing the size of a neural network typically improves accuracy but also increases the memory and compute requirements for training the model. We introduce methodology for training deep neural networks using half-precision floating point numbers, without losing model accuracy or having to modify hyperparameters. This nearly halves memory requirements and, on recent GPUs, speeds up arithmetic. Weights, activations, and gradients are stored in IEEE halfprecision format. Since this format has a narrower range than single-precision we propose three techniques for preventing the loss of critical information. Firstly, we recommend maintaining a single-precision copy of weights that accumulates the gradients after each optimizer step (this copy is rounded to half-precision for the forward- and back-propagation). Secondly, we propose loss-scaling to preserve gradient values with small magnitudes. Thirdly, we use half-precision arithmetic that accumulates into single-precision outputs, which are converted to halfprecision before storing to memory. We demonstrate that the proposed methodology works across a wide variety of tasks and modern large scale (exceeding 100 million parameters) model architectures, trained on large datasets.

ABSTRACT

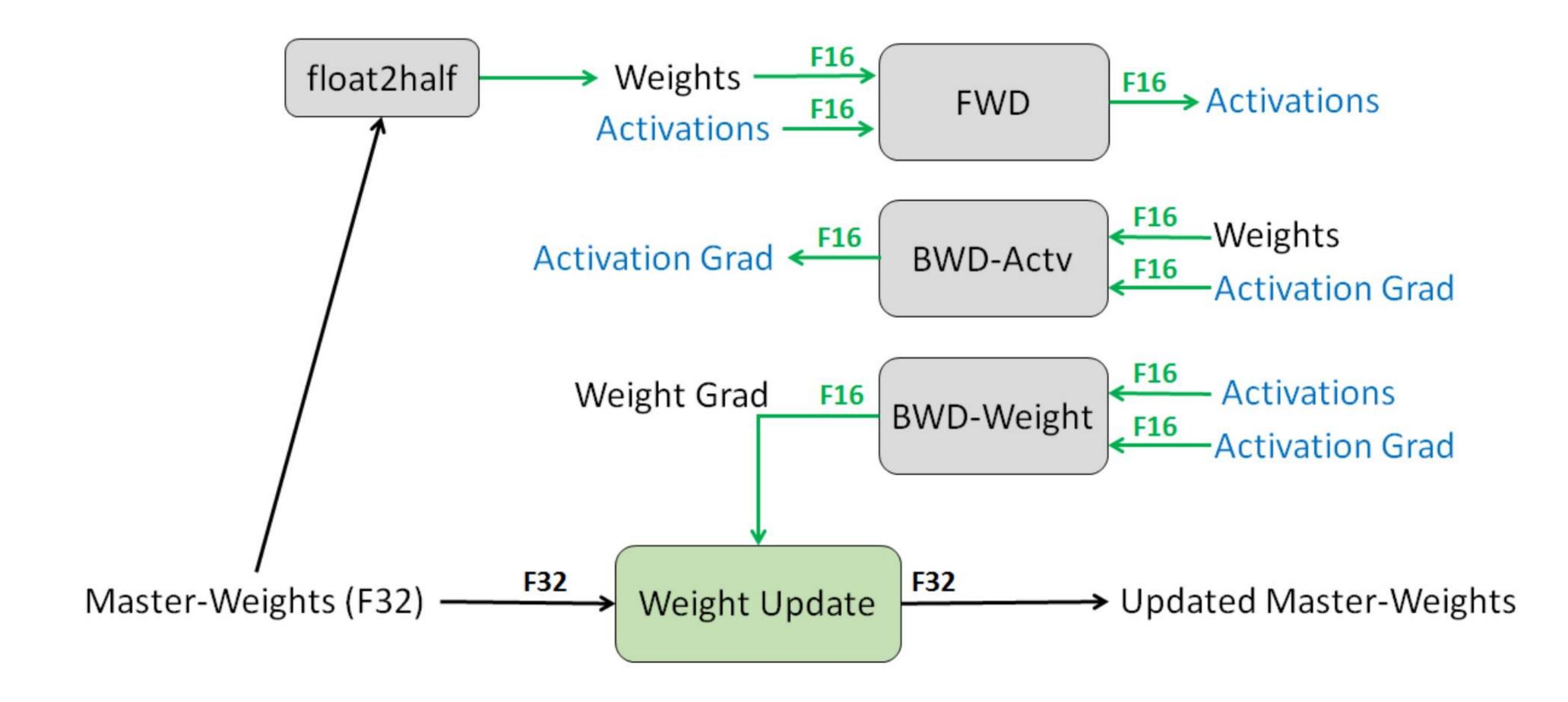
Mix-precision training

- - Normalization: f / sum(f)
 - Softmax (same with normalization)
- Common issues: aggregation of a lot entries
 - Param $+= \sum_{grad_t} -> can loss precision during accum$
- Idea: identify which ops are sensitive to precisions:
 - Use full precision (fp32) for them via upcasting
 - Use half precision to those robust ops

Some layers are more sensitive to dynamic range/precision



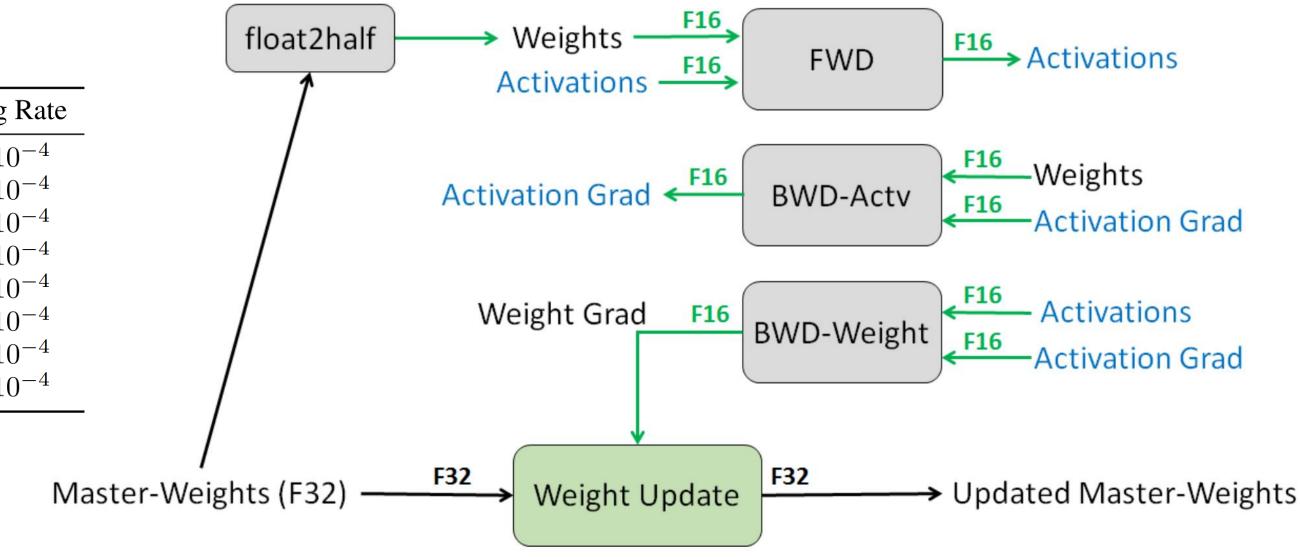
A standardized 16-32 mix-precision pipeline (Important!)



Analysis of the memory usage of Mix-precision training

Model Name	n_{params}	$n_{\rm layers}$	d_{model}	$n_{\rm heads}$	$d_{\rm head}$	Batch Size	Learning
GPT-3 Small	125M	12	768	12	64	0.5M	6.0 imes 10
GPT-3 Medium	350M	24	1024	16	64	0.5M	3.0 imes 10
GPT-3 Large	760M	24	1536	16	96	0.5M	2.5 imes 10
GPT-3 XL	1.3B	24	2048	24	128	1 M	2.0 imes 10
GPT-3 2.7B	2.7B	32	2560	32	80	1 M	1.6 imes 10
GPT-3 6.7B	6.7B	32	4096	32	128	2M	1.2×10
GPT-3 13B	13.0B	40	5140	40	128	2M	1.0×10
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	0.6 imes 10

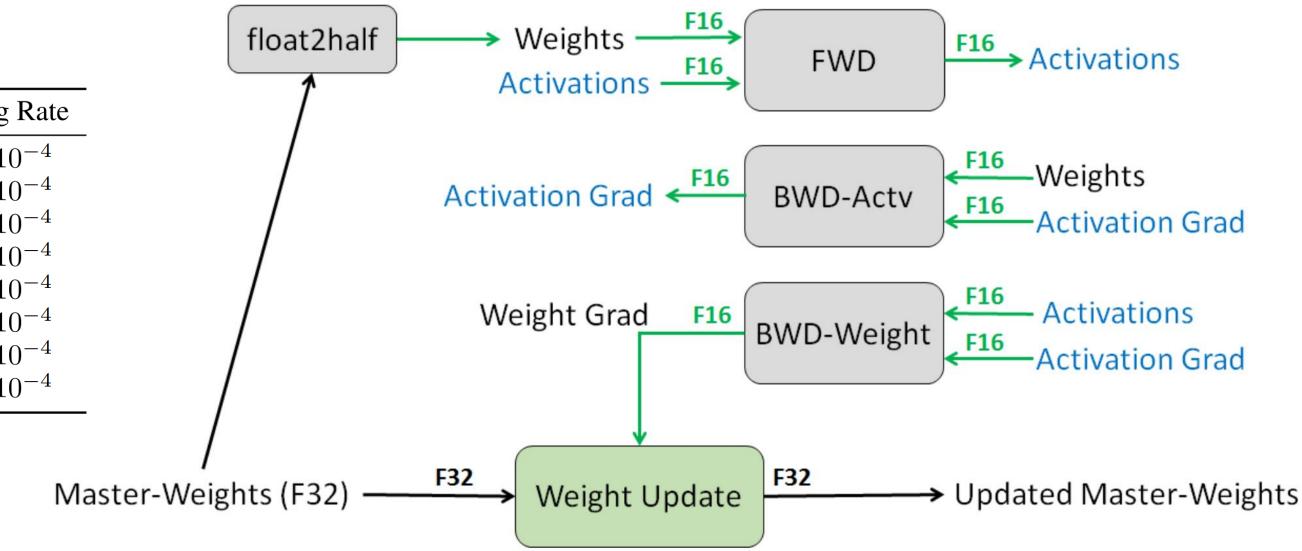
- Parameters: 175B * (fp16, 2 bytes) = 350G
- Assume we checkpoint at transformer layer boundary:
 - Activations: (N = 96) * 3.2M * 12288 * 2 = 7488 G
- How about optimizer states?



Analysis of the memory usage of Mix-precision training

Model Name	n_{params}	$n_{\rm layers}$	$d_{ m model}$	$n_{\rm heads}$	$d_{\rm head}$	Batch Size	Learning
GPT-3 Small	125M	12	768	12	64	0.5M	6.0×10
GPT-3 Medium	350M	24	1024	16	64	0.5M	3.0 imes 10
GPT-3 Large	760M	24	1536	16	96	0.5M	2.5×10
GPT-3 XL	1.3B	24	2048	24	128	1 M	2.0×10
GPT-3 2.7B	2.7B	32	2560	32	80	1 M	1.6×10
GPT-3 6.7B	6.7B	32	4096	32	128	2M	1.2×10
GPT-3 13B	13.0B	40	5140	40	128	2M	1.0×10
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	0.6×10

- How about optimizer states?
 - Master copy (fp32) = 4 * 175 = 700
 - Grad (fp16) = 2 * 175 = 350
 - Running copy (fp16) = 2 * 175 = 350
 - Adam mean and variance (fp32) = 2 * 4 * 175 = 1400G
- Rule the thumb: (4 + 2 + 2 + 4 + 4) N = 16N memory for an LLM



More on Scaling Down ML

- Market characteristics: very fragmented
- Research directions: quantization, pruning, ML energy efficiency, federated ML etc.

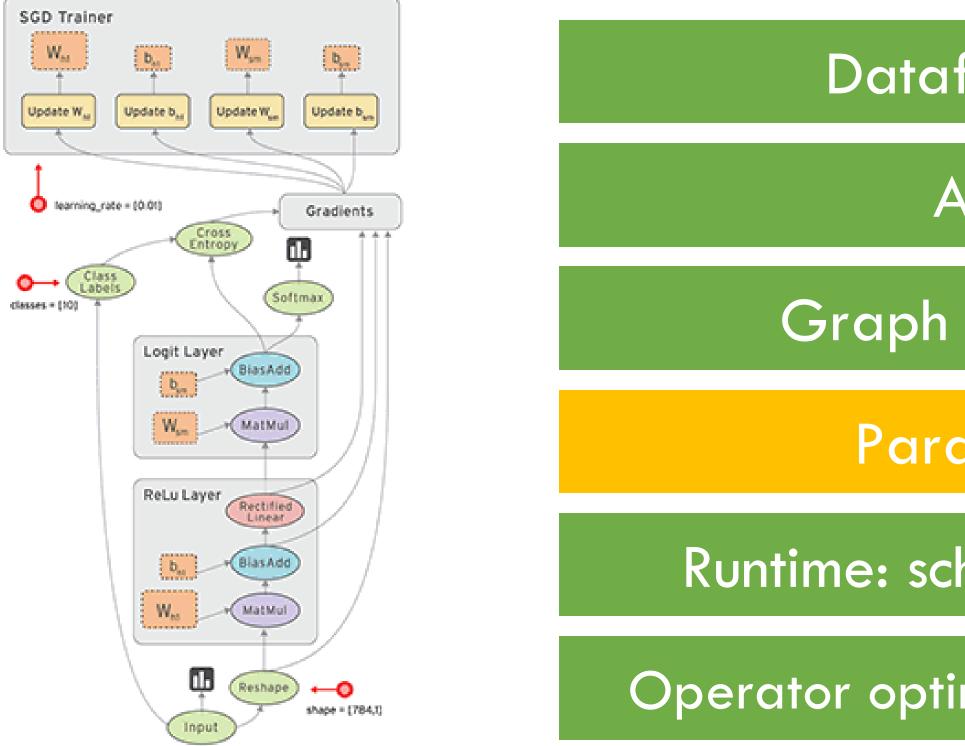
I am a research scientist at NVIDIA and an incoming assistant professor at UCSD. I finished my PhD at MIT, advised by Song Han. My research focuses on efficient machine learning and systems.

I will be recruiting PhD students from HDSI/CSE in the Fall 2024 cycle and also looking for RAs/interns!

