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“Re-partition” in ML Parallelism yields collectives

all-to-all

all-to-all
Row-partitioned

Replicated

Column-partitioned



Where We Are

• Motivation

• History

• Parallelism Overview

• Data parallelism

• Model parallelism

• Inter and intra-op parallelism

• Auto-parallelization



Why Data Parallelism First

Focus: Data parallelism with Parameter Server

Various implementations of parameter servers
• DistBelief [Dean et al., NeurIPS2012]
• Parameter server [Li et al., NeurIPS 2012], [Li et al., OSDI 2014] 
• Bosen [Wei et al., SoCC2015]
• GeePS [Cui et al., Eurosys 2016], Poseidon [Zhang et al., ATC 2017]

2016

2012

Figure from DistBelief
[Dean et al., NeurIPS 2012]Asynchrony: update every N iters

instead of 1



2016

2012

import torch.nn.parallel as dist
from torch.nn.parallel import DistributedDataParallel as DDP

dist.init_process_group("nccl", rank=rank, world_size=world_size)
ddp_model = DDP(Model(), device_ids=[rank])

for batch in data_loader:
loss = train_step(ddp_model, batch)

Why Data Parallelism First

Sergeevet al., "Horovod: fast and easy distributed deep learning in TensorFlow". Preprint 2018.
Li et al., "PyTorchDistributed: Experiences on Accelerating Data Parallel Training". VLDB 2020.



Why Data Parallelism First

2016

2012

Nvidia DGX 

Fast connections: PCIE, NVLINK

Figure from PyTorch Tutorials



Data Parallelism

How to implement this
communication?



Two Solutions

• Parameter Server

• AllReduce

• Key assumption:

• The model can fit into an (GPU) worker memory hence we can 

create many replica



Parameter Server Assumption

• Very heavy communication per iteration

• Compute : communication = 1:10 in the era of 2012



Parameter Server Naturally emerges



Reduce(-to-one)

AllReduce = reduce + broadcast

Broadcast



Parameter Server Naturally emerges

Problems:
Server bottleneck!



Parameter Server Implementation

• Sharded parameter server: sharded KV stores

• Avoid communication bottleneck

• Redundancy across different PS shards



Allgather

When servers nodes == worker nodes

Reduce-scatter



Consistency

Device A

Device B

Device C

1 2 3 4

Global Synchronization Barrier

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

𝐹() 𝐹()



BSP’s Weakness: Stragglers

• BSP suffers from stragglers

• Slow devices (stragglers) force all devices to wait

• More devices → higher chance of having a straggler

Time

Device A

Device B

Device C



An interesting property of Gradient Descent (ascent)



Machine Learning is Error-tolerant (under certain 
conditions)



Background: Asynchronous Communication
(No Consistency)

• Asynchronous (Async): removes all communication barriers

• Maximizes computing time

• Transient stragglers will cause messages to be extremely stale

• Ex: Device 2 is at 𝑡 = 6, but Device 1 has only sent message for 𝑡 = 1

• Some Async software: messages can be applied while computing 𝐹(), Δ𝐿()

• Unpredictable behavior, can hurt statistical efficiency!
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Background: Bounded Consistency

Clock

Device A

Device B

Device C

1 2 3 4

Staleness s= 3 

5 6

Delay = 3

Block

[Ho et al., 2013; Dai et al., 2015; Wei et al., 
2015]



21

Impacts of Consistency/Staleness:
Unbounded Staleness

Divergence under high delay
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Theory: SSP Expectation Bound

Difference between
SSP estimate and true optimum



AllReduce



import torch.nn.parallel as dist
from torch.nn.parallel import DistributedDataParallel as DDP

dist.init_process_group("nccl", rank=rank, world_size=world_size)
ddp_model = DDP(Model(), device_ids=[rank])

for batch in data_loader:
loss = train_step(ddp_model, batch)

Sergeevet al., "Horovod: fast and easy distributed deep learning in TensorFlow". Preprint 2018.
Li et al., "PyTorchDistributed: Experiences on Accelerating Data Parallel Training". VLDB 2020.

Data Parallelism with All-reduce



Allreduce

• Initially implemented in Horovod

• Being Optimized by nvidia (hw/sw co-optimizaiton) in NCCL

• Being adopted in PyTorch DDP

• Not Fault tolerant



Discussion: Why Allreduce dominates parameter server
today?



