
CSE 234: Data Systems for Machine Learning

Winter 2025

1

https://hao-ai-lab.github.io/cse234-w25/

MLSys Basics

Optimizations and Parallelization

LLMSys

Parallelization

• Why Parallelization: Technology Trend

• ML Parallelism Overview

• Collective Communication Review

• Data parallelism

• Model parallelism

• Inter and intra-op parallelism

• Auto-parallelization

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime

3

node node

node node

Fast connections

Slow connections

How to partition the computational graph on the

device cluster?

x MSE

y

relu matmul

w2

matmul

w1

subsub

matmul

matmul

MSE’

matmul

relu’

Parallelization = Partitioning Computation Graph on

Device Cluster

x MSErelu matmul

w2

matmul

w1 Device 1

Device 2

x MSErelu matmul

w2

matmul

w1

Inter-op parallelism: Assign different operators to different devices.

x MSErelu matmul

w2

matmul

w1

Intra-op parallelism: Assign different regions of a single operator to different devices.

x MSErelu matmul

w2

matmul

w1
…

x MSErelu matmul

w2

matmul

w1
…

Summary: Inter-op and Intra-op Parallelisms

w2 matmul

Inside Intra- and Inter-op Parallelism

matmul matmul

w1 w2 x

x

w1

w1

mat

mul

mat w2

mul w2

matmul

matmul

matmul

matmul

x w1 matmul matmul

all-reduce P2P
Device 1

Device 2
Row-partitioned Column-partitioned Replicated

x

matmul matmul

w1 w2

x

Looking Into the Communication

matmul

matmul

matmul

matmul

all-reduce P2P
Device 1

Device 2

matmul

matmul

matmul

matmul

matmul

matmul

matmul

matmul

x MSErelu matmul

w2

matmul

w1

x MSErelu matmul

w2

matmul

w1

Device 3 Device 4

w2 matmul

Inside Intra- and Inter-op Parallelism

matmul matmul

w1 w2 x

x

w1

w1

mat

mul

mat w2

mul w2

matmul

matmul

matmul

matmul

x w1 matmul matmul

all-reduce P2P
Device 1

Device 2
Row-partitioned Column-partitioned Replicated

x

matmul matmul

w1 w2

x

x MSErelu matmul

w2

matmul

w1 Device 1

Device 2

x MSErelu matmul

w2

matmul

w1

Inter-op parallelism:

x MSErelu matmul

w2

matmul

w1

Intra-op parallelism:

x MSErelu matmul

w2

matmul

w1
…

x MSErelu matmul

w2

matmul

w1
…

Requires point-to-point communication but results in device idle

Devices are busy but requires collective communication

Parallelism: Key Characteristics

x MSErelu matmul

w2

matmul

w1 Device 1

Device 2

x MSErelu matmul

w2

matmul

w1

Inter-op parallelism

x MSErelu matmul

w2

matmul

w1

Intra-op parallelism

Inter-operator

Parallelism

Intra-operator

Parallelism

Communication Less More

Device Idle Time More Less

Trade-off

Inter-op and Intra-op Parallelism: Characteristics

[Important]

Computational View of ML Parallelisms

Data parallelism

Model parallelism

Classic view

Inter-op parallelism

Intra-op parallelism

New view (this class)

Data and model parallelism

• Two pillars: data and model.

• “Data parallelism” is general and

precise.

• “Model parallelism” is vague.

• The view creates ambiguity for

methods that neither partitions data nor

the model computation.

New: Inter-op and Intra-op

parallelism.

• Two pillars: computational graph and

device cluster

• This view is based on their computing

characteristics.

• This view facilitates the development

of new parallelism methods.

11

Two Views of ML Parallelisms

node node

node node

Fast connections

Slow connections

x MSE

y

relu matmul

w2

matmul

w1

subsub

matmul

matmul

MSE’

matmul

relu’ Theme problem:

What’s the most efficient way to execute the graph

using combinations of inter-op and intra-op parallelism

subject to memory and communication constraints?

ML Parallelization under New View

How to Measure Efficiency of Parallelism?

max AI = #ops / #bytes

A More Holistic (Macro) Measure: MFU)

MFU= #FLOPs / t / peak FLOPS

model flops utilization

MLprogram’s total flops

time to finish the

program

Potential Factors Compromising MFU

• Op types in the computational graph (ml model type)

• What are MFU-friendly op and MFU-unfriendly op?

• Optimization (which we have covered)

• Precision, core, and GPU type

• Communication over network

• How to reduce/hide communication?

MFU= #FLOPs / t / peak FLOPS

Potential Factors Lowing MFU

• Op types, op shape (ml model type)

• What are MFU-friendly op and MFU-unfriendly op?