Running ML on edge devices is always strongly demanded

zhijian [at] ucsd (dot) edu

Big Picture



Dataflow Graph

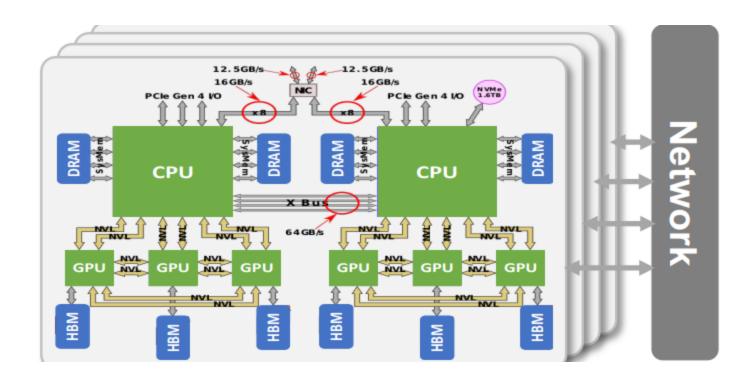
Autodiff

Graph Optimization

Parallelization

Runtime: schedule / memory

Operator optimization/compilation



Parallelization

Why Parallelization: Technology Trend

- ML Parallelism Overview
- Collective Communication Review
- Data parallelism
- Model parallelism
 - Inter and intra-op parallelism
- Auto-parallelization

Dataflow Graph

Autodiff

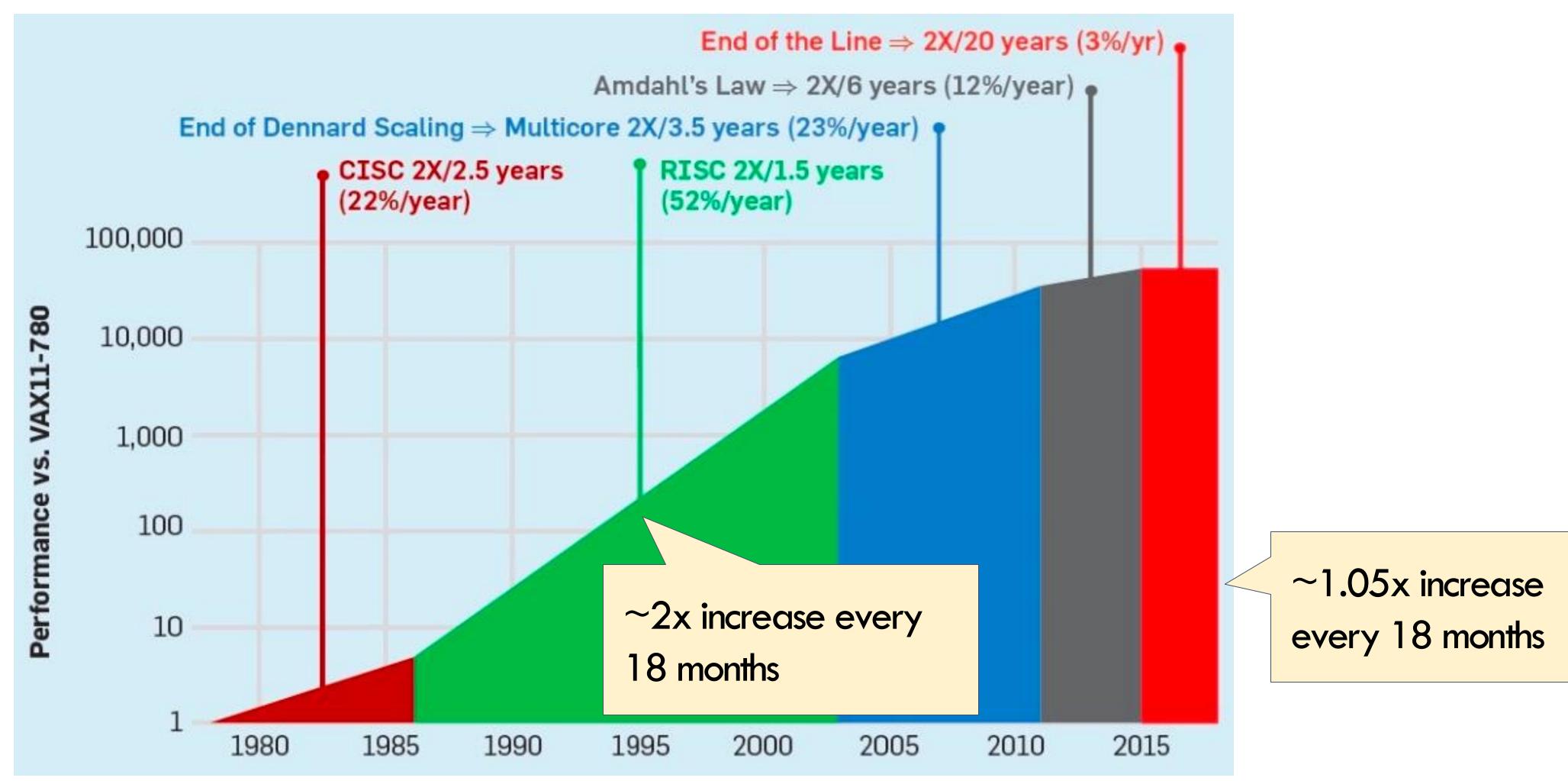
Graph Optimization

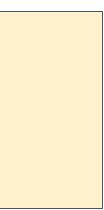
Parallelization

Runtime

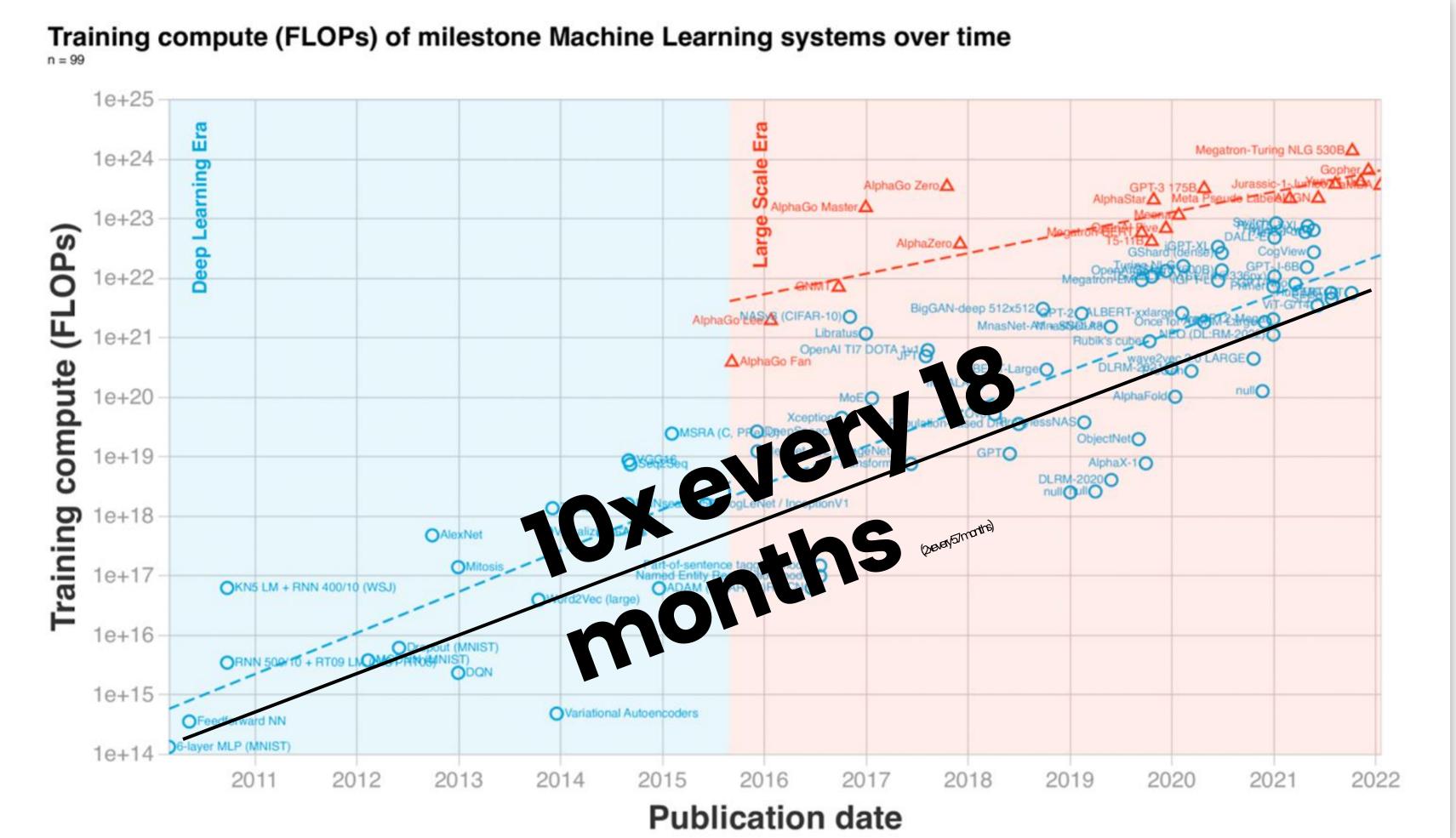
Operator

Moore's Law coming to an end



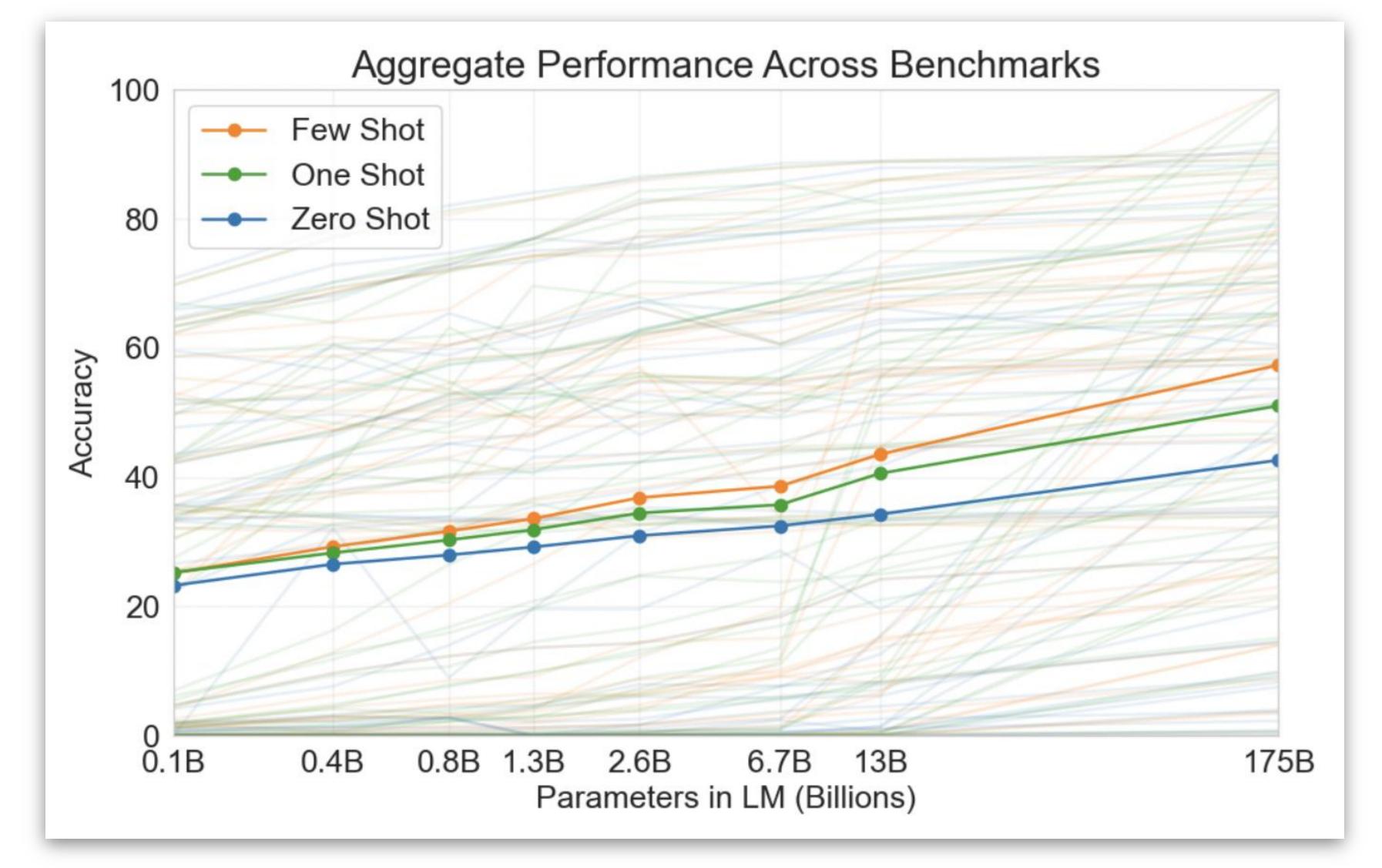


Reality Check: ML Trend



"Compute trends across three eras of machine learning", J. Sevilla, https://ar5iv.labs.arxiv.org/html/2202.05924

Bigger model, better accuracy



"Language Models are Few-Shot Learners", T. B. Brown et al., <u>https://arxiv.org/pdf/2005.14165.pdf</u>

Big Models have Emergent capabilities

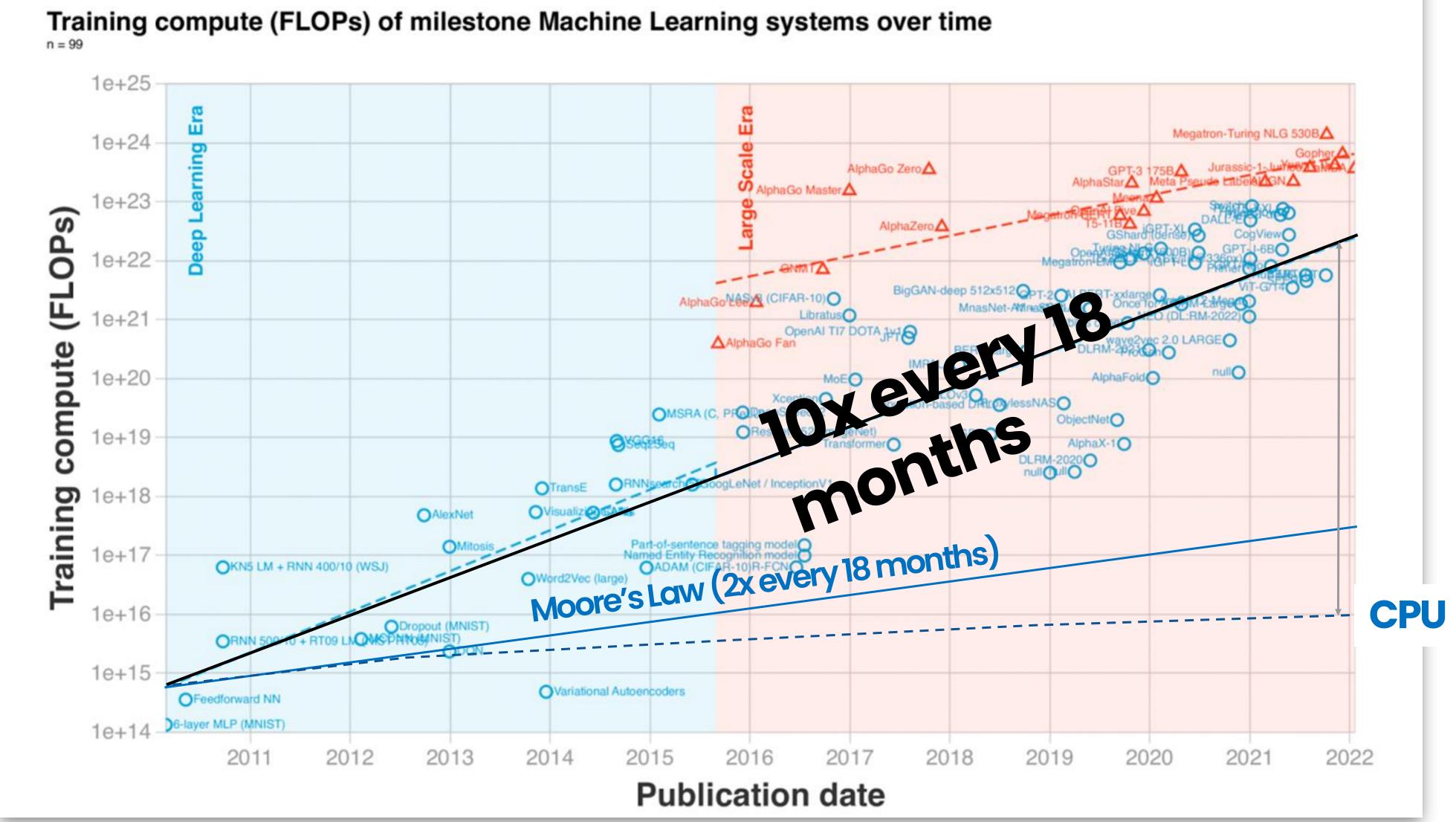
QUESTION ANSWERING

ARITHMETIC

"Pathways Language Model (PaLM): Scaling to 540 Billion Parameters for Breakthrough Performance", S Narang, A Chowdhery et al, https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