Where We Are

● Motivation
● History
● Parallelism Overview
● Data parallelism
● Model parallelism

○ Inter-op parallelism
○ Intra-op parallelism

● Auto-parallelization



Computational Graph (Neural Networks) → Stages

Computational Graph

Devices (e.g., GPUs)

Device 1 Device 2 Device 3 Device 4

2



Computational Graph (Neural Networks) → Stages

Computational Graph

Device 1 Device 2 Device 3 Device 4
Stage

Devices (e.g., GPUs)

3



Execution & Data Movement
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Note: The time spent on data transfer is typically small, since we only 
communicates stage outputs at stage boundaries between two stages.
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Timeline: Visualization of Inter-Operator Parallelism

Device 4
Device 3
Device 2
Device 1

Time

Pipeline Bubbles

● Gray area (         ) indicates devices being idle (a.k.a. Pipeline bubbles).

● Only 1 device activated at a time.

● Pipeline bubble percentage = bubble_area / total_area
= (D - 1) / D, assuming D devices.
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Reduce Pipeline Bubbles via Pipelining Inputs
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Training: Forward & Backward Dependency
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How to Reduce Pipeline Bubbles for Training?

● Device Placement
● Synchronous Pipeline Parallel Algorithms

○ GPipe
○ 1F1B 
○ Interleaved 1F1B
○ TeraPipe
○ Chimera

● Asynchronous Pipeline Parallel Algorithms
○ AMPNet
○ Pipedream/Pipedream-2BW
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Device Placement
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Idea: Slice the branches of a neural network into multiple stages so they can be 
calculated concurrently.

Mir hoseini, Azalia, et  al. " De vice  placeme nt opt im ization with r einfor cement  learning ." ICML  2017. 9



Device Placement: Limitations

Only works for specific NNs with 
branches:

Device 4
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Device 2
Device 1
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Device Utilization is still low:

Inception Module Contrastive Model

Other ConvNets Transformers

Note: device placement needs to be combined 
with the other pipeline schedules discussed 
later to further improve device utilization.
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Synchronous Pipeline Parallel Schedule 

Idea: Modify pipeline schedule to improve efficiency, but 
keep the computation and convergence semantics exactly 
the same as if training with a single device.
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GPipe
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Huang , Yanping, et al. " Gpipe:  Ef ficie nt tr aining of giant ne ural ne tworks using  pipeline pa rallelism."  Neur IPS 20 19.

Idea: Partition the input batch into multiple “micro-batches”. Pipeline the micro-
batches. Accumulate the gradients of the micro-batches:

Pipeline bubbles percentage = (D - 1) / (D - 1 + N)
with D devices and N micro-batches.

Example: Slice each input batch into 6 micro-batches:
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GPipe: Experimental Results

#TPUs = 2 #TPUs = 4 #TPUs = 8

#Micro-batches = 1 1 1.07 1.3

#Micro-batches = 4 1.7 3.2 4.8

#Micro-batches = 32 1.8 3.4 6.3

Table: Normalized training throughput using GPipe with different number of 
devices (stages) and different number of micro-batches M on TPUs.

Huang , Yanping, et al. " Gpipe:  Ef ficie nt tr aining of giant ne ural ne tworks using  pipeline pa rallelism."  Neur IPS 20 19. 13



GPipe: Memory Usage

Device 4
Device 3
Device 2
Device 1

Time

0
0
1

1
2

2
3

3

3 2 1 0

U
pd

at
e 0

0
1

4 5
4 5

5 4

…
0

0
1

1
2

2
3

3 4 5
4 5 3 2 1 05 4

3 2 1 05 4
3 2 1 05 4

Forward (a) Backward (a) Forward (b)

Per-Device
Memory
Usage

Model 
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Intermediate 
activation

= Parameters + Activation × #Micro-Batches
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GPipe Schedule:

Fan, Shiqing, et al. " DAPPLE: A pipelined d ata pa rallel appr oach f or tr aining lar ge mo dels." PPo PP 202 1.

Perform backward as early as possible

Same Latency
1F1B (1 Forward 1 Backward) Schedule:
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1F1B Memory Usage
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Fan, Shiqing, et al. " DAPPLE: A pipelined d ata pa rallel appr oach f or tr aining lar ge mo dels." PPo PP 202 1.

= Parameters + Activation × #Micro-Batches #Devices 
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Device 1

Device 2

Device 3

Device 4

Interleaved 1F1B

Stage 1

Stage 2

Stage 3

Stage 4

Idea: Slice the neural network into more fine-grained stages and assign multiple 
stages to reduce pipeline bubble. 

Nara yanan, De epak, e t al. " Ef ficie nt larg e-scale lan guage model t raining o n gpu clu sters u sin g meg atron-lm."  SC 2021.

L1 L2 L3 L4 L5 L6 L7 L8

Stage 1

Stage 2

Stage 3

Stage 4

Device 1

Device 2

Device 3

Device 4

Stage 5

Stage 6

Stage 7

Stage 8

L1 L2 L3 L4 L5 L6 L7 L8
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Interleaved 1F1B
Pro: 
Higher pipeline efficiency with fewer
pipeline bubbles.

