

CSE 234: Data Systems for Machine Learning Winter 2025

Optimizations and Parallelization

https://hao-ai-lab.github.io/cse234-w25/

LLMSys

MLSys Basics

Parallelization

- Why Parallelization: Technology Trend
- ML Parallelism Overview
- Collective Communication Review
- Data parallelism
- Model parallelism
 - Inter and intra-op parallelism
- Auto-parallelization

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Runtime

Operator

Parallelization = Partitioning Computation Graph on Device Cluster

Inter-op parallelism: Assign different operators to different devices.

Intra-op parallelism: Assign different regions of a single operator to different devices.

Device 1 Device 2

 $\bullet \bullet \bullet$...

Inside Intra- and Inter-op Parallelism

Inside Intra- and Inter-op Parallelism

Intra-op parallelism:

Devices are busy but requires collective communication

Requires point-to-point communication but results in device idle

... ...

Inter-op parallelism

Intra-op parallelism

Trade-off

	Inter-operator Parallelism	Intra-operato Parallelism
Communication	Less	More
Device Idle Time	More	Less

or

Computational View of ML Parallelisms

Classic view

Data parallelism

Model parallelism

New view (this class)

Inter-op parallelism

Intra-op parallelism

Two Views of ML Parallelisms

Data and model parallelism

Two pillars: data and model.

- "Data parallelism" is general and precise.
- ? "Model parallelism" is vague.
- ? The view creates ambiguity for methods that neither partitions data nor the model computation.

New: Inter-op and Intra-op parallelism.

Two pillars: computational graph and device cluster

This view is based on their computing characteristics.

This view facilitates the development of new parallelism methods.

ML Parallelization under New View

Theme problem:

What's the most efficient way to execute the graph using combinations of inter-op and intra-op parallelism subject to memory and communication constraints?

How to Measure Efficiency of Parallelism?

max AI = #ops / #bytes

A More Holistic (Macro) M

model flops utilization

H100 SXM

	FP64	34 teraFLOPS
easure: MFU)	FP64 Tensor Core	67 teraFLOPS
	FP32	67 teraFLOPS
	TF32 Tensor Core [*]	989 teraFLOPS
	BFLOAT16 Tensor Core*	1,979 teraFLOPS
	FP16 Tensor Core [*]	1,979 teraFLOPS
	FP8 Tensor Core [*]	3,958 teraFLOPS
5	INT8 Tensor Core [*]	3,958 TOPS

MFU = #FLOPs / t / peak FLOPS

time to finish the program

		_

Potential Factors Compromising MFU

MFU = #FLOPs / t / peak FLOPS

- Op types in the computational graph (ml model type)
 - What are MFU-friendly op and MFU-unfriendly op?
- Optimization (which we have covered)
- Precision, core, and GPU type
- Communication over network
 - How to reduce/hide communication?

Potential Factors Lowing MFU

MFU= #FLOPs / t / peak FLOPS

- Op types, op shape (ml model type)
 - What are MFU-friendly op and MFU-unfriendly op?
- Optimization (which we have covered)
- Precision, core, and GPU type
- Communication over network
 - How to reduce/hide communication?

Q: Estimate MFU of your transformers in PA1/PA2?

- Step 1: estimate the total FLOPs (still remember matmul flops?) Step 2: benchmark the time t
- Step 3: check GPU spec, type of cores, and their peak FLOPS
- Step 4: calculate the MFU

This will appear as an assignment in PA3

MFU is becoming a metric highly indexed in LLM Industry

- V100: 40 50% MFU
 - V100: 112 TFLOPS
- A100: 40%
 - After flash attention: 60%
 - A100: 312 TFLOPS
- H100: 30 50% depending on model size
 - H100: 990 TFLOPs
- B100: where will it be?

MFU vs. HFU (Hardware Flops Utilization)

- Hardware FU vs. Model FU
- In what case HFU != MFU?