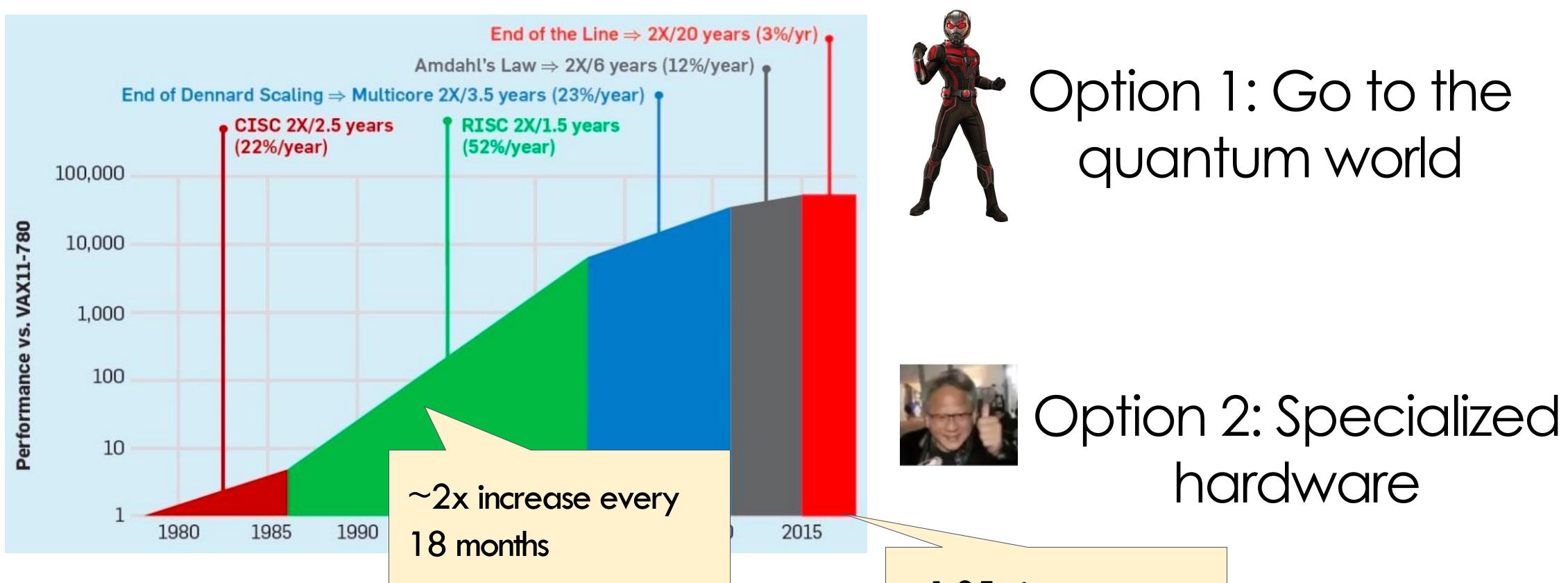
LANGUAGE UNDERSTANDING

Growing gap between demand and supply



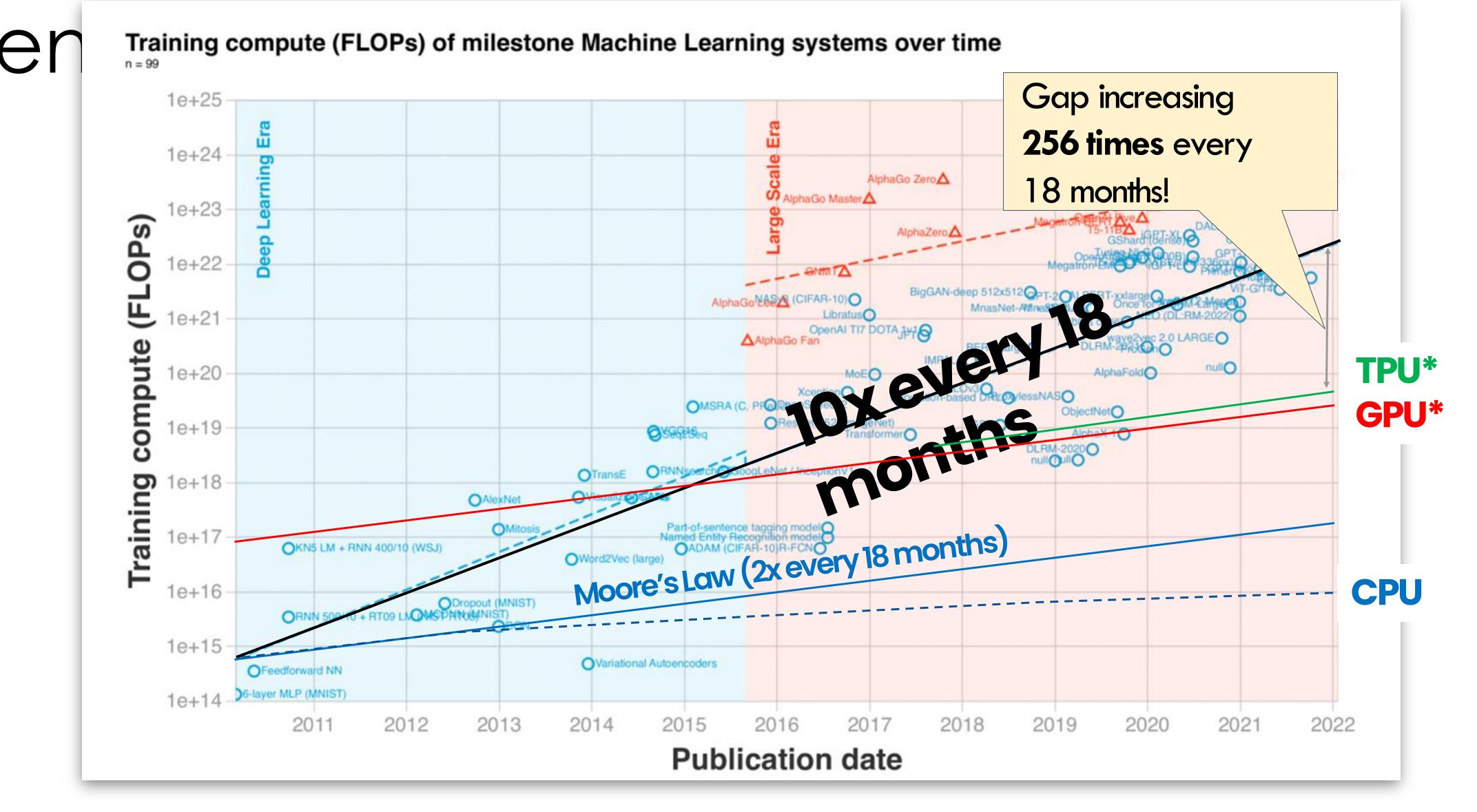
"Compute trends across three eras of machine learning", J. Sevilla, <u>https://ar5iv.labs.arxiv.org/html/2202.05924</u>

Recap: Possible Paths Ahead



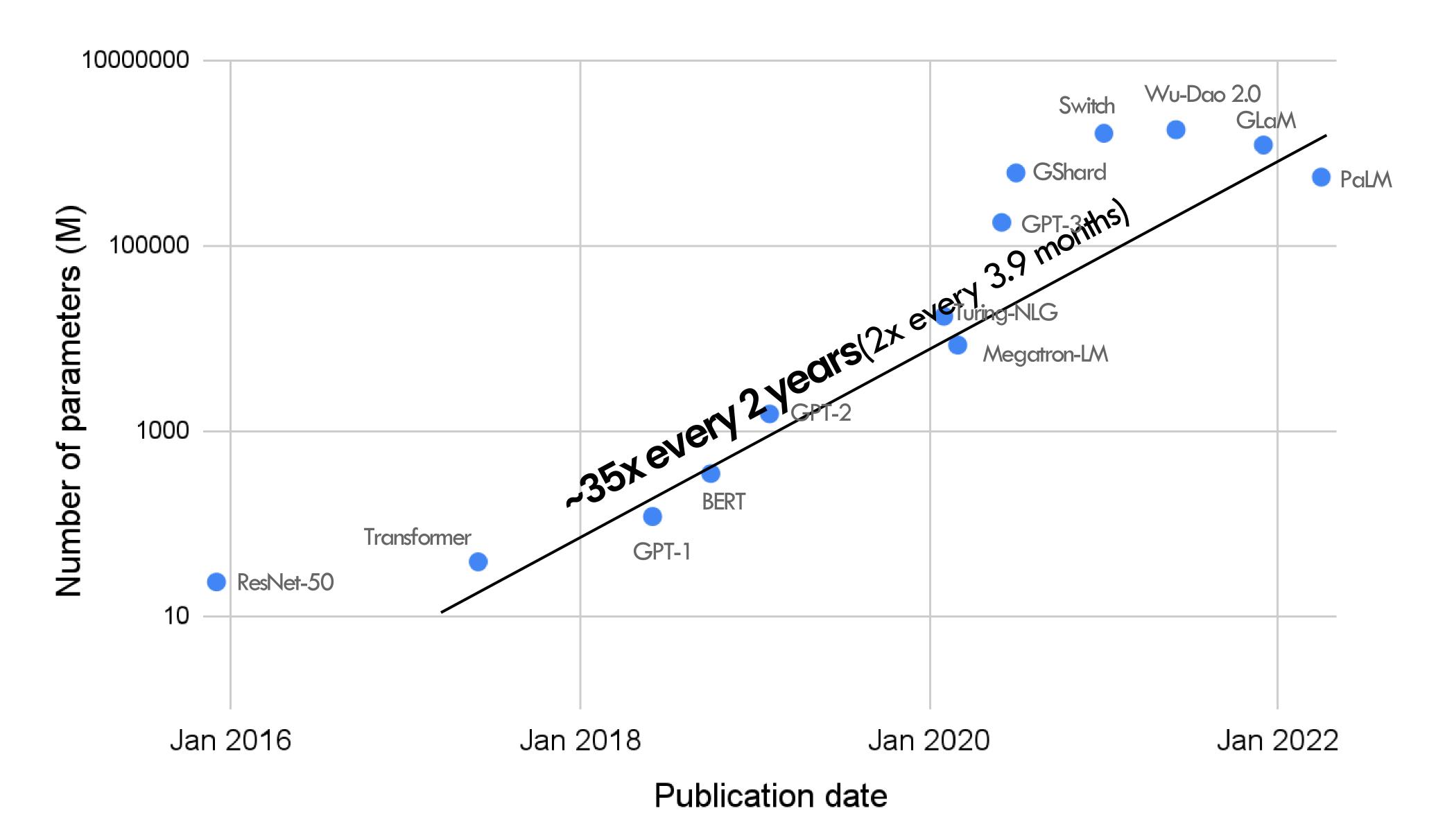
 \sim 1.05x increase every 18 months

Specialized hardware not good

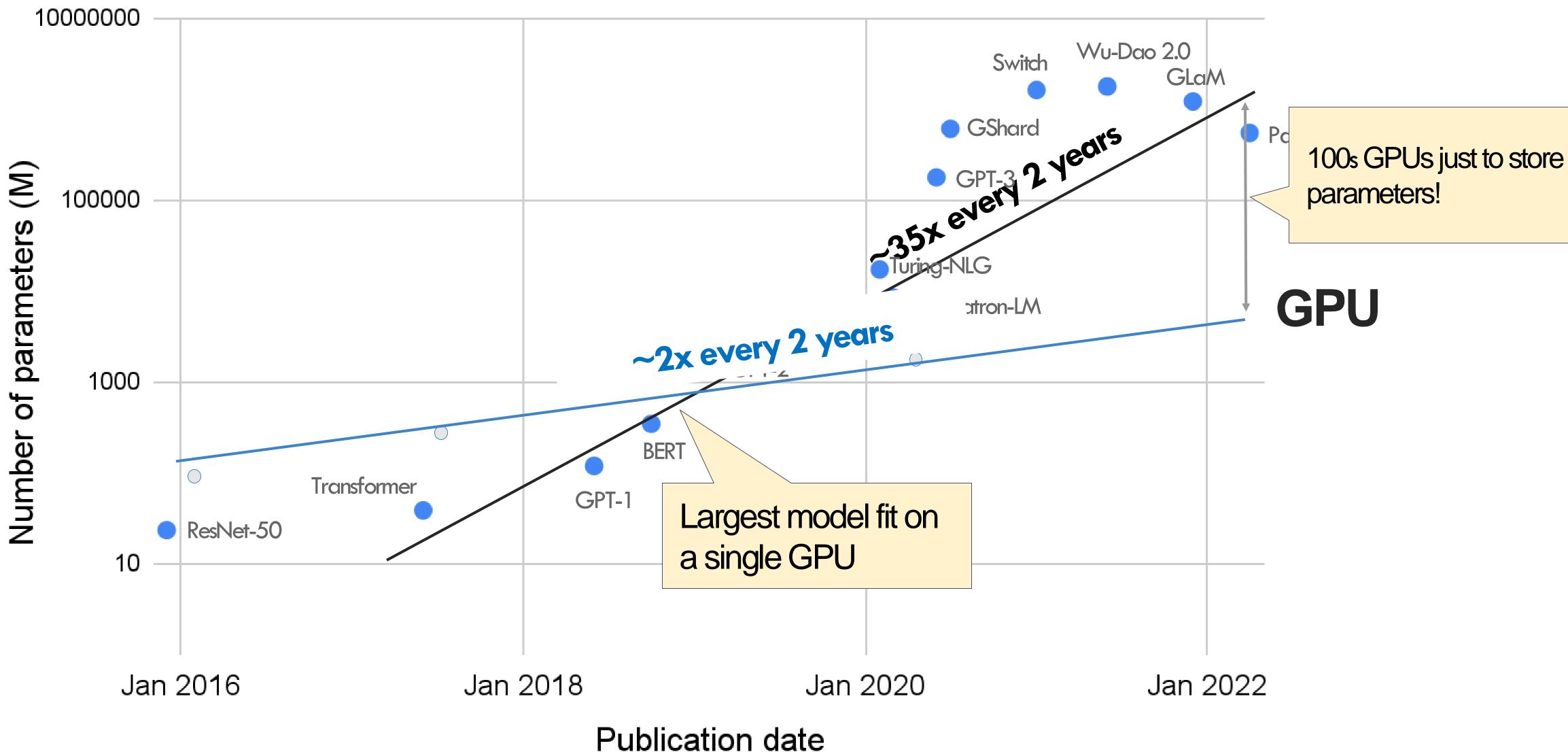


"Compute trends across three eras of machine learning", J. Sevilla, <u>https://ar5iv.labs.arxiv.org/html/2202.05924</u>

Not only compute, but memory



Growing gap between memory demand and sunnhu



No way out but to parallelize these workloads !