Con:
More communication overhead 
between stages.

Pipeline bubbles percentage
= (D - 1) / (D - 1 + KN) 
with D devices, K stages on each 
device, and N micro-batches.
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TeraPipe
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Transformer layer 1

Transformer layer 2

Transformer layer N-1

Transformer layer N

Li, Zhuoh an, et  al. " Ter aPipe : To ken-Leve l Pipeline Par allelism  for  Tr aining Lar ge-Scale Lan guage Models."  ICML  2021.

Idea: The computation of an input token 
only depends on previous tokens but 
not future tokens for autoregressive 
models.

Further reduce the bubble size by 
pipelining within a sequence.
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TeraPipe

Transformer layer 1

Transformer layer 2

Transformer layer 3

Transformer layer 4

Transformer layer 5

Device 1

Device 2

Device 3

Device 4

Device 5

Li, Zhuoh an, et  al. " Ter aPipe : To ken-Leve l Pipeline Par allelism  for  Tr aining Lar ge-Scale Lan guage Models."  ICML  2021. 20

Idea: The computation of an input token 
only depends on previous tokens but 
not future tokens for autoregressive 
models.

Further reduce the bubble size by 
pipelining within a sequence.



TeraPipe

Transformer layer 1

Transformer layer 2

Transformer layer 3

Transformer layer 4

Transformer layer 5

Device 1

Device 2

Device 3

Device 4

Device 5

Li, Zhuoh an, et  al. " Ter aPipe : To ken-Leve l Pipeline Par allelism  for  Tr aining Lar ge-Scale Lan guage Models."  ICML  2021. 21

Idea: The computation of an input token 
only depends on previous tokens but 
not future tokens for autoregressive 
models.

Further reduce the bubble size by 
pipelining within a sequence.



Chimera

Idea: Store bi-directional stages and combine bidirectional pipeline to further reduce 
pipeline bubbles.
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Pipeline bubbles percentage
= (D - 2) / (D - 2 + 2N) 
with D devices and N micro-batches.

Li, Shigan g, and  Tor sten Hoe fler. " Chimer a: eff icien tly training  large-scale n eural n etworks with bidirectiona l pipelines."  SC 21. 22

Extra copy of parameters & 
extra synchronization.



Synchronous Pipeline Schedule Summary

Pros:

● Keep the convergence semantics. The training process is exactly the same 
as training the neural network on a single device.

Cons:

● Pipeline bubbles.
● Reducing pipeline bubbles typically requires splitting inputs into smaller 

components, but too small input to the neural network will reduce the 
hardware efficiency.
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Asynchronous Pipeline Schedules

Idea: Start next round of forward pass before backward pass finishes.

Pros:

● No Pipeline bubbles.

Cons:

● Break the synchronous training semantics. Now the training will involve 
stalled gradient.

● Algorithms may store multiple versions of model weights for consistency.
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AMPNet

Idea: Fully asynchronous. Each device performs forward pass whenever free and 
updates the weights after every backward pass.

Gaunt, Alexander L., et al. "AMPNet: Asynchronous model-parallel training for dynamic neural networks." arXiv 2017.
Yang, Bowen, et al. "Pipemare: Asynchronous pipeline parallel dnn training." MLSys 2021.

Convergence: Achieve similar accuracy on small datasets (MNIST 97%), hard to 
generalize to larger datasets.
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PipeMare: modify the 
optimizer to improve 
AMPNet convergence
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Pipedream

Idea: Enforce the same version of weight for a single input batch by storing 
multiple weight versions.
Convergence: Similar accuracy on ImageNet with a 5x speedup compared to 
data parallel.

Nara yanan, De epak, e t al. " Pipe Dr eam:  gener alized pipeline parallelism f or DNN tra in in g." SOSP 2 019.
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Nara yanan, De epak, e t al. " Mem ory-eff icien t pipeline-par allel dnn t raining."  ICML  2021.

Pipedream-2BW

Idea: Reduce Pipedream’s memory usage (only store 2 copies) by updating 
weights less frequently. Weights always stalled by 1 update.

Convergence: Similar training accuracy on language models (BERT/GPT)
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Imbalanced Pipeline Stages 
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Same single input latency



Frontier: Automatic Stage Partitioning

Reinforcement Learning Based (mainly for 
device placement):

1. Mirhoseini, Azalia, et al. "Device placement optimization 
with reinforcement learning." ICML 2017.

2. Gao, Yuanxiang, et al. "Spotlight: Optimizing device 
placement for training deep neural networks." ICML 2018.

3. Mirhoseini, Azalia, et al. "A hierarchical model for device 
placement." ICLR 2018.

4. Addanki, Ravichandra, et al. "Placeto: Learning 
generalizable device placement algorithms for distributed 
machine learning." NeurIPS 2019.