• Optimization (which we have covered)

• Precision, core, and GPU type

• Communication over network

• How to reduce/hide communication?

MFU= #FLOPs / t / peak FLOPS

Q: Estimate MFU of your transformers in PA1/PA2?

• Step 1: estimate the total FLOPs (still remember matmul flops?)

• Step 2: benchmark the time t

• Step 3: check GPU spec, type of cores, and their peak FLOPS

• Step 4: calculate the MFU

• This will appear as an assignment in PA3

MFU is becoming a metric highly indexed in LLM Industry

• V100: 40 – 50% MFU

• V100: 112 TFLOPS

• A100: 40%

• After flash attention: 60%

• A100: 312 TFLOPS

• H100: 30 – 50% depending on model size

• H100: 990 TFLOPs

• B100: where will it be?

MFU vs. HFU (Hardware Flops Utilization)

• Hardware FU vs. Model FU

• In what case HFU != MFU?

node node

node node

Fast connections

Slow connections

x MSE

y

relu matmul

w2

matmul

w1

subsub

matmul

matmul

MSE’

matmul

relu’ Theme problem:

How to maximize MFU

subject to memory constraints?

Simplify the Problem

Parallelization

• Why Parallelization: Technology Trend

• ML Parallelism Overview

• Collective Communication Review

• Data parallelism

• Model parallelism

• Inter and intra-op parallelism

• Auto-parallelization

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime

Terminologies: Point-to-point Communication

matmul matmul

Terminologies: Collective Communication

matmul

matmul

matmul

matmul

ddp_model = DDP(Model(), device_ids=[rank])

for batch in data_loader:

loss = train_step(ddp_model, batch)

Implicit allreduce here

all-reduce

Figure from NCCL documentation

Collective Communications

• Broadcast

• Reduce(-to-one)

• Scatter

• Gather

• Allgather

• Reduce-scatter

• Allreduce

Broadcast

AfterBefore

Reduce(-to-one)

AfterBefore

Broadcast/Reduce(-to-one)

Broadcast

Reduce(-to-one)

Scatter

AfterBefore

Gather

AfterBefore

Scatter/Gather

Scatter

Gather

Allgather

AfterBefore

Reduce-scatter

AfterBefore

Allgather/Reduce-scatter

Allgather

Reduce-scatter

Allreduce

AfterBefore

Some Facts

• Collective is much more expensive than P2P

• Collective can be assembled using many P2P

• Collective is highly optimized in the past 20 years

• Look out for “X”CCL libraries

• NCCL, MCCL, OneCCL

• Collective is not fault-tolerant

Communication Model: 𝛼𝛽 model

Communication Model: 𝛼 + 𝑛𝛽,𝛽 =
1

𝐵

• Small Message size (𝑛 → 0): 𝛼 dominates, emphasize latency

• Large Message Size (𝑛 → +∞): 𝑛𝛽 dominate, emphasize

bandwidth utilization

Two Family of Mainstream Algorithms/Implementations

• Small message: Minimum Spanning Tree algorithm

• Emphasize low latency

• Large Message: Ring algorithm

• Emphasize bandwidth utilization

• There are 50+ different algorithms developed in the past 50 years

by a community called “High-performance computing”

• 2023 Turing award

General principles: Low Latency

• Minimize the number of rounds needed for communication

• Minimal-spanning tree algorithm

General principles: Low-latency

• message starts on one processor

General principles

• divide logical linear array in half

General principles

• send message to the half of the network that does not contain

the current node (root) that holds the message

General principles

• send message to the half of the network that does not contain

the current node (root) that holds the message

General principles

• continue recursively in each of the two halves

Broadcast

AfterBefore

Recap
Reduce(-to-one)

log(p)(+ n + n)

Scatter
log(p) +

p−1

p
n

Broadcast
log(p)(+ n)

Gather
log(p) +

p−1

p
n

Allreduce

Reduce-scatter

Allgather

Allgather

Gather

Allgather

Broadcast

Allgather (short vector)

Reduce-scatter (small message)

Reduce(-to-one)

Reduce-scatter

(short vector)

Scatter

Reduce-scatter

(short vector)

Allreduce (Latency-optimized)

Reduce(-to-one)

Allreduce (Latency-optimized)

Broadcast

Allreduce

(short vector)

Recap

Reduce(-to-one)
log(p)(+ n + n)

Scatter
log(p) +

p−1

p
n

Broadcast
log(p)(+ n)

Gather
log(p) +

p−1

p
n

Allreduce
2log (p) + log(p)n(2 +)

Reduce-scatter
2log (p) + log(p)n(+) +

p−1

p
n

Allgather
2log (p) + log(p)n +

p−1

p
n

Summary of MST algorithms

• Small message: Minimum Spanning Tree algorithm

• Emphasize low latency

• Problem of Minimum Spanning Tree Algorithm?