Parallelization

- Why Parallelization: Technology Trend
- ML Parallelism Overview
- Collective Communication Review
- Data parallelism
- Model parallelism
 - Inter and intra-op parallelism
- Auto-parallelization

Dataflow Graph

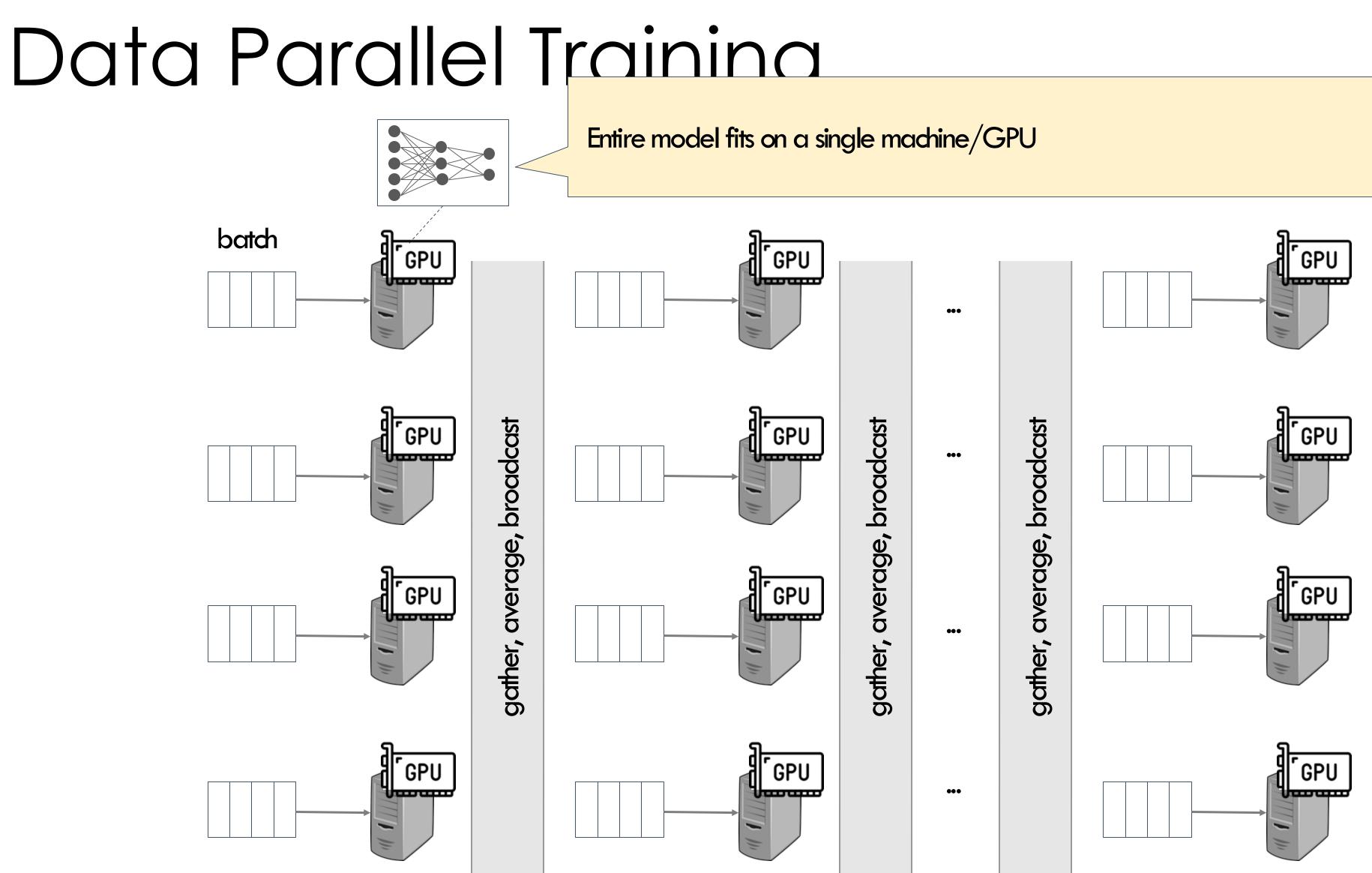
Autodiff

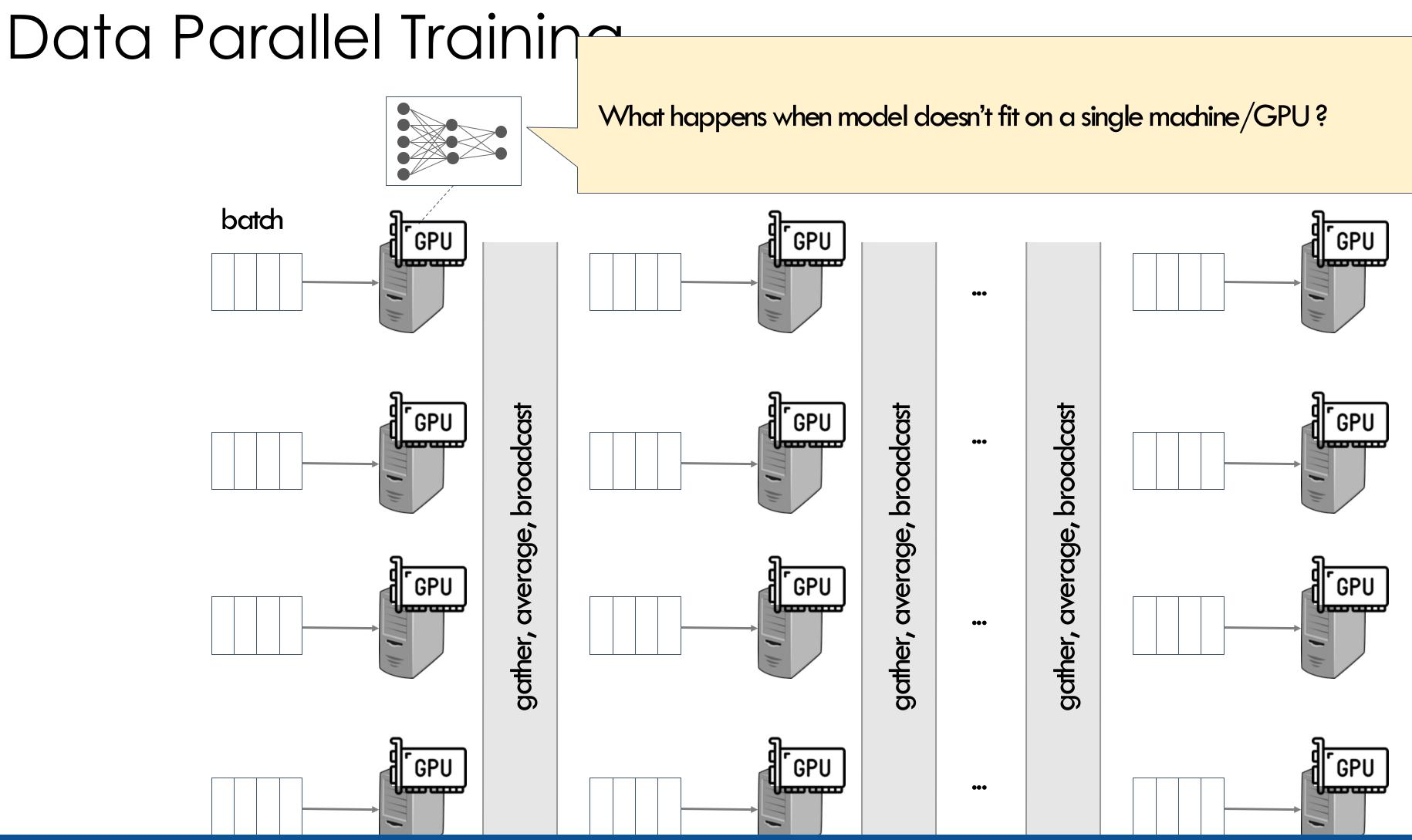
Graph Optimization

Parallelization

Runtime

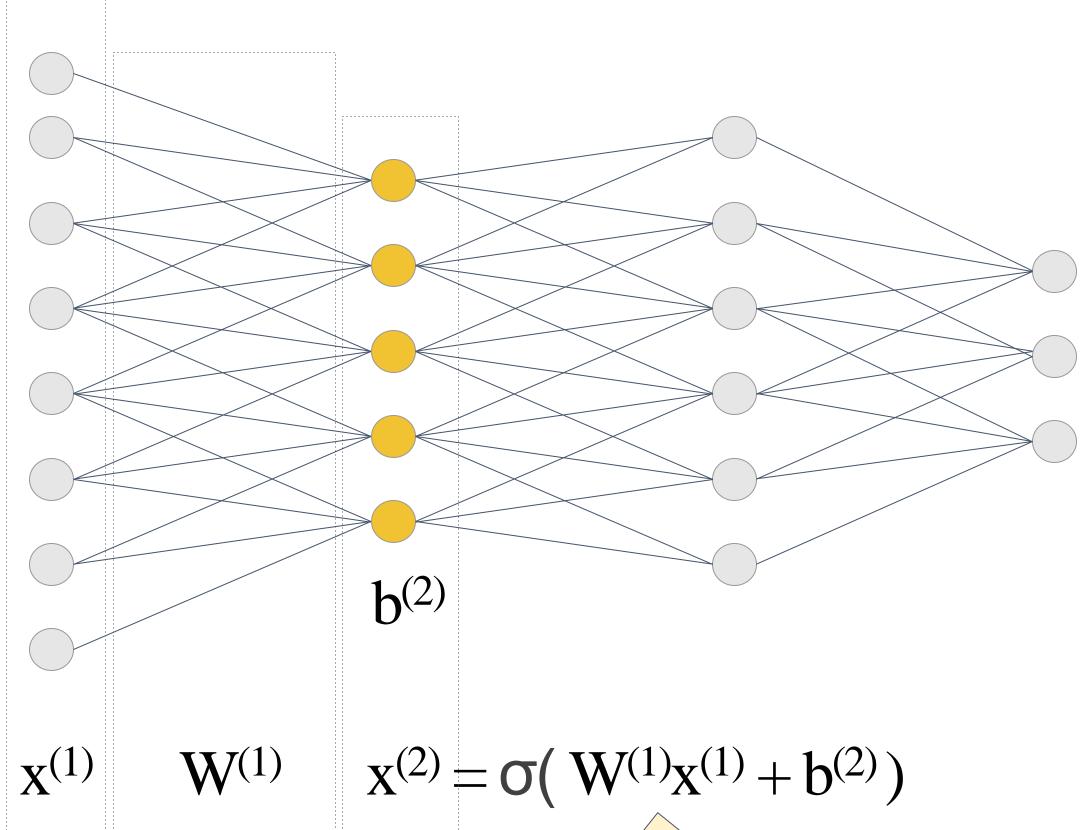
Operator





Need to parallelize the model itself

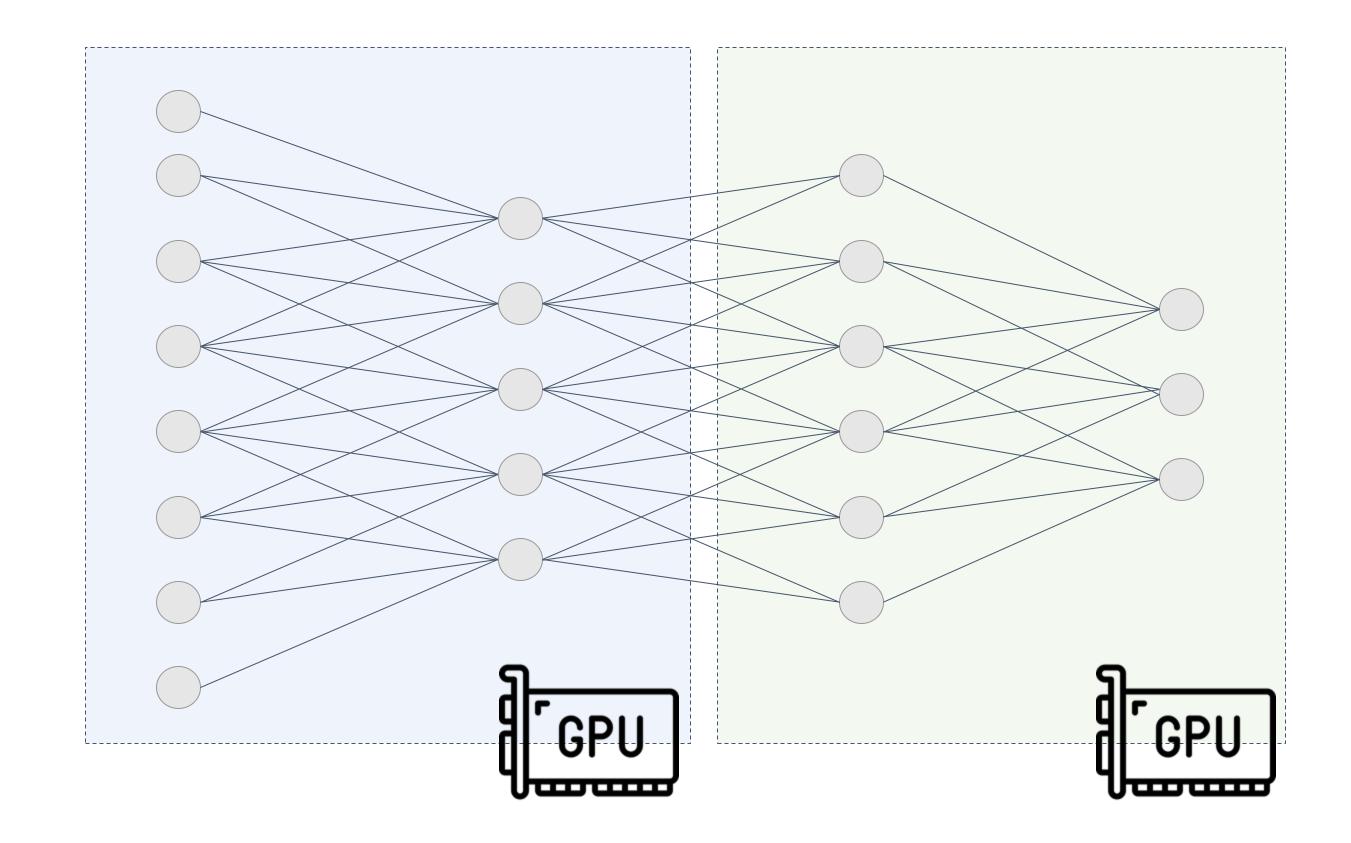
Need do parallelize the model, but how?