5. Zhou, Yanqi, et al. "Gdp: Generalized device placement 
for dataflow graphs." Arxiv 2019.

6. Paliwal, Aditya, et al. "Reinforced genetic algorithm 
learning for optimizing computation graphs." ICLR 2020.

7. …
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Goal: Minimize maximum stage latency & maximize parallelization

Optimization (Dynamic Programming/Linear 
Programming) Based:

1. Narayanan, Deepak, et al. "PipeDream: generalized 
pipeline parallelism for DNN training." SOSP 2019.

2. Tarnawski, Jakub M., et al. "Efficient algorithms for device 
placement of dnn graph operators." NeurIPS 2020.

3. Fan, Shiqing, et al. "DAPPLE: A pipelined data parallel 
approach for training large models." PPoPP 2021.

4. Tarnawski, Jakub M., Deepak Narayanan, and Amar 
Phanishayee. "Piper: Multidimensional planner for dnn 
parallelization." NeurIPS 2021.

5. Zheng, Lianmin, et al. "Alpa: Automating Inter-and Intra-
Operator Parallelism for Distributed Deep Learning." OSDI 
2022.

6. …



RL-Based Partitioning Algorithm

30Addanki, Ravichandra, et al. "Placeto: Learning generalizable device placement algorithms for distributed machine learning." NeurIPS 2019.

State: Device assignment plan for a computational graph.
Action: Modify the device assignment of a node.
Reward: Latency difference between the new and old placements.
Trained with policy gradient algorithm.



Optimization-Based Partitioning Algorithm

31Tarnawski, Ja kub M. , et a l.  "Efficient algorithm s for  device place ment of dnn  grap h oper ator s." Neu rIPS 2020.

Integer Linear Programming:

Variable: Decision variable vector for 
each operator, representing device 
assignment.

Minimize: Maximum finishing time of all 
operators.

Constraint: Execution dependency & 
memory capacity of each device.



Inter-operator Parallelism Summary

Idea: Assign different operators of the computational graph to different devices 
and executed in a pipelined fashion.

Method General 
computational graph

No pipeline 
bubbles

Same convergence 
as single device

Device Placement

Synchronous Schedule

Asynchronous Schedule

Stage Partitioning: Imbalance stage → More pipeline bubble

RL-Based / Optimization-Based Automatic Stage Partitioning
32



Where We Are

● Motivation
● History
● Parallelism Overview
● Data parallelism
● Model parallelism

○ Inter-op parallelism
○ Intra-op parallelism

● Auto-parallelization



Recap: Intra-op and Inter-op

x subrelu matmul

w2

matmul

w1

Strategy 1: Inter-operator Parallelism

x subrelu matmul

w2

matmul

w1

Strategy 2: Intra-operator Parallelism

This section:
1. How to parallelize an operator ?
2. How to parallelize a graph ?
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Parallelize One Operator

for n in range(0, N):
for d in range(0, D):
C[n,d] = A[n,d] + B[n,d]  

No dependency on the two for-loops.
Can arbitrarily split the for-loops on different devices.

Element-wise operators

= +C A Bn

d

Parallelize loop n 

= +C A Bn

d

Parallelize both loop n and loop d a lot of
other variants
…

device 1 device 2 device 3 device 4
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for i in range(0, N):
for j in range(0, M):
for k in range(0, K):
C[i,j] = C[i,j] + A[i,k] x B[k,j]  

Parallelize One Operator

No dependency on the two spatial for-loops.
Can arbitrarily split the for-loops on different devices.

Accumulation on this reduction loop.
Have to accumulate partial results if we split 
this for-loop

Matrix multiplication

= xC A Bi

j

Parallelize loop i 

device 1 device 2 device 3 device 4 replicated
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for i in range(0, N):
for j in range(0, M):
for k in range(0, K):
C[i,j] = C[i,j] + A[i,k] x B[k,j]  

Parallelize One Operator

No dependency on the two spatial for-loops.
Can arbitrarily split the for-loops on different devices.

Accumulation on this reduction loop.
Have to accumulate partial results if we split 
this for-loop

Matrix multiplication

device 1 device 2 device 3 device 4 replicated

k

k

Parallelize loop k 

(got by all-reduce)

= xC A B
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for i in range(0, N):
for j in range(0, M):
for k in range(0, K):
C[i,j] = C[i,j] + A[i,k] x B[k,j]  

Parallelize One Operator

No dependency on the two spatial for-loops.
Can arbitrarily split the for-loops on different devices.