Simplify the Problem

Parallelization

- Why Parallelization: Technology Trend
- ML Parallelism Overview
- Collective Communication Review
- Data parallelism
- Model parallelism
 - Inter and intra-op parallelism
- Auto-parallelization

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Runtime

Operator

Terminologies: Point-to-point Communication

Terminologies: Collective Communication

ddp_model = DDP(Model(), device_ids=[rank])
for batch in data_loader:

loss = train_step(ddp_model, batch)

Implicit allreduce here

Figure from NCCL documentation

Collective Communications

- Broadcast
- Reduce(-to-one)
- Scatter
- Gather
- Allgather
- Reduce-scatter
- Allreduce

Broadcast

Before

After

Reduce(-to-one)

After

Broadcast/Reduce(-to-one)

Broadcast

Reduce(-to-one)

Scatter

Before

After

Gather

Before

After

Scatter/Gather

Allgather

Before

After

Reduce-scatter

Allgather/Reduce-scatter

Reduce-scatter

Allreduce

Before

After

Some Facts

- Collective is much more expensive than P2P
 - Collective can be assembled using many P2P
- Collective is highly optimized in the past 20 years
 - Look out for "X"CCL libraries
 - NCCL, MCCL, OneCCL
- Collective is not fault-tolerant

Communication Model: $\alpha\beta$ model

Communication Model: $\alpha + n\beta$, $\beta = \frac{1}{B}$

- bandwidth utilization

• Small Message size $(n \rightarrow 0)$: α dominates, emphasize latency

• Large Message Size $(n \rightarrow +\infty)$: $n\beta$ dominate, emphasize
Two Family of Mainstream Algorithms/Implementations

- Small message: Minimum Spanning Tree algorithm • Emphasize **low latency**
- Large Message: Ring algorithm Emphasize bandwidth utilization
- - 2023 Turing award

 There are 50+ different algorithms developed in the past 50 years by a community called "High-performance computing"

General principles: Low Latency

- Minimal-spanning tree algorithm

Minimize the number of rounds needed for communication

General principles: Low-latency

message starts on one processor

• divide logical linear array in half

 send message to the half of the network that does not contain the current node (root) that holds the message

 send message to the half of the network that does not contain the current node (root) that holds the message

continue recursively in each of the two halves

Broadcast

Before

After

Recap Reduce(-to-one)

 $log(p)(\alpha + n\beta + n\gamma)$

Gather $log(p)\alpha + \frac{p-1}{p}n\beta$

Broadcast

 $log(p)(\alpha + n\beta)$

Reduce-scatter

Allreduce

Allgather

Allgather

Allgather

Allgather (short vector)

Reduce-scatter (small message)

Reduce-scatter (short vector)

Reduce(-to-one)

Reduce-scatter (short vector)

Allreduce (Latency-optimized)

Allreduce (Latency-optimized)

Reduce(-to-one)

Allreduce (short vector)

Recap Reduce(-to-one)

 $log(p)(\alpha + n\beta + n\gamma)$

Scatter $log(p)\alpha + \frac{p-1}{p}n\beta$

Gather $log(p)\alpha + \frac{p-1}{p}n\beta$

Broadcast

 $log(p)(\alpha + n\beta)$

Reduce-scatter $2log(p)\alpha + log(p)n(\beta + \gamma) + \frac{p-1}{p}n\beta$

Allreduce

 $2log(p)\alpha + log(p)n(2\beta + \gamma)$

Allgather $2log(p)\alpha + log(p)n\beta + \frac{p-1}{p}n\beta$

Summary of MST algorithms

- Small message: Minimum Spanning Tree algorithm • Emphasize **low latency**
- Problem of Minimum Spanning Tree Algorithm?
 - It prioritize latency rather than bandwidth
 - Hence: Some links are idle
- Next: Large message size algorithm

General principles: High Bandwidth

- Use all the links between every two nodes
- How many rounds of communication does not matter
- Ring algorithm: A logical ring can be embedded in a physical linear array with worm-hole routing, since the "wrap-around" message doesn't conflict

conflict

 A logical ring can be embedded in a physical linear array with worm-hole routing, since the "wrap-around" message doesn't

- Ring algorithm has the following advantages
 - Fully utilize the bandwidth (bandwidth optimal)
 - implementation for arbitrary numbers of node

ng advantages (bandwidth optimal) ary numbers of node

Allgather

Before

After

Reduce-scatter

After

Some Transformations Reduce-scatter $(p-1)\alpha + \frac{p-1}{p}n(\beta+\gamma)$

Gather $log(p)\alpha + \frac{p-1}{p}n\beta$

Algather $(p-1)\alpha + \frac{p-1}{p}n\beta$

Reduce(-to-one)

Allreduce

Broadcast
Broadcast (Large Message)

Broadcast (long vector)

Broadcast (long vector)

Reduce(-to-one) (long vector)

Reduce (long vector)

Reduce-scatter

Combine-to-one (long vector)

Allreduce (Large Message)

Allreduce (Large Message)

Reduce-scatter

Allreduce (long vector)

Recap

Reduce-scatter

Scatter

Gather

Allgather

Reduce(-to-one)

Allreduce

Broadcast

ML Parallelism and Communication

 Inter-op always results in P2P communication • This is quite obvious

- Intra-op always results in collective communication
 - Why?