$$W^{(1)}x^{(1)} + b^{(2)})$$

Tensor **operator**

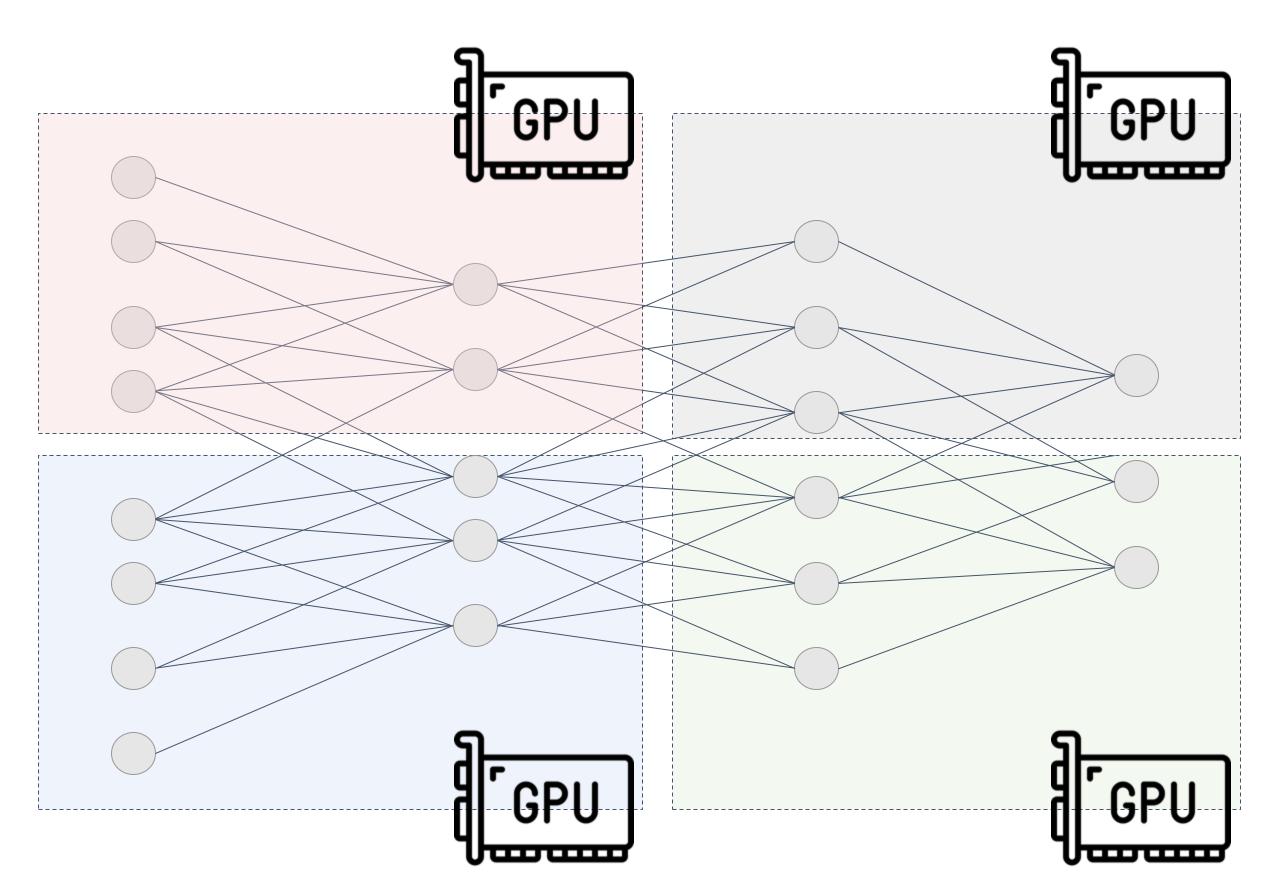
Model Parallelism



•

Pipeline execution on both forward and backward paths GPUs can be on the same machine or different machines

Model Parallelism



Classic View of ML Parallelisms

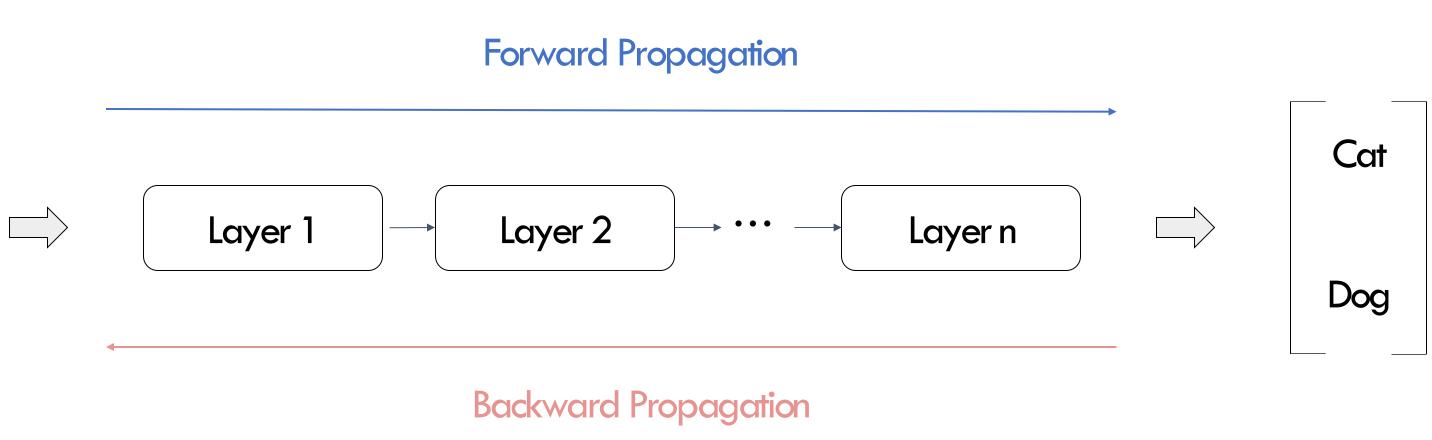
Classic view

Data parallelism

Model parallelism

From a Computational Perspective

Input



 $heta^{(t+1)}$ $= f(\theta)$

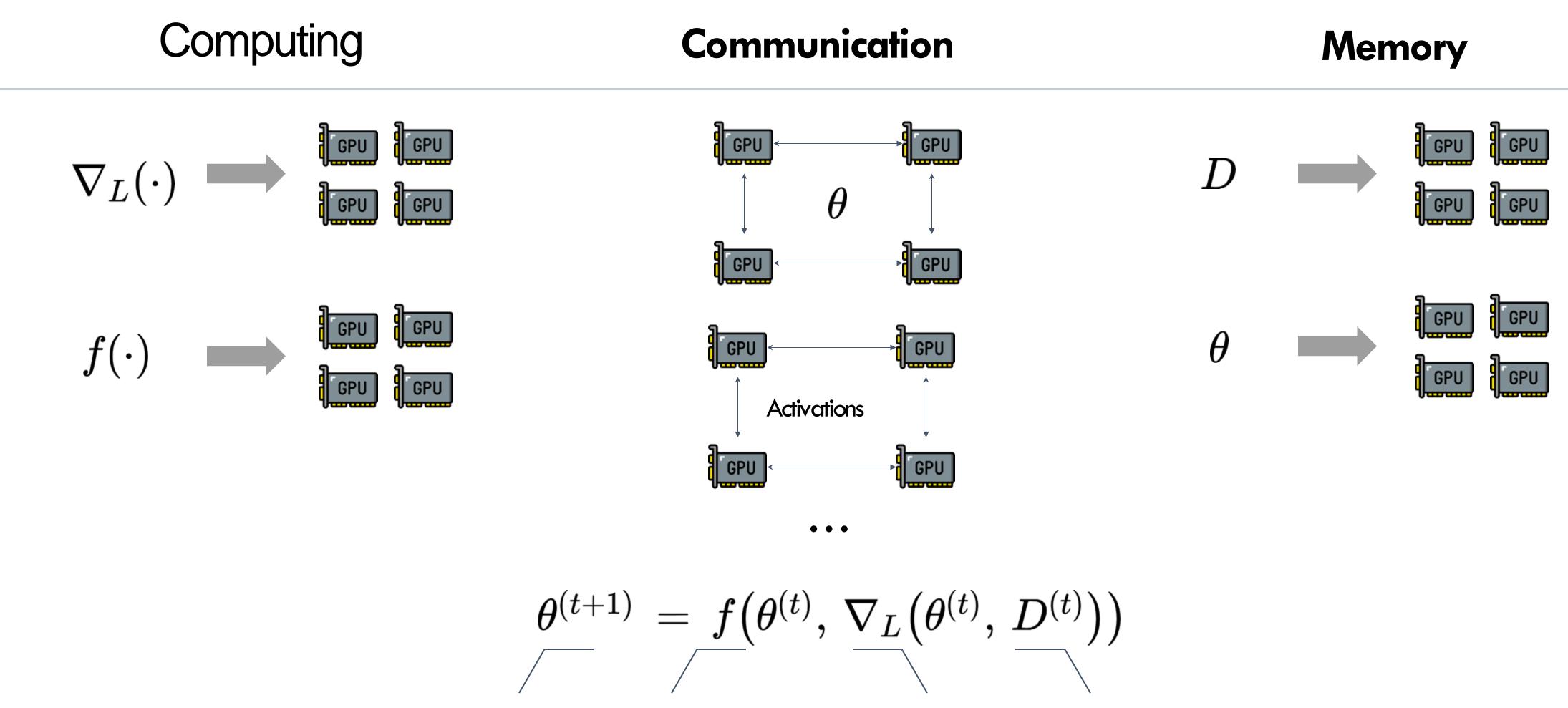
parameter

weight update model data (sgd, adam, etc.) (CNN, GPT, etc.)

Prediction

$$\Theta^{(t)}, \, \underline{\nabla_L}ig(heta^{(t)}, \, \underline{D^{(t)}} ig) ig)$$

From a Computational Perspective



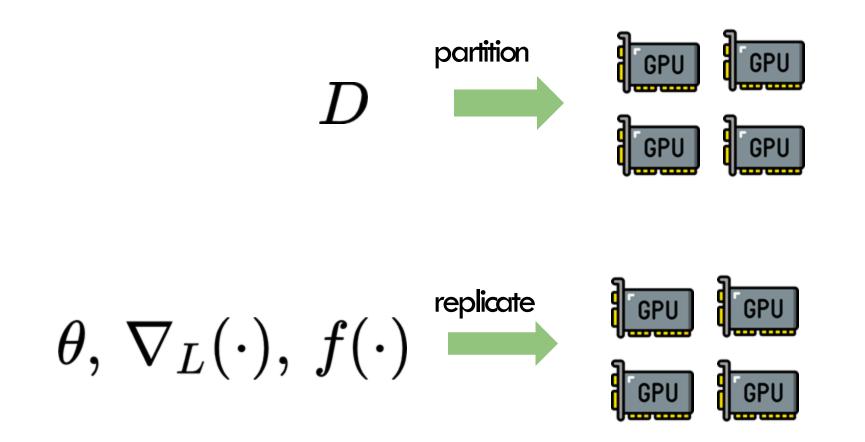
parameter

weight update (sgd, adam, etc.)

model data (CNN, GPT, etc.)

