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MLSys Basics

Optimizations and Parallelization

LLMSys



Parallelization

• Why Parallelization: Technology Trend

• ML Parallelism Overview

• Collective Communication Review

• Data parallelism

• Model parallelism

• Inter and intra-op parallelism

• Auto-parallelization

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime
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node node

node node

Fast connections

Slow connections

How to partition the computational graph on the 

device cluster?
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Parallelization = Partitioning Computation Graph on 

Device Cluster
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Inter-op parallelism: Assign different operators to different devices.
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Intra-op parallelism: Assign different regions of a single operator to different devices.
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Summary: Inter-op and Intra-op Parallelisms
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Inside Intra- and Inter-op Parallelism
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Looking Into the Communication
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Inside Intra- and Inter-op Parallelism
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Inter-op parallelism:
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Intra-op parallelism: 

x MSErelu matmul

w2

matmul

w1
…

x MSErelu matmul

w2

matmul

w1
…

Requires point-to-point communication but results in device idle

Devices are busy but requires collective communication 

Parallelism: Key Characteristics
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Inter-op parallelism
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Inter-operator
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Parallelism

Communication Less More

Device Idle Time More Less

Trade-off

Inter-op and Intra-op Parallelism: Characteristics

[Important]



Computational View of ML Parallelisms

Data parallelism

Model parallelism

Classic view

Inter-op parallelism

Intra-op parallelism

New view (this class)



Data and model parallelism

• Two pillars: data and model.

• “Data parallelism” is general and 

precise.

• “Model parallelism” is vague.

• The view creates ambiguity for 

methods that neither partitions data nor 

the model computation.

New: Inter-op and Intra-op 

parallelism.

• Two pillars: computational graph and 

device cluster

• This view is based on their computing 

characteristics.

• This view facilitates the development 

of new parallelism methods.

11

Two Views of ML Parallelisms
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node node

Fast connections

Slow connections
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relu’ Theme problem:

What’s the most efficient way to execute the graph

using combinations of inter-op and intra-op parallelism

subject to memory and communication constraints? 

ML Parallelization under New View



How to Measure Efficiency of Parallelism?

max AI = #ops / #bytes



A More Holistic (Macro) Measure: MFU)

MFU= #FLOPs / t / peak FLOPS

model flops utilization

MLprogram’s total flops

time to finish the

program



Potential Factors Compromising MFU

• Op types in the computational graph (ml model type)

• What are MFU-friendly op and MFU-unfriendly op?

• Optimization (which we have covered)

• Precision, core, and GPU type

• Communication over network

• How to reduce/hide communication?

MFU= #FLOPs / t / peak FLOPS



Potential Factors Lowing MFU

• Op types, op shape (ml model type)

• What are MFU-friendly op and MFU-unfriendly op?

• Optimization (which we have covered)

• Precision, core, and GPU type

• Communication over network

• How to reduce/hide communication?

MFU= #FLOPs / t / peak FLOPS



Q: Estimate MFU of your transformers in PA1/PA2?

• Step 1: estimate the total FLOPs (still remember matmul flops?)

• Step 2: benchmark the time t

• Step 3: check GPU spec, type of cores, and their peak FLOPS

• Step 4: calculate the MFU

• This will appear as an assignment in PA3



MFU is becoming a metric highly indexed in LLM Industry

• V100: 40 – 50% MFU

• V100: 112 TFLOPS

• A100: 40%

• After flash attention: 60%

• A100: 312 TFLOPS

• H100: 30 – 50% depending on model size

• H100: 990 TFLOPs

• B100: where will it be?



MFU vs. HFU (Hardware Flops Utilization)

• Hardware FU vs. Model FU

• In what case HFU != MFU?
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relu’ Theme problem:

How to maximize MFU

subject to memory constraints? 

Simplify the Problem



Parallelization

• Why Parallelization: Technology Trend

• ML Parallelism Overview

• Collective Communication Review

• Data parallelism

• Model parallelism

• Inter and intra-op parallelism

• Auto-parallelization

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime



Terminologies: Point-to-point Communication

matmul matmul



Terminologies: Collective Communication

matmul

matmul

matmul

matmul

ddp_model = DDP(Model(), device_ids=[rank])

for batch in data_loader:

loss = train_step(ddp_model, batch)

Implicit allreduce here

all-reduce

Figure from NCCL documentation



Collective Communications

• Broadcast

• Reduce(-to-one)

• Scatter 

• Gather

• Allgather

• Reduce-scatter

• Allreduce



Broadcast

AfterBefore



Reduce(-to-one)

AfterBefore



Broadcast/Reduce(-to-one)

Broadcast

Reduce(-to-one)



Scatter

AfterBefore



Gather

AfterBefore



Scatter/Gather

Scatter

Gather



Allgather

AfterBefore



Reduce-scatter

AfterBefore



Allgather/Reduce-scatter

Allgather

Reduce-scatter



Allreduce

AfterBefore



Some Facts

• Collective is much more expensive than P2P

• Collective can be assembled using many P2P

• Collective is highly optimized in the past 20 years

• Look out for “X”CCL libraries

• NCCL, MCCL, OneCCL

• Collective is not fault-tolerant



Communication Model: 𝛼𝛽 model

Communication Model: 𝛼 + 𝑛𝛽,𝛽 =
1

𝐵

• Small Message size (𝑛 → 0): 𝛼 dominates, emphasize latency

• Large Message Size (𝑛 → +∞): 𝑛𝛽 dominate, emphasize 

bandwidth utilization



Two Family of Mainstream Algorithms/Implementations

• Small message: Minimum Spanning Tree algorithm

• Emphasize low latency

• Large Message: Ring algorithm

• Emphasize bandwidth utilization

• There are 50+ different algorithms developed in the past 50 years 

by a community called “High-performance computing” 