• It prioritize latency rather than bandwidth

• Hence: Some links are idle

• Next: Large message size algorithm

General principles: High Bandwidth

• Use all the links between every two nodes

• How many rounds of communication does not matter

• Ring algorithm: A logical ring can be embedded in a physical

linear array with worm-hole routing, since the “wrap-around”

message doesn’t conflict

• A logical ring can be embedded in a physical linear array with

worm-hole routing, since the “wrap-around” message doesn’t

conflict

General principles

Ring algorithm has the following advantages

• Fully utilize the bandwidth (bandwidth optimal)

• implementation for arbitrary numbers of node

Allgather

AfterBefore

Reduce-scatter

AfterBefore

Some Transformations

Reduce-scatter
(p−1)+

p−1

p
n(+)

Scatter
log(p) +

p−1

p
n

Allgather
(p−1)+

p−1

p
n

Gather
log(p) +

p−1

p
n

Allreduce

Reduce(-to-one)

Broadcast

Broadcast (Large Message)

Scatter

Broadcast (long vector)

Allgather

Broadcast (long vector)

Reduce(-to-one) (long vector)

Reduce (long vector)

Reduce-scatter

Combine-to-one (long vector)

Gather

Allreduce (Large Message)

Reduce-scatter

Allreduce (Large Message)

Allgather

Allreduce

(long vector)

Recap

Reduce-scatter

Scatter

Allgather

Gather

Allreduce

Reduce(-to-one)

Broadcast

ML Parallelism and Communication

• Inter-op always results in P2P communication

• This is quite obvious

• Intra-op always results in collective communication

• Why?

“Re-partition” Communication Cost in 2D

all-to-all

all-to-all

Row-partitioned

Replicated

Column-partitioned

Where We Are

• Motivation

• History

• Parallelism Overview

• Data parallelism

• Model parallelism

• Inter and intra-op parallelism

• Auto-parallelization

Data Parallelism

x MSErelu matmul

w2

matmul

w1

Two Solutions

• Parameter Server

• AllReduce

• Key assumption:

• The model can fit into an (GPU) worker memory hence we can

create many replica

Parameter Server Assumption

• Very heavy communication per iteration

• Compute : communication = 1:10 in the era of 2012

Parameter Server Naturally emerges

How to Implement Parameter Server?

• Key considerations:

• Server: Communication bottleneck

• Many (CPU) workers: hence fault tolerance

Parameter Server Implementation

• Sharded parameter server: sharded KV stores

• Avoid communication bottleneck

• Redundancy across different PS shards

Consistency

Device A

Device B

Device C

1 2 3 4

Global Synchronization Barrier

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

𝐹() 𝐹()

BSP’s Weakness: Stragglers

• BSP suffers from stragglers

• Slow devices (stragglers) force all devices to wait

• More devices → higher chance of having a straggler

Time

Device A

Device B

Device C

An interesting property of Gradient Descent (ascent)

Machine Learning is Error-tolerant (under certain

conditions)

Background: Asynchronous Communication

(No Consistency)

• Asynchronous (Async): removes all communication barriers

• Maximizes computing time

• Transient stragglers will cause messages to be extremely stale

• Ex: Device 2 is at 𝑡 = 6, but Device 1 has only sent message for 𝑡 = 1

• Some Async software: messages can be applied while computing 𝐹(), Δ𝐿()

• Unpredictable behavior, can hurt statistical efficiency!

1

1

1

1

Device 1

Device 2

Device 3

Device 4

2

2

2

3

3

3

4

4

4

5

5

5 6

6

6

133

Background: Bounded Consistency

Clock

Device A

Device B

Device C

1 2 3 4

Staleness s= 3

5 6

Delay = 3

Block

[Ho et al., 2013; Dai et al., 2015; Wei et al.,

2015]

134

Impacts of Consistency/Staleness:

Unbounded Staleness

Divergence under high delay

135

Theory: SSP Expectation Bound

Difference between

SSP estimate and true optimum

Summary: Parameter Server

• Why did it emerge?

• Why did it become irrelevant?

AllReduce

import torch.nn.parallel as dist

from torch.nn.parallel import DistributedDataParallel as DDP

dist.init_process_group("nccl", rank=rank, world_size=world_size)

ddp_model = DDP(Model(), device_ids=[rank])

for batch in data_loader:

loss = train_step(ddp_model, batch)

Sergeevet al., "Horovod: fast and easy distributed deep learning in TensorFlow". Preprint 2018.

Li et al., "PyTorchDistributed: Experiences on Accelerating Data Parallel Training". VLDB 2020.