Data and Model Parallelism

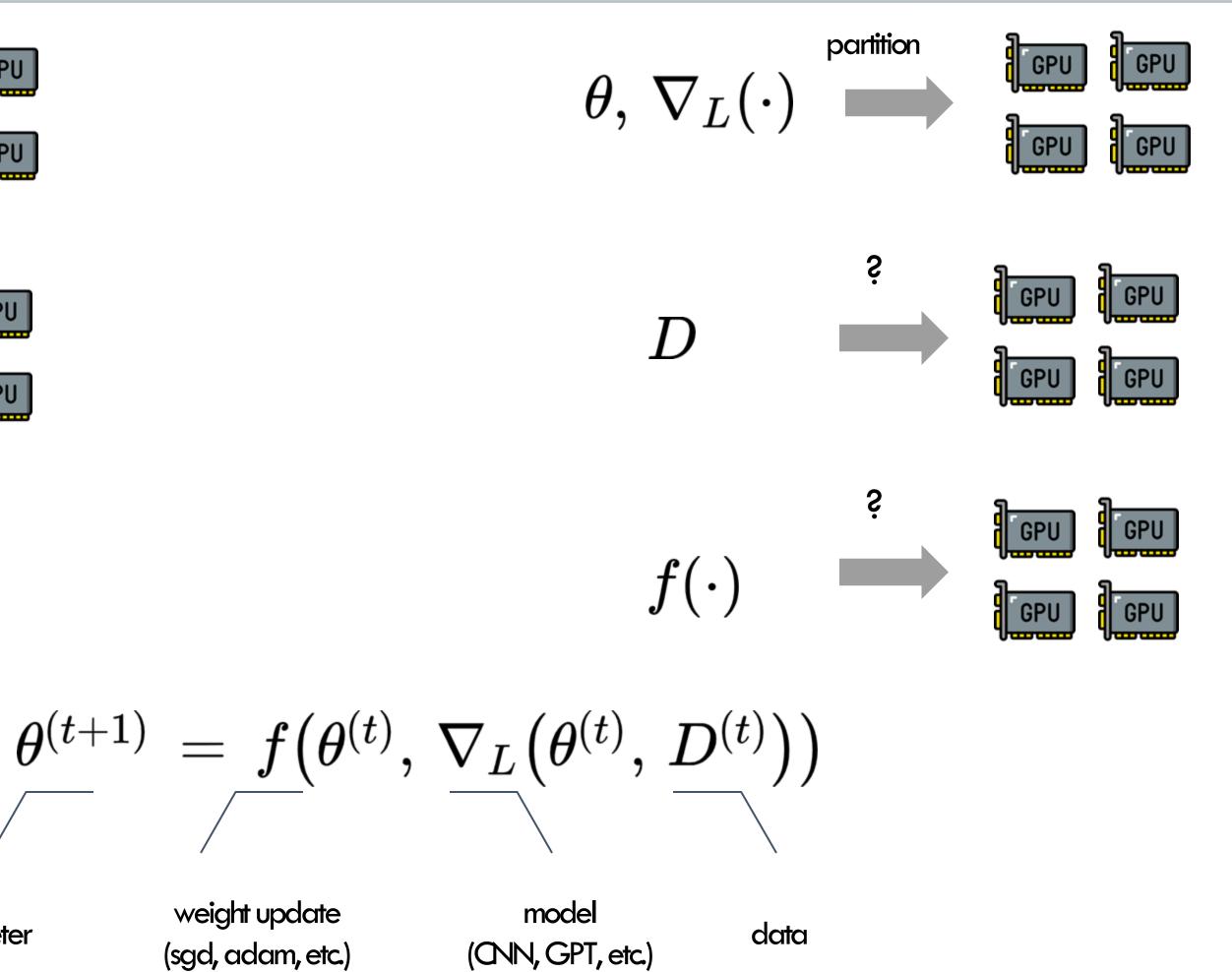
Data parallelism

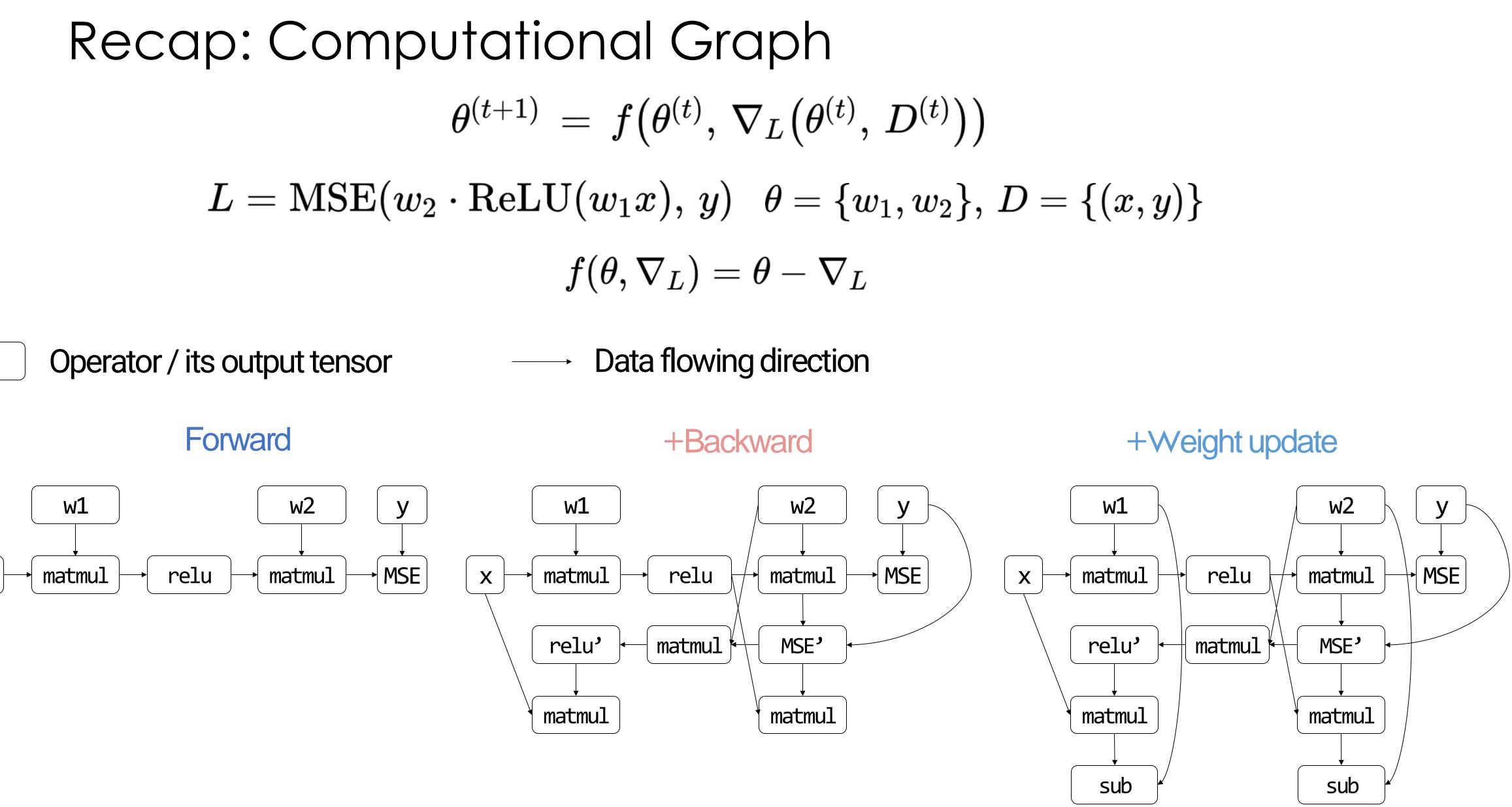


weight update (sgd, adam, etc.)

parameter

Model parallelism





Χ

Device Cluster

Nvidia DGX with V100

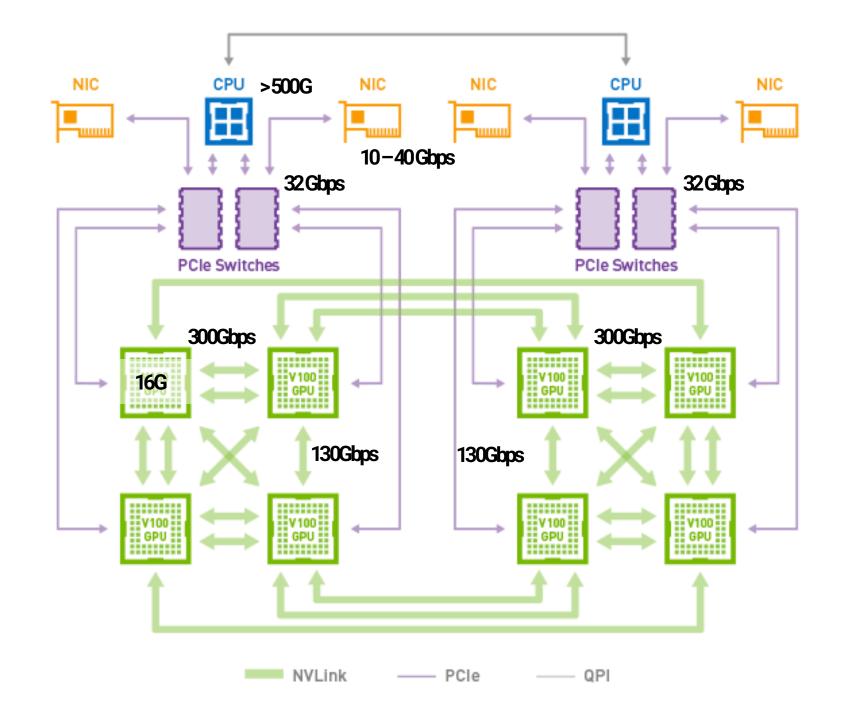
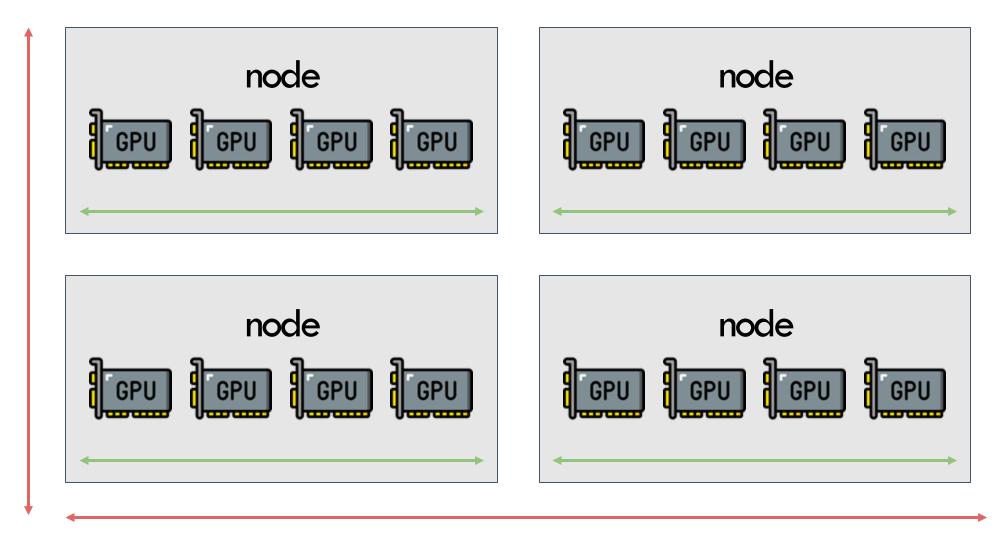