• 2023 Turing award



General principles: Low Latency

• Minimize the number of rounds needed for communication

• Minimal-spanning tree algorithm



General principles: Low-latency

• message starts on one processor



General principles

• divide logical linear array in half



General principles

• send message to the half of the network that does not contain 

the current node (root) that holds the message



General principles

• send message to the half of the network that does not contain 

the current node (root) that holds the message



General principles

• continue recursively in each of the two halves
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Allgather
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Broadcast

Allgather (short vector)



Reduce-scatter (small message)
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Allreduce (Latency-optimized)
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Summary of MST algorithms

• Small message: Minimum Spanning Tree algorithm

• Emphasize low latency

• Problem of Minimum Spanning Tree Algorithm?

• It prioritize latency rather than bandwidth

• Hence: Some links are idle

• Next: Large message size algorithm



General principles: High Bandwidth

• Use all the links between every two nodes

• How many rounds of communication does not matter

• Ring algorithm: A logical ring can be embedded in a physical 

linear array with worm-hole routing, since the “wrap-around” 

message doesn’t conflict





• A logical ring can be embedded in a physical linear array with 

worm-hole routing, since the “wrap-around” message doesn’t 

conflict









General principles

Ring algorithm has the following advantages

• Fully utilize the bandwidth (bandwidth optimal)

• implementation for arbitrary numbers of node
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Some Transformations
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Broadcast (Large Message)



Scatter

Broadcast (long vector)



Allgather

Broadcast (long vector)



Reduce(-to-one) (long vector)



Reduce (long vector)

Reduce-scatter



Combine-to-one (long vector)

Gather



Allreduce (Large Message)
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Allreduce (Large Message)



Allgather

Allreduce

(long vector)



Recap
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ML Parallelism and Communication

• Inter-op always results in P2P communication

• This is quite obvious

• Intra-op always results in collective communication

• Why?



“Re-partition” Communication Cost in 2D

all-to-all

all-to-all

Row-partitioned

Replicated

Column-partitioned



Where We Are

• Motivation

• History

• Parallelism Overview

• Data parallelism

• Model parallelism

• Inter and intra-op parallelism

• Auto-parallelization



Data Parallelism
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Two Solutions

• Parameter Server

• AllReduce

• Key assumption:

• The model can fit into an (GPU) worker memory hence we can 

create many replica



Parameter Server Assumption

• Very heavy communication per iteration

• Compute : communication = 1:10 in the era of 2012



Parameter Server Naturally emerges



How to Implement Parameter Server?

• Key considerations:

• Server: Communication bottleneck

• Many (CPU) workers: hence fault tolerance



Parameter Server Implementation

• Sharded parameter server: sharded KV stores

• Avoid communication bottleneck

• Redundancy across different PS shards



Consistency

Device A

Device B

Device C

1 2 3 4

Global Synchronization Barrier

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

𝐹() 𝐹()



BSP’s Weakness: Stragglers

• BSP suffers from stragglers

• Slow devices (stragglers) force all devices to wait

• More devices → higher chance of having a straggler

Time

Device A

Device B

Device C



An interesting property of Gradient Descent (ascent)



Machine Learning is Error-tolerant (under certain 

conditions)



Background: Asynchronous Communication

(No Consistency)

• Asynchronous (Async): removes all communication barriers

• Maximizes computing time

• Transient stragglers will cause messages to be extremely stale

• Ex: Device 2 is at 𝑡 = 6, but Device 1 has only sent message for 𝑡 = 1

• Some Async software: messages can be applied while computing 𝐹(), Δ𝐿()

• Unpredictable behavior, can hurt statistical efficiency!
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Background: Bounded Consistency

Clock

Device A

Device B

Device C

1 2 3 4

Staleness s= 3 

5 6

Delay = 3

Block

[Ho et al., 2013; Dai et al., 2015; Wei et al., 

2015]
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Impacts of Consistency/Staleness:

Unbounded Staleness

Divergence under high delay
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Theory: SSP Expectation Bound

Difference between

SSP estimate and true optimum



Summary: Parameter Server

• Why did it emerge?

• Why did it become irrelevant?



AllReduce



import torch.nn.parallel as dist

from torch.nn.parallel import DistributedDataParallel as DDP

dist.init_process_group("nccl", rank=rank, world_size=world_size)

ddp_model = DDP(Model(), device_ids=[rank])

for batch in data_loader:

loss = train_step(ddp_model, batch)

Sergeevet al., "Horovod: fast and easy distributed deep learning in TensorFlow". Preprint 2018.

Li et al., "PyTorchDistributed: Experiences on Accelerating Data Parallel Training". VLDB 2020.

Data Parallelism with All-reduce



Allreduce

• Initially implemented in Horovod

• Being Optimized by nvidia (hw/sw cooptimizaiton)

• Being adopted in PyTorch DDP

• Not Fault tolerant



Q: Why Allreduce dominates parameter server

today?



Next Lecture

• Motivation

• History

• Parallelism Overview

• Data parallelism

• Model parallelism

• Inter and intra-op parallelism

• Auto-parallelization
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