Accumulation on this reduction loop.
Have to accumulate partial results if we split 
this for-loop

a lot of
other variants
…

Matrix multiplication

device 1 device 2 device 3 device 4

= xC Ai

j

Parallelize loop i and j 

A: partially tiled
Device 1 and 2 hold a replicated tile
Device 3 and 4 hold a replicated tile

B = xAi

j

Parallelize loop i and k 

C B

C: got by all-reduce
38



for n in range(0, N):
for co in range(0, CO):
for h in range(0, H):
for w in range(0, W):
for ci in range(0, CI):
for kh in range(0, KH):
for kw in range(0, KW):
C[n,co,h,w] += A[n,co,h+kh,w+kw] x B[kh,kw,co,ci]  

Parallelize One Operator

2D Convolution

Simple case: Parallelize loop n, co, ci, then the parallelization strategies are almost the same as matmul’s.

Complicated case: Parallelize loop h and w

Simple spatial loops. Can be arbitrarily split.

Reduction loop. Need to accumulate partial results.

Stencil computation loops. Splitting these requires careful 
boundary handling.

Reduction loops. But usually too small (<= 5) for parallelization.

39



Data Parallelism as A Case of Intra-op Parallelism

matmul (c)

b

a

Matmul Parallelization Type 1
communication cost = 0

matmul (c)

b

a

Matmul Parallelization Type 2
communication cost = all-reduce(c)

Replicated Column-partitionedRow-partitioned

x MSE

y

relu matmul

w2

matmul

w1

Forward Pass
Two “Type 1” matmuls: no communication

new_w2new_w1

matmul

matmul

MSE’

matmul

relu’

Backward Pass
One “Type 1” matmul: no communication
Two “Type 2” matmuls: require all-reduce 40



Re-partition Communication Cost

x

w1 w2

matmul matmulrelu

matmul relu matmul

w2

relu

Do not need re-
partition

matmul

w2

relu

…

Need re-partition
by all-gather

Replicated Column-partitionedRow-partitioned

Different operators’ parallelization strategies require different partition format of the same tensor
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Re-partition Communication Cost

all-to-all

all-to-all

Different operators’ parallelization strategies require different partition format of the same tensor

Row-partitioned

Replicated

Column-partitioned
42



Parallelize All Operators in a Graph

Minimize Node costs (computation + communication) + Edge costs (re-partition communication)

Pick a parallel strategy
of each operator

x relu matmul

w2

matmul

w1

Problem

Manual design
Randomized search
Dynamic programming
Integer linear programming

Solution

43



Important Projects

Model-specific Intra-op Parallel Strategies
- AlexNet
- Megatron-LM
- GShard MoE

Systems for Intra-op Parallelism
- ZeRO
- Mesh-Tensorflow
- GSPMD
- Tofu
- FlexFlow

44



AlexNet

Assign a group convolution layer to 2 GPUs

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks.” NeurIPS 2012

Result: increase top-1 accuracy by 1.7%
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Megaton-LM

Result: a large language model with 8.3B parameters that outperforms SOTA results

Shoeybi, Mohammad, et al. "Megatron-LM: Training multi-billion parameter language models using model parallelism."

Figure 3 from the paper：
How to partition the MLP in the transformer.

x gelu matmul

w2

matmul

w1

Replicated Column-partitionedRow-partitioned

dropout

Illustrated with the notations in this tutorial

all-reduce during forward

all-reduce during backward
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GShard MoE

Result: a multi-language translation model with 600B parameters that outperforms SOTA

x x batch
matmul

MoE 
Layers

matmul

Normal 
layers

Replicated Expert-partitionedRow-partitioned

X

Illustrated with the notations in this tutorial

all-to-all re-partition communication

Lepikhin, Dmitry, et al. "GShard: Scaling giant models with conditional computation and automatic sharding." ICLR 2021
47



ZeRO Optimizer
Problem
Data parallelism replicates gradients, optimizer states and model weights on all devices.

Idea
Partition gradients, optimizer states and model weights.