Figure from NVDIA

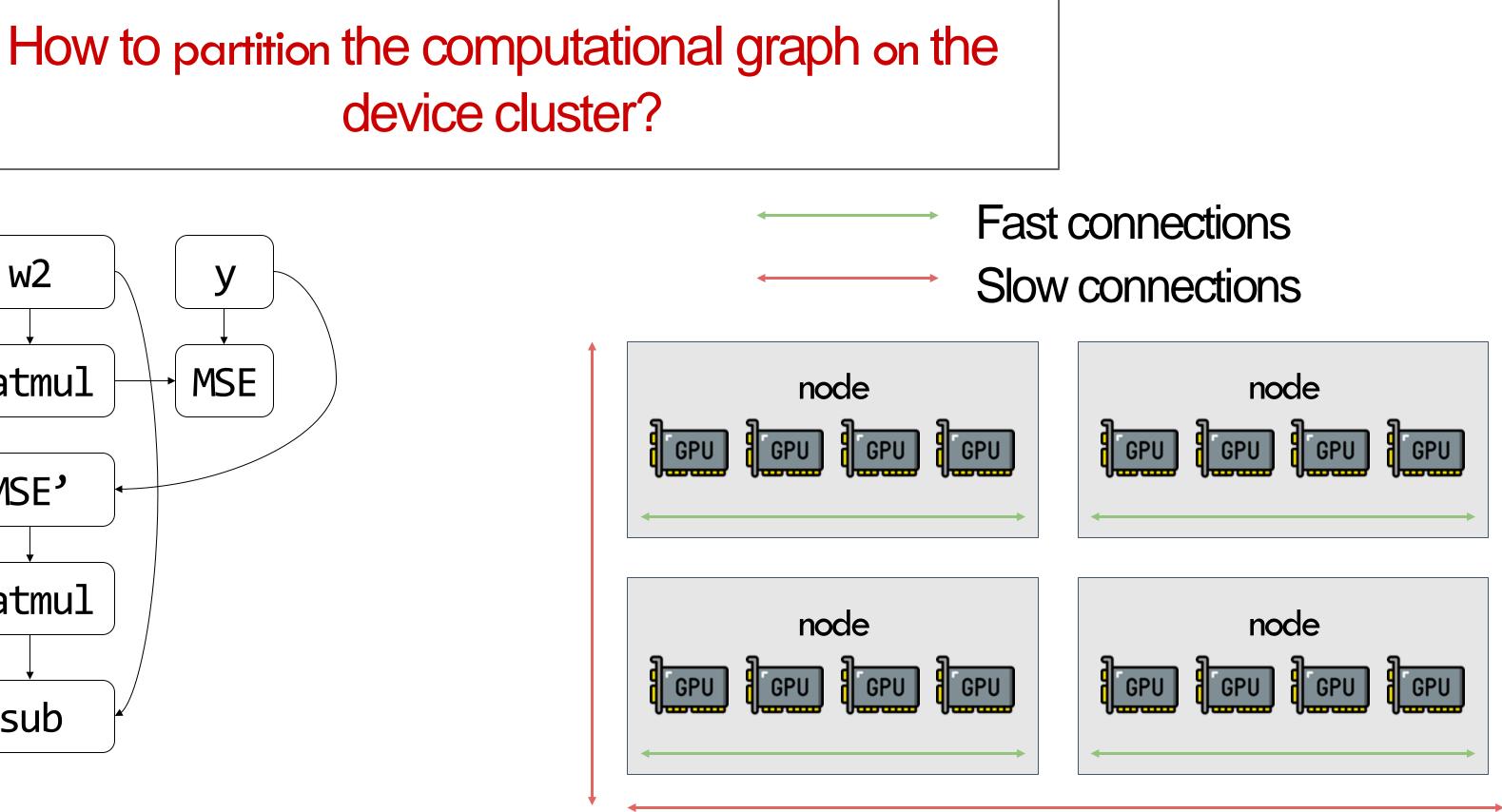
A typical GPU cluster topology

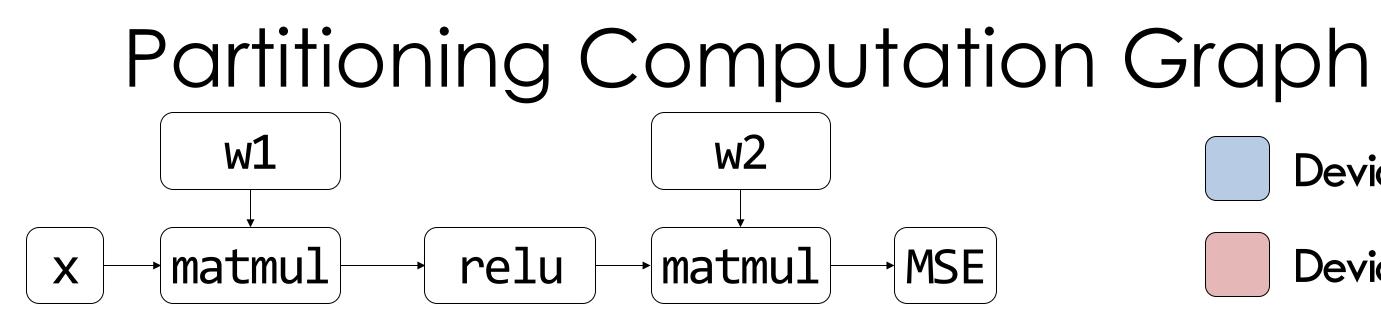


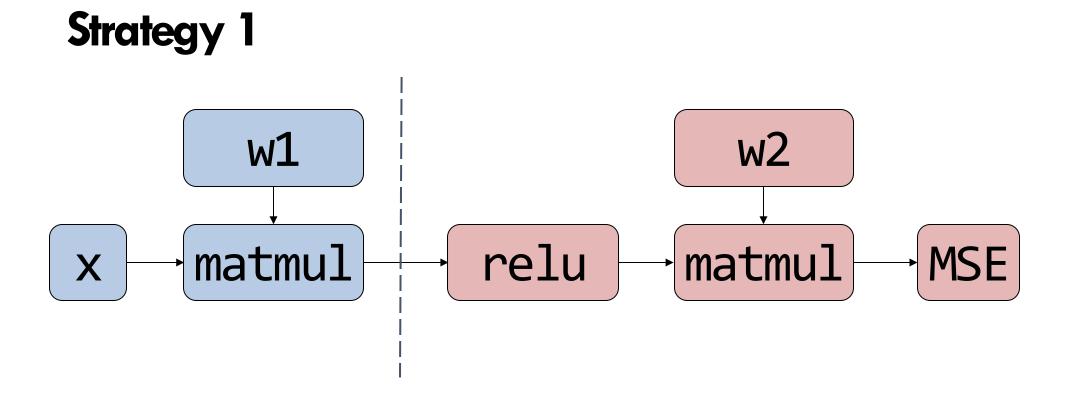


Parallelization = Partitioning Computation Graph on Device Cluster

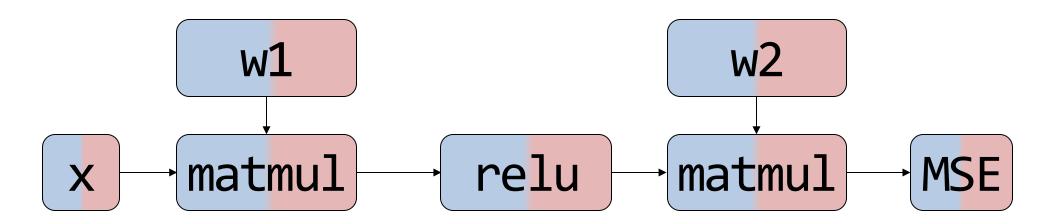


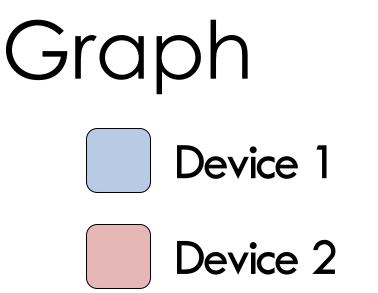


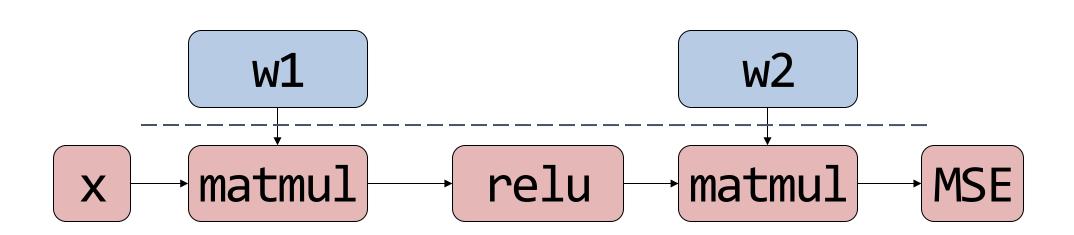


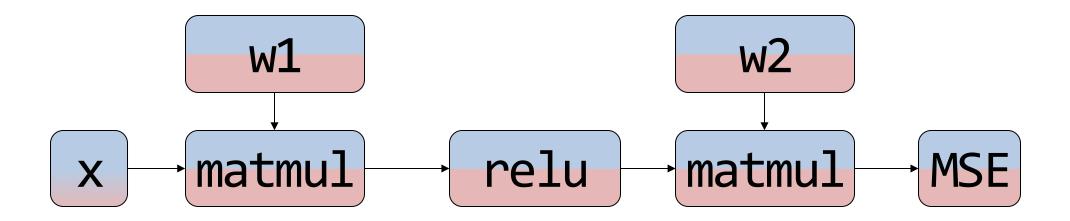


Strategy 2



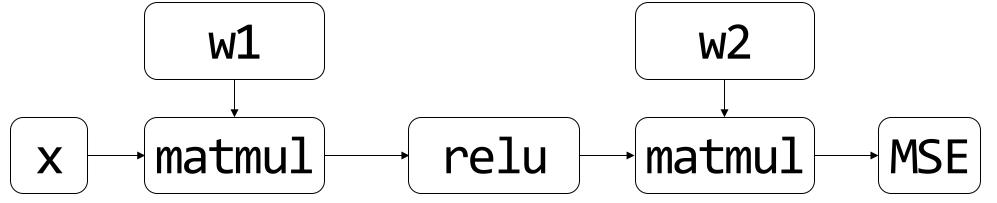




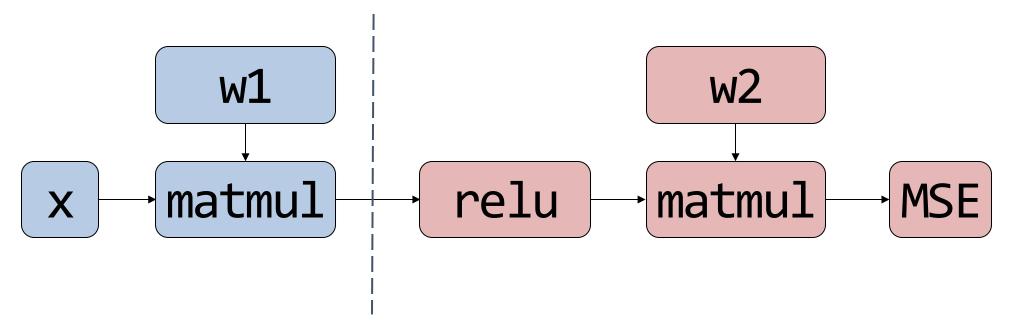


••• •••

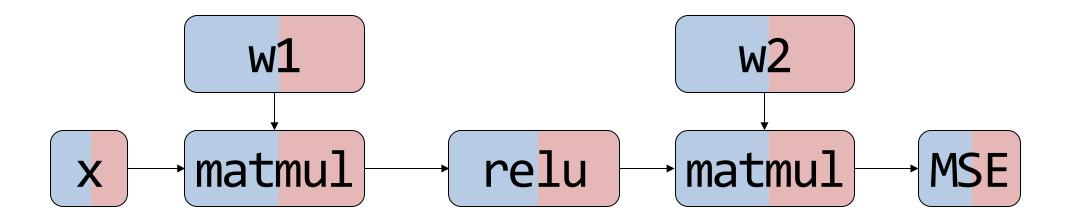
Partitioning Computation Graph

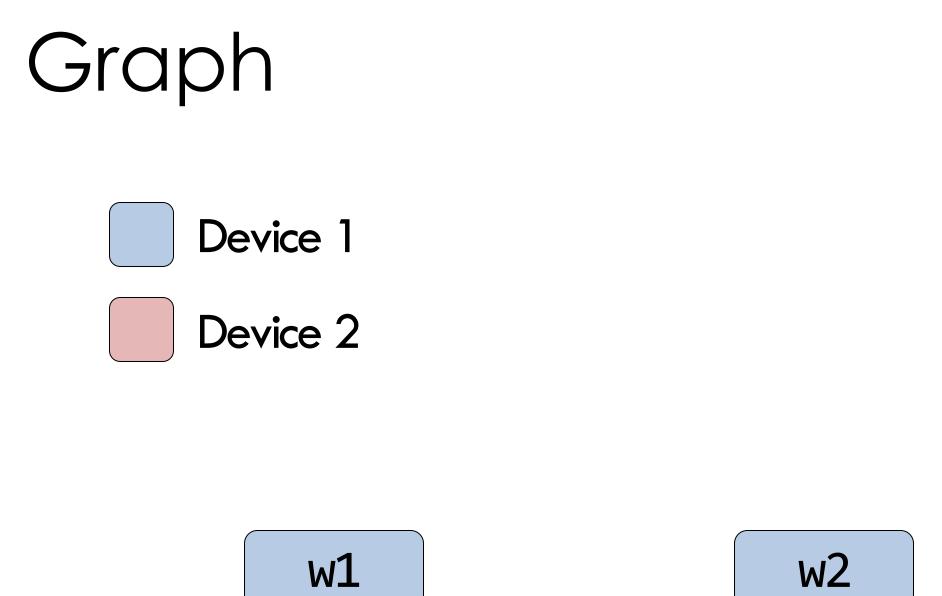


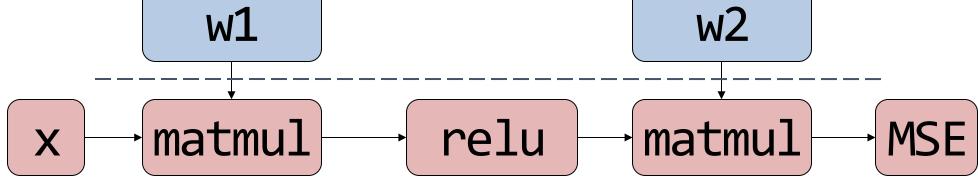
Strategy 1: Inter-operator Parallelism

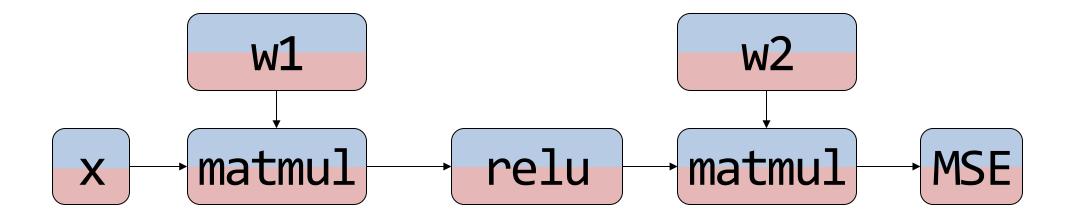


Strategy 2: Intra-operator Parallelism





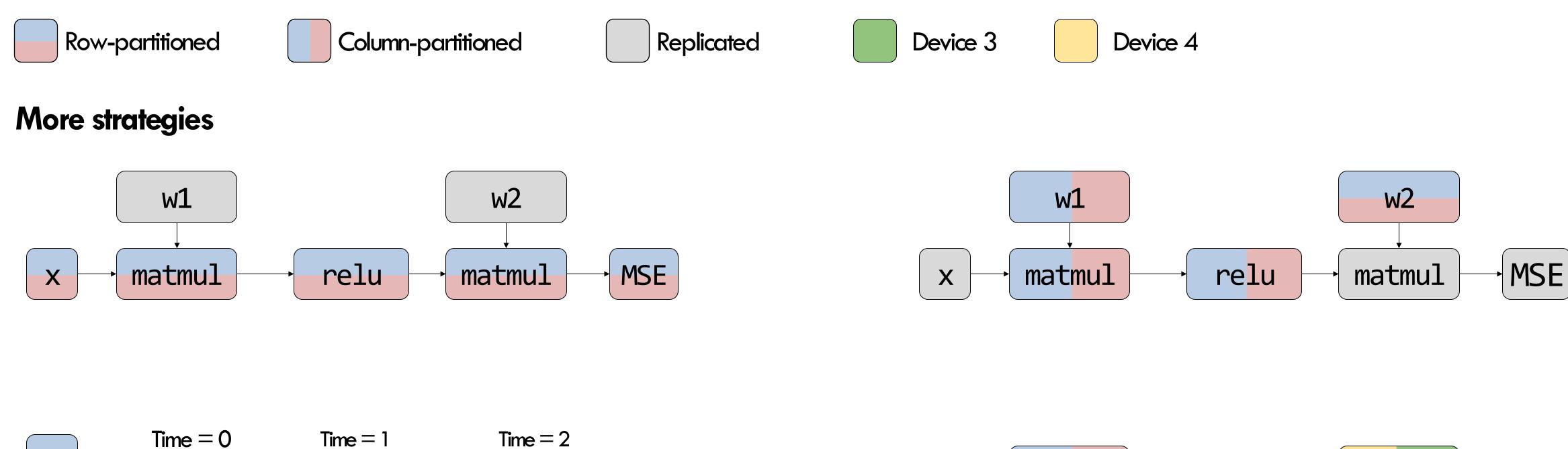


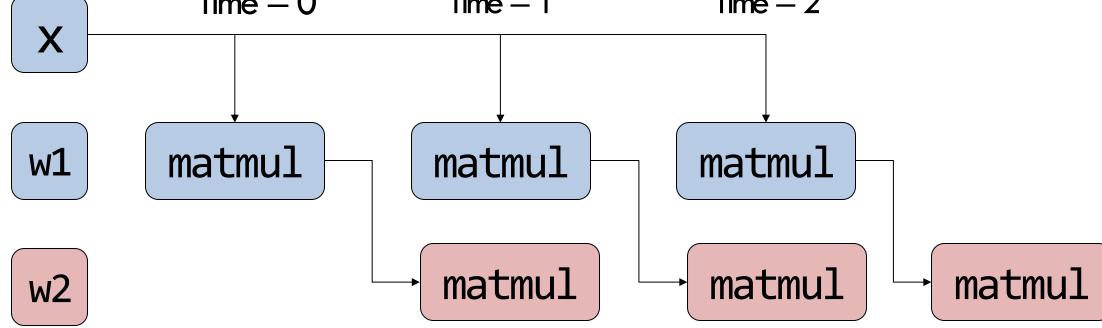


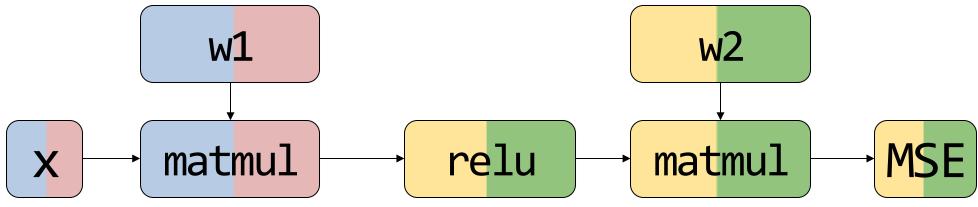
... • • •

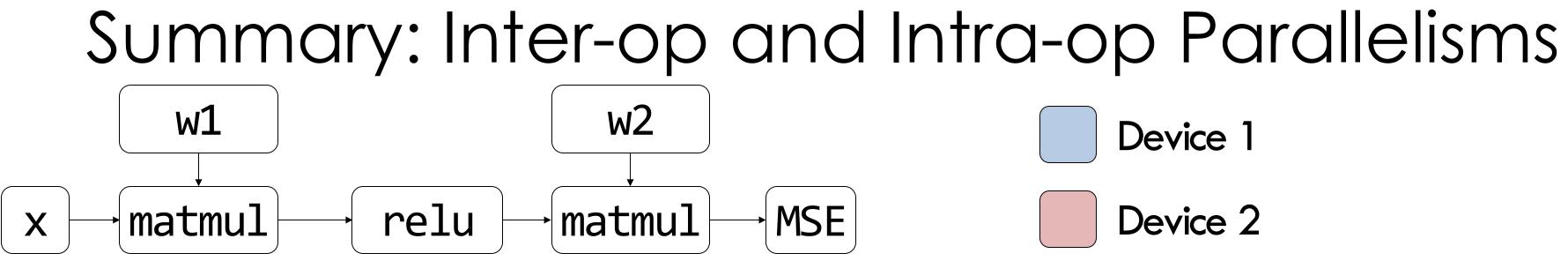
More Parallelisms...