Data Parallelism with All-reduce

Allreduce

• Initially implemented in Horovod

• Being Optimized by nvidia (hw/sw cooptimizaiton)

• Being adopted in PyTorch DDP

• Not Fault tolerant

Q: Why Allreduce dominates parameter server

today?

Next Lecture

• Motivation

• History

• Parallelism Overview

• Data parallelism

• Model parallelism

• Inter and intra-op parallelism

• Auto-parallelization

	Slide 1: CSE 234: Data Systems for Machine Learning Winter 2025
	Slide 2: Parallelization
	Slide 3: Parallelization = Partitioning Computation Graph on Device Cluster
	Slide 4: Summary: Inter-op and Intra-op Parallelisms
	Slide 5: Inside Intra- and Inter-op Parallelism
	Slide 6: Looking Into the Communication
	Slide 7: Inside Intra- and Inter-op Parallelism
	Slide 8: Parallelism: Key Characteristics
	Slide 9: Inter-op and Intra-op Parallelism: Characteristics [Important]
	Slide 10: Computational View of ML Parallelisms
	Slide 11: Two Views of ML Parallelisms
	Slide 12: ML Parallelization under New View
	Slide 13: How to Measure Efficiency of Parallelism?
	Slide 14: A More Holistic (Macro) Measure: MFU)
	Slide 15: Potential Factors Compromising MFU
	Slide 16: Potential Factors Lowing MFU
	Slide 17: Q: Estimate MFU of your transformers in PA1/PA2?
	Slide 18: MFU is becoming a metric highly indexed in LLM Industry
	Slide 19: MFU vs. HFU (Hardware Flops Utilization)
	Slide 20: Simplify the Problem
	Slide 21: Parallelization
	Slide 22: Terminologies: Point-to-point Communication
	Slide 23: Terminologies: Collective Communication
	Slide 24: Collective Communications
	Slide 25: Broadcast
	Slide 26: Reduce(-to-one)
	Slide 27: Broadcast/Reduce(-to-one)
	Slide 28: Scatter
	Slide 29: Gather
	Slide 30: Scatter/Gather
	Slide 31: Allgather
	Slide 32: Reduce-scatter
	Slide 33: Allgather/Reduce-scatter
	Slide 34: Allreduce
	Slide 35: Some Facts
	Slide 36: Communication Model: alpha beta model
	Slide 37: Two Family of Mainstream Algorithms/Implementations
	Slide 38: General principles: Low Latency
	Slide 39: General principles: Low-latency
	Slide 40: General principles
	Slide 41: General principles
	Slide 42: General principles
	Slide 43: General principles
	Slide 44: Broadcast
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51: Recap
	Slide 52: Allgather
	Slide 53: Allgather
	Slide 54: Allgather (short vector)
	Slide 55: Reduce-scatter (small message)
	Slide 56: Reduce-scatter (short vector)
	Slide 57: Reduce-scatter (short vector)
	Slide 58: Allreduce (Latency-optimized)
	Slide 59: Allreduce (Latency-optimized)
	Slide 60: Allreduce (short vector)
	Slide 61: Recap
	Slide 62: Summary of MST algorithms
	Slide 63: General principles: High Bandwidth
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69: General principles
	Slide 70: Allgather
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89: Reduce-scatter
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108: Some Transformations
	Slide 109: Broadcast (Large Message)
	Slide 110: Broadcast (long vector)
	Slide 111: Broadcast (long vector)
	Slide 112: Reduce(-to-one) (long vector)
	Slide 113: Reduce (long vector)
	Slide 114: Combine-to-one (long vector)
	Slide 115: Allreduce (Large Message)
	Slide 116: Allreduce (Large Message)
	Slide 117: Allreduce (long vector)
	Slide 118: Recap
	Slide 119: ML Parallelism and Communication
	Slide 120: “Re-partition” Communication Cost in 2D
	Slide 121: Where We Are
	Slide 122: Data Parallelism
	Slide 123: Two Solutions
	Slide 124: Parameter Server Assumption
	Slide 125: Parameter Server Naturally emerges
	Slide 126: How to Implement Parameter Server?
	Slide 127: Parameter Server Implementation
	Slide 128: Consistency
	Slide 129: BSP’s Weakness: Stragglers
	Slide 130: An interesting property of Gradient Descent (ascent)
	Slide 131: Machine Learning is Error-tolerant (under certain conditions)
	Slide 132: Background: Asynchronous Communication (No Consistency)
	Slide 133: Background: Bounded Consistency
	Slide 134: Impacts of Consistency/Staleness: Unbounded Staleness
	Slide 135: Theory: SSP Expectation Bound
	Slide 136: Summary: Parameter Server
	Slide 137: AllReduce
	Slide 138: Data Parallelism with All-reduce
	Slide 139: Allreduce
	Slide 140
	Slide 141: Next Lecture