Optimizer 
States (12M)

Gradients
(2M)

Model 
Weights (2M)

Memory
Cost

Communication
Cost

Data Parallelism Replicated Replicated Replicated all-reduce(2M)

ZeRO Stage 1 Partitioned Replicated Replicated all-reduce(2M)

ZeRO Stage 2 Partitioned Partitioned Replicated all-reduce(2M)

ZeRO Stage 3 Partitioned Partitioned Partitioned 1.5 all-reduce(2M)

Rajbhandari, Samyam, et al. "Zero: Memory optimizations toward training trillion parameter models." SC 2020

M is the number of parameters, N is the number of devices.
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ZeRO Stage 2

Key Idea: all-reduce = reduce-scatter + all-gather

partial
gradients gradients multiply-add multiply-add

momentum weights

all-reduce new
weights

Data Parallelism

partial
gradients gradients multiply-add multiply-add

momentum weights

reduce-scatter new
weights

all-gather

ZeRO Stage 2

Same communication cost but save memory by partitioning more tensors

Replicated Partitioned
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ZeRO Stage 3

ZeRO Stage 2

communication cost 
= all-reduce

forward backward optimizer
state update

weights
update

weights

reduce-scatter

all-gather all-gather

ZeRO Stage 3

communication cost
= 1.5 all-reduce

forward backward optimizer
state update

weights
update

weights

reduce-scatter

all-gather

Replicated Partitioned
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Mesh-Tensorflow

Shazeer, Noam, et al. "Mesh-tensorflow: Deep learning for supercomputers." NeurIPS 2018.

Map tensor dimension to mesh dimension for parallelism

Tensor dimension

Mesh dimension

Mapping
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GSPMD
- Use annotations to specify partition strategy
- Propagate the annotations to whole graph
- Use compiler to generate SPMD (Single Program Multiple Data) parallel executables

Xu, Yuanzhong, et al. "GSPMD: general and scalable parallelization for ML computation graphs." arXiv 2021
52



Tofu

Wang, Minjie, Chien-chin Huang, and Jinyang Li. "Supporting very large models using automatic dataflow graph partitioning." EuroSys 2019

Tensor description language for automatic parallelization analysis

Dynamic programming for graph-level optimization
- Use graph coarsening to merge operators (e.g., elementwise-ops)
- Use dynamic programming with recursive partitioning

53



FlexFlow

Jia, Zhihao, Matei Zaharia, and Alex Aiken. "Beyond Data and Model Parallelism for Deep Neural Networks." MLSys 2019

SOAP parallelism space
- Sample, Operator, Attribute, Parameter

Simulator + MCMC for finding parallel strategies
- Details will be discussed later

Intra-op Parallelism Inter-op Parallelism
(w/o pipeline)
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Combine Intra-op Parallelism and Inter-op Parallelism
Computational Graph

Stage

Intra-op Parallelism

Inter-op Parallelism

Narayanan, Deepak, et al. "Efficient large-scale language model training on gpu clusters using megatron-lm." SC 2021
Zheng, Lianmin, et al. "Alpa: Automating Inter-and Intra-Operator Parallelism for Distributed Deep Learning." OSDI 2022

Device
Mesh
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Combine Intra-op Parallelism and Inter-op Parallelism

Zheng, Lianmin, et al. "Alpa: Automating Inter-and Intra-Operator Parallelism for Distributed Deep Learning." OSDI 2022
56

GPT GShard MoE Wide-ResNet

Combining inter- and intra-operator parallelism scales to more devices.



Intra-operator Parallelism Summary

- We can parallelize a single operator by exploiting its internal parallelism

- To do this for a whole computational graph, we need to choose strategies for 
all nodes in the graph to minimize the communication cost

- Intra-op and inter-op can be combined

57



Other Techniques for Training Large Models

System-level Memory Optimizations

- Rematerialization/Gradient Checkpointing
- Swapping

ML-level Optimizations

- Quantization
- Sparsification
- Low-rank approximation

Chen, Tianqi, et al. "Training deep nets with sublinear memory cost." arXiv 2016
Rajbhandari, Samyam, et al. "Zero-infinity: Breaking the gpu memory wall for extreme scale deep learning." SC 2021.
Tang, Hanlin, et al. "1-bit adam: Communication efficient large-scale training with adam’s convergence speed." ICML 2021.
Shazeer, Noam, and Mitchell Stern. "Adafactor: Adaptive learning rates with sublinear memory cost." ICML 2018.
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Where We Are

● Motivation
● History
● Parallelism Overview
● Data parallelism
● Model parallelism

○ Inter-op parallelism
○ Intra-op parallelism

● Auto-parallelization



Auto-parallelization: Motivation
Parallelisms

Data 
parallelism

Operator 
partitioning

Pipeline
parallelism

ZeRO

CNNs Bert GPT-3 MoE 
Models

ML developer: which one is for 
my model and my cluster?Megatron-LM

GPipe

Mesh-TF

1F1B

fairscale.FSDP

GSPMD

60



Auto-parallelization: Problem

61



Auto-parallelization: Problem

node node

node Node

A B DC

…

A B DC

A B DC

A B DC

x MSE

y

relu matmul

w2

matmul

w1

matmul

matmul

MSE’

matmul

relu’

sub sub

Model Cluster

Strategy
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The Search Space is Huge