Multiple intra-op strategies for a single node

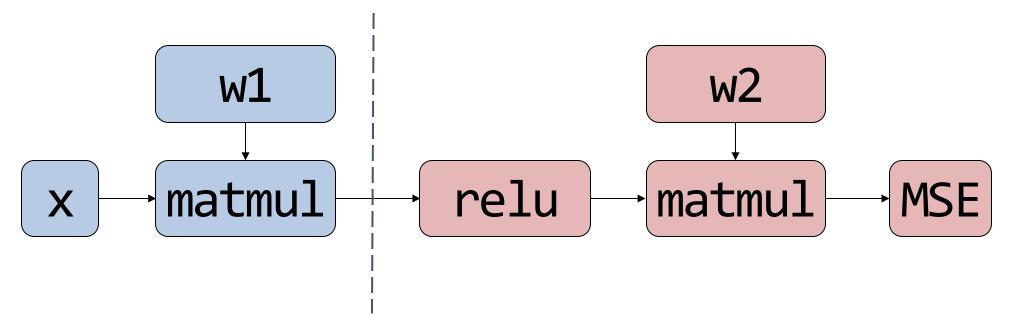




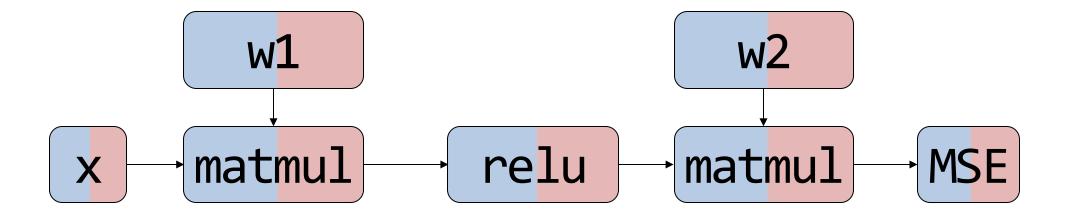




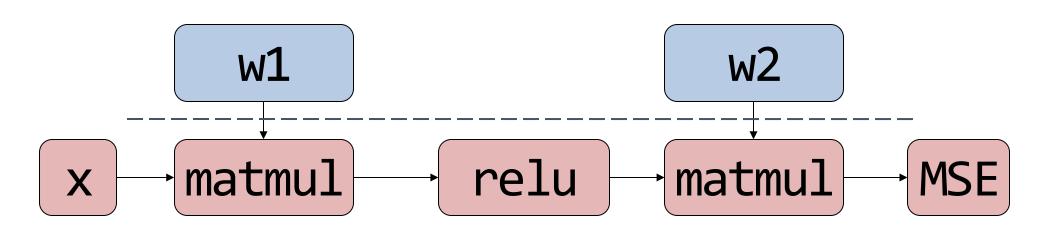
Inter-op parallelism: Assign different operators to different devices.

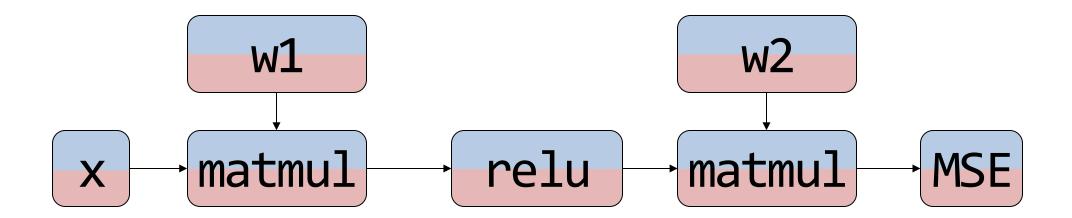


Intra-op parallelism: Assign different regions of a single operator to different devices.



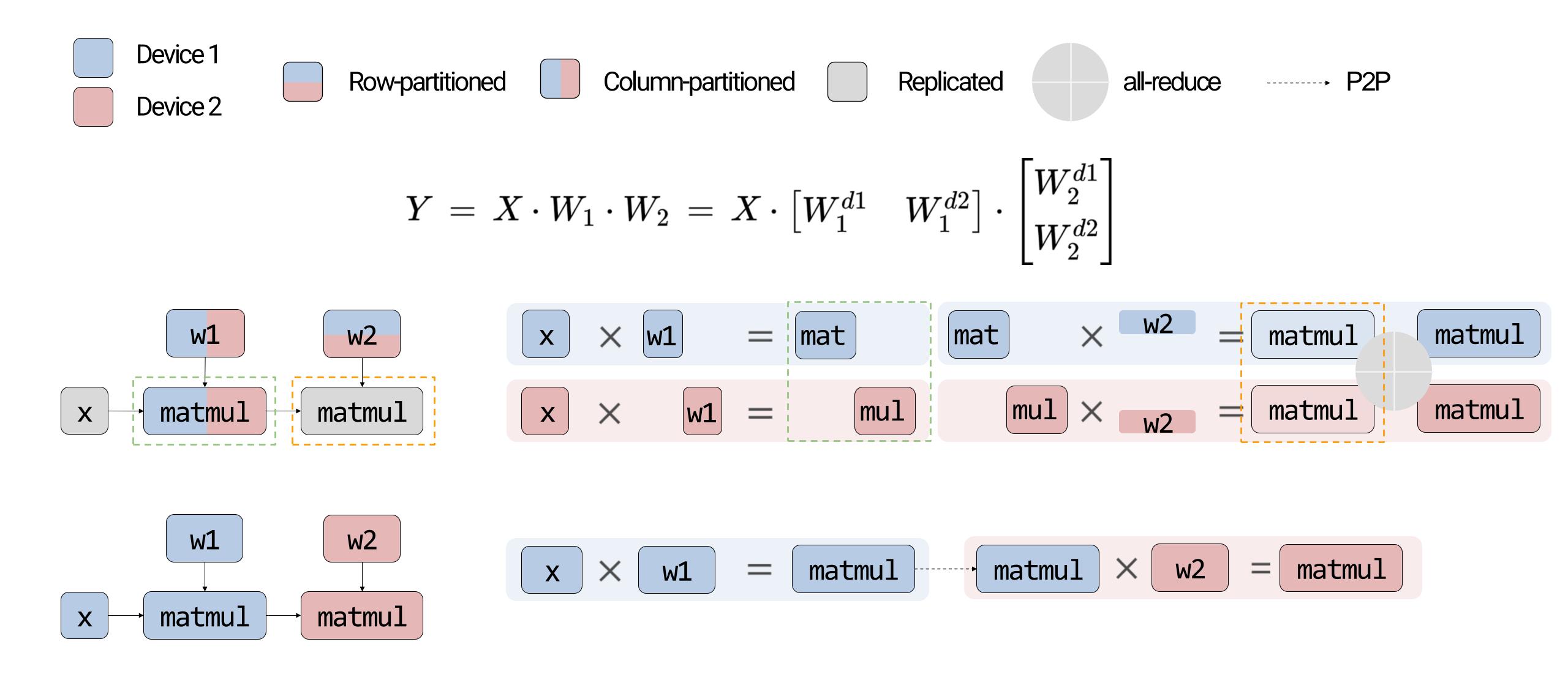
Device 1 Device 2

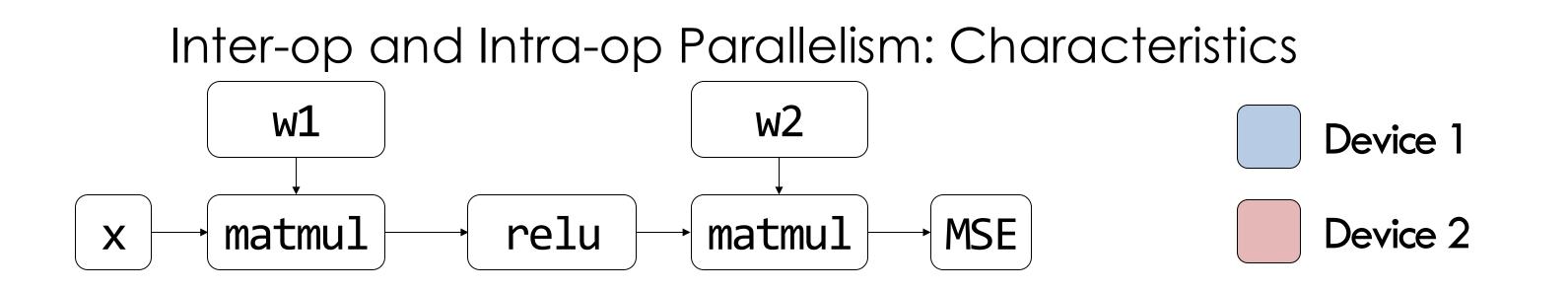


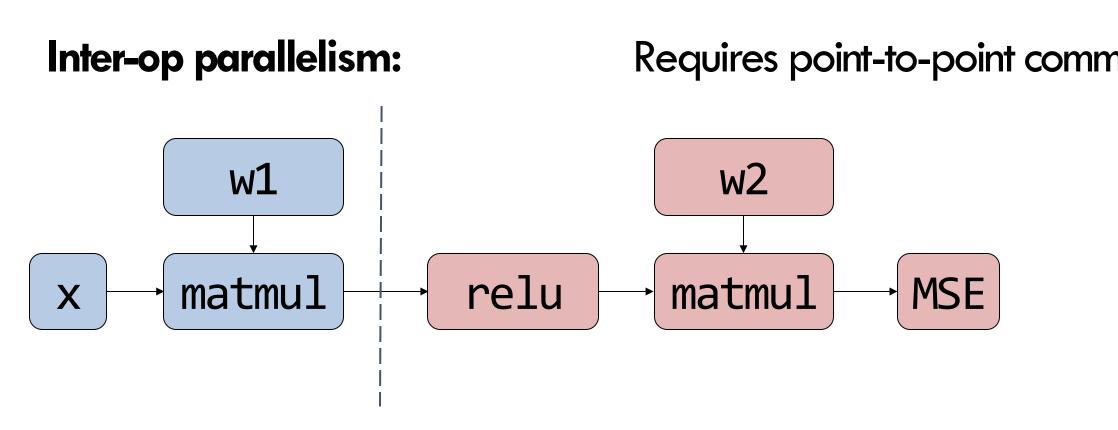


... • • •

Inside Intra- and Inter-op Parallelism

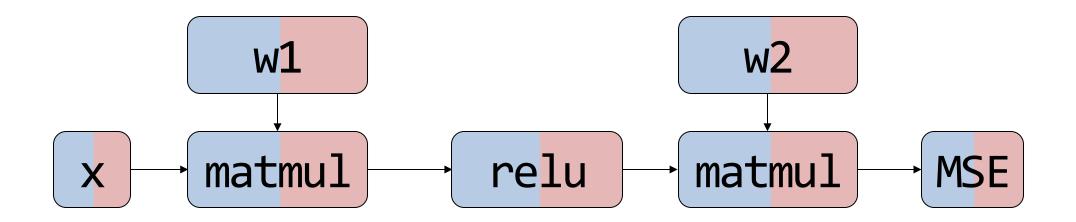




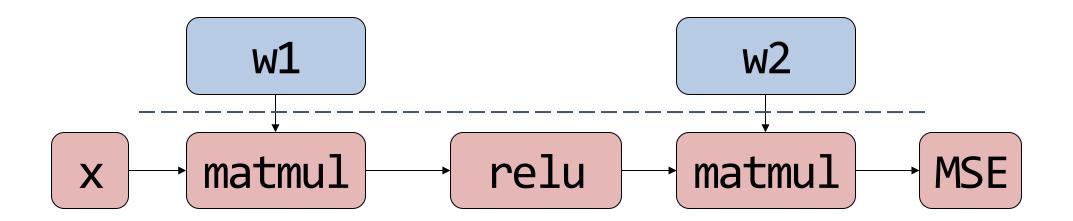


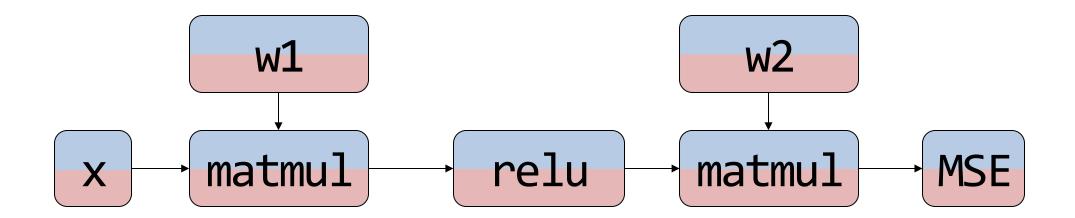
Intra-op parallelism:

Devices are busy but requires collective communication

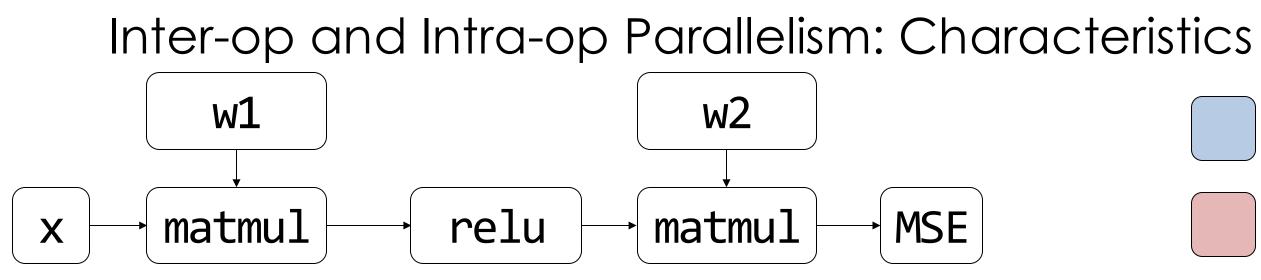


Requires point-to-point communication but results in device idle

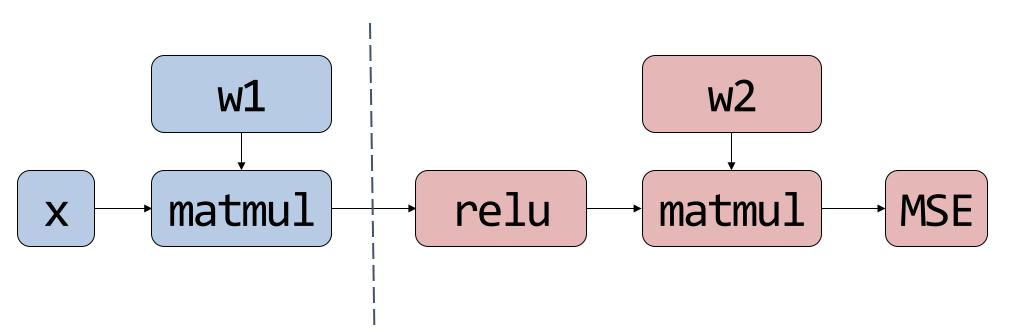




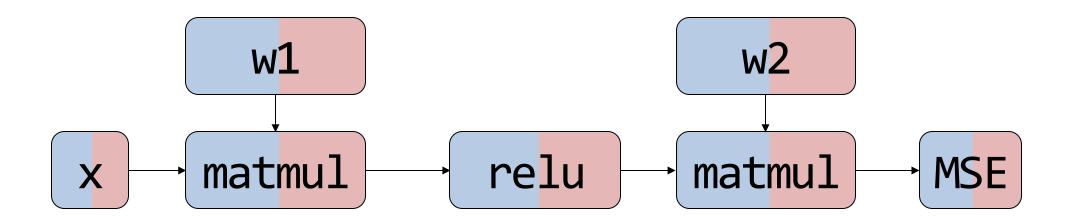
... ...

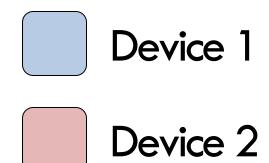


Inter-op parallelism



Intra-op parallelism





Trade-off

	Inter-operator Parallelism	Intra-operato Parallelism
Communication	Less	More
Device Idle Time	More	Less

Computational View of ML Parallelisms

Classic view

Data parallelism

Model parallelism

New view (this tutorial)

Inter-op parallelism

Intra-op parallelism

Two Views of ML Parallelisms

Data and model parallelism

- Two pillars: data and model.
- "Under the second se precise.
- ? "Model parallelism" is vague.
- **?**The view creates ambiguity for methods that neither partitions data nor the model computation.

New: Inter-op and Intra-op parallelism.

Two pillars: computational graph and device cluster

This view is based on their computing characteristics.

This view facilitates the development of new parallelism methods.

ML Parallelization under New View