"Re-partition" Communication Cost in 2D

Row-partitioned

Column-partitioned

Where We Are

- Motivation
- History
- Parallelism Overview
- Data parallelism
- Model parallelism
 - Inter and intra-op parallelism
- Auto-parallelization

Data Parallelism

Two Solutions

- Parameter Server
- AllReduce
- Key assumption:
 - The model can fit into an create many replica

• The model can fit into an (GPU) worker memory hence we can

Parameter Server Assumption

- Very heavy communication per iteration
- Compute : communication = 1:10 in the era of 2012

 $\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + \boldsymbol{\varepsilon} \sum_{p}^{P} \nabla_{\mathcal{L}}(\boldsymbol{\theta}^{(t)}, D_{p}^{(t)})$ p=1

Parameter Server Naturally emerges

How to Implement Parameter Server?

- Key considerations:
 - Server: Communication bottleneck
 - Many (CPU) workers: hence fault tolerance

ottleneck ce fault tolerance

Parameter Server Implementation

- Sharded parameter server: sharded KV stores
 - Avoid communication bottleneck
 - Redundancy across different PS shards **Parameter Servers**

Workers

Consistency

 $\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + \boldsymbol{\varepsilon} \sum_{l=1}^{P} \nabla_{\mathcal{L}}(\boldsymbol{\theta}^{(t)}, \boldsymbol{D}_{p}^{(t)})$ p=1

1 *F*() 2 *F*() 3 4

BSP's Weakness: Stragglers

• BSP suffers from stragglers

- Slow devices (stragglers) force all devices to wait
- More devices \rightarrow higher chance of having a straggler

An interesting property of Gradient Descent (ascent)

 $\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + \boldsymbol{\varepsilon} \sum_{1}^{P} \nabla_{\mathcal{L}}(\boldsymbol{\theta}^{(t)}, D_{p}^{(t)})$ p=1

Machine Learning is Error-tolerant (under certain conditions)

Background: Asynchronous Communication (No Consistency)

- **Asynchronous (Async):** removes all communication barriers
 - Maximizes computing time
 - Transient stragglers will cause messages to be extremely stale
 - Ex: Device 2 is at t = 6, but Device 1 has only sent message for t = 1
- Some Async software: messages can be applied while computing F(), $\Delta_L()$
 - Unpredictable behavior, can hurt statistical efficiency!

Background: Bounded Consistency

[Ho et al., 2013; Dai et al., 2015; Wei et al., 133 2015]

Impacts of Consistency/Staleness: Unbounded Staleness

Theory: SSP Expectation Bound

$$\leq 4FL\sqrt{\frac{2(s+1)P}{T}}$$

Summary: Parameter Server

- Why did it emerge?
- Why did it become irrelevant?

AllReduce

Data Parallelism with All-reduce

import torch.nn.parallel as dist from torch.nn.parallel import DistributedDataParallel as DDP

dist.init_process_group("nccl", rank=rank, world_size=world_size) ddp_model = DDP(Model(), device_ids=[rank])

for batch in data_loader: loss = train_step(ddp_model, batch)

Sergeev et al., "Horovod: fast and easy distributed deep learning in TensorFlow". Preprint 2018. Li et al., "PyTorch Distributed: Experiences on Accelerating Data Parallel Training". VLDB 2020.

Allreduce

- Initially implemented in Horovod
- Being Optimized by nvidia (hw/sw cooptimization)
- Being adopted in PyTorch DDP
- Not Fault tolerant

Q: Why Allreduce dominates parameter server today?

Next Lecture

- Motivation
- History
- Parallelism Overview
- Data parallelism
- Model parallelism
 - Inter and intra-op parallelism
- Auto-parallelization