100 - 10K

#ops in a real model
(nodes to color)

#devices on a cluster
(available colors)

80 - 200+

#op types
(type of nodes)

10s - 1000s
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Automatic Parallelization Methods

Learning-based methods

● Reinforcement Learning:
➔ [Mirhoseini et al., 2017]

➔ [Mirhoseini et al., 2018]

➔ [Addanki, et al., 2019]

● ML-based cost model: 
➔ [Chen et al., 2018], 

➔ [Zhou et al., 2020],

➔ [Zhang, 2020]

● Bayesian optimization:
➔ [Sergeev et al., 2018], 

➔ [Peng et al., 2019]

Optimization-based methods

● Dynamic programming
➔ [Wang, et al., 2018]

➔ [Narayanan, et al., 2019]

➔ [Li, et al., 2021]

➔ [Narayanan, et al., 2012]

➔ [Tarnawski, et al., 2020]

➔ [Tarnawski, et al., 2021]

● Integer linear programming
➔ [Tarnawski, et al., 2020]

● Hierarchical Optimization
➔ [Zheng, et al., 2022]

Search-based methods

● MCMC:
➔ [Jia et al., 2018]

➔ [Jia et al., 2019]

● Heuristics 
➔ [Fan et al., 2021]

64
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Automatic Parallelization Methods

Learning-based methods

● Reinforcement Learning:
➔ [Mirhoseini et al., 2017]

➔ [Mirhoseini et al., 2018]

➔ [Addanki, et al., 2019]

● ML-based cost model: 
➔ [Chen et al., 2018], 

➔ [Zhou et al., 2020],

➔ [Zhang, 2020]

● Bayesian optimization:
➔ [Sergeev et al., 2018], 

➔ [Peng et al., 2019]

Optimization-based methods

● Dynamic programming
➔ [Wang, et al., 2018]

➔ [Narayanan, et al., 2019]

➔ [Li, et al., 2021]

➔ [Narayanan, et al., 2012]

➔ [Tarnawski, et al., 2020]

➔ [Tarnawski, et al., 2021]

● Integer linear programming
➔ [Tarnawski, et al., 2020]

● Hierarchical optimization
➔ [Zheng, et al., 2022]

Search-based methods

● MCMC:
➔ [Jia et al., 2018]

➔ [Jia et al., 2019]

● Heuristics 
➔ [Fan et al., 2021]

71

The complete list of 
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on  the tutorial website



ColocRL (a.k.a. Device Placement Optimization)

Real
Runtime

*

A B DC
A B DC

A B DC
A B DC

Space of Inter-op 
strategies

ML 
Model

candidates

policy 
gradients

72
Mirhoseini, et al. "Device Placement Optimization with Reinforcement Learning." ICML 2017.

https://arxiv.org/search/cs?searchtype=author&query=Mirhoseini%2C+A


ColocRL: Model

73

Figure from [Mirhoseini et al., ICML 2017]

Mirhoseini, et al. "Device Placement Optimization with Reinforcement Learning." ICML 2017.

https://arxiv.org/search/cs?searchtype=author&query=Mirhoseini%2C+A


: computational graph

: Real runtime of a placement 

: output distributed of the RNN

ColocRL: Training

74
Mirhoseini, et al. "Device Placement Optimization with Reinforcement Learning." ICML 2017.

https://arxiv.org/search/cs?searchtype=author&query=Mirhoseini%2C+A


ColocRL: Other Improvement

75
Mirhoseini, et al. "A Hierarchical Model for Device Placement." ICLR  2018.

Figure from [Mirhoseini et al., ICLR 2018]

https://arxiv.org/search/cs?searchtype=author&query=Mirhoseini%2C+A


Results Discussion 

76
Figure and table from [Mirhoseini et al., ICML 2017]



Automatic Parallelization Methods

Learning-based methods

● Reinforcement Learning:
➔ [Mirhoseini et al., 2017]

➔ [Mirhoseini et al., 2018]

➔ [Addanki, et al., 2019]

● ML-based cost model: 
➔ [Chen et al., 2018], 

➔ [Zhou et al., 2020],

➔ [Zhang, 2020]

● Bayesian optimization:
➔ [Sergeev et al., 2018], 

➔ [Peng et al., 2019]

Optimization-based methods

● Dynamic programming
➔ [Wang, et al., 2018]

➔ [Narayanan, et al., 2019]

➔ [Li, et al., 2021]

➔ [Narayanan, et al., 2012]

➔ [Tarnawski, et al., 2020]

➔ [Tarnawski, et al., 2021]

● Integer linear programming
➔ [Tarnawski, et al., 2020]

● Hierarchical optimization
➔ Alpa [Zheng, et al., 2022]

Search-based methods

● MCMC:
➔ [Jia et al., 2018]

➔ [Jia et al., 2019]

● Heuristics 
➔ [Fan et al., 2021]

77

The complete list of 
references is available 
on  the tutorial website



x MSErelu matmul

w2

matmul

w1

Optimization-based Method: Alpa
Device 1

Device 2

x MSErelu matmul

w2

matmul

w1

Inter-op parallelism

x MSErelu matmul

w2

matmul

w1

Intra-op parallelism

Inter-operator
Parallelism

Intra-operator
Parallelism

Communication Less More

Device Idle Time More Less

Trade-off
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x MSErelu matmul

w2

matmul

w1

Alpa Rationale
Device 1

Device 2

x MSErelu matmul

w2

matmul

w1

Inter-op parallelism

x MSErelu matmul

w2

matmul

w1

Intra-op parallelism

node node

node node

Fast connections
Slow connections

79



A B DC

Computational Graph

A B DC

…

A B DC

A B DC

A B DC

Whole Search Space Alpa Hierarchical Space

A B DC

A B DC

…

Inter-op Parallelism

A

A B DC

B DC
… …

Intra-op Parallelism

Search Space
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Alpa Compiler: Hierarchical Optimization

Computational 
Graph

Device 
Cluster

Inter-op Pass

Intra-op Pass

Cost Estimation

Dynamic Programming

Integer Linear Programming
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Inter-op Pass

matmul matmulx

w1 w2

Computational Graph

relu softmaxavgpoolconv convrelu add

k1 k2
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Inter-op Pass

matmul matmulx

w1 w2

relu softmaxavgpoolconv convrelu add

k1 k2Stage 1
Stage 2

Stage 3
Stage 4

matmul matmulx

w1 w2

relu softmaxavgpoolconv convrelu add

k1 k2Stage 1 Stage 2 Stage 3 Stage 4

or

or
…

G
ra

ph
 P

ar
tit

io
ni

ng
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Inter-op Pass

Partitioned Computational Graph

matmul matmulx

w1 w2

relu softmaxavgpoolconv convrelu add

k1 k2Stage 1
Stage 2

Stage 3
Stage 4

Device Assignment
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Inter-op Pass

Cluster (2D Device Mesh)

GPUs within a Node 

Nodes 

Partitioned Computational Graph

matmul matmulx

w1 w2

relu softmaxavgpoolconv convrelu add

k1 k2Stage 1
Stage 2

Stage 3
Stage 4
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Inter-op Pass

matmul matmulx

w1 w2

relu softmaxavgpoolconv convrelu add

k1 k2Stage 1
Stage 2

Stage 3
Stage 4

or or …

Submesh Choice 1 Submesh Choice 2 86



Inter-op Pass

matmul matmulx

w1 w2

relu softmaxavgpoolconv convrelu add

k1 k2

M

Solved together by
Dynamic Programming

Stage 1
Stage 2

Stage 3
Stage 4

N
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Intra-op Pass

matmul matmul

w1 w2

relu

Stage Submesh

stage 
input

w2Solved by
Integer Linear 
Programming

Stage with intra-operator 
parallelization

matmul matmul

w1

relustage 
input

88



Minimize Computation cost + Communication cost

w2

matmul matmul

w1

relustage 
input

Decision vector
Parallel strategies of each 
operator

Intra-op Pass

Integer Linear Programming Formulation

89



Evaluation: Comparing with Previous Works

Weak scaling results where the model size grow with #GPUs.
Evaluated on 8 AWS EC2 p3.16xlarge nodes with 8 16GB V100s each (64 GPUs in total). 

Match specialized 
manual systems.

GPT (up to 39B) GShard MoE (up to 70B) Wide-ResNet (up to 13B)

Outperform the manual 
baseline by up to 8x.

Generalize to models 
without manual plans.
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Automatic Parallelization Methods

Learning-based methods

Easy to extend the search space

High training cost

Low inference cost

Not explainable

No optimality guarantee

Optimization-based methods

Non-trivial to extend the search space

No training cost

Medium inference cost

Explainable

Some optimality guarantee

Search-based methods

Easy to extend the search space

No training cost

High inference cost

Not explainable

No optimality guarantee
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Inter-op Parallelism
(w/ pipeline)

Intra-op Parallelism
(w/ operator-level)

Automatic

Summary Megatron-LM

Mesh-Tensorflow

GShard

Megatron-LM 
V2

GPipe
PipeDream

Dapple

Alpa

92

ZeRO

Tofu
FlexFlow

ColocRL
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