(1) https://hao-ai-lab.github. i0/cse234-w25/

CSE 234: Data Systems for Machine Learning
Winter 2025

LLMSys

Optimizations and Parallelization

MLSys Basics

"Re-partition™ in ML Parallelism yields collectives

Replicated

D CI"-TO-CI" ‘ D

all-to-all
Row-partitioned Column-partitioned

Where We Are

* Motivation
®* History
* Parallelism Overview
* Data parallelism
* Model parallelism
* Infer and intra-op parallelism

* Auto-parallelization

Why Data Parallelism First

2012 e Focus: Data parallelism with Parameter Server

, —
Parameter Server W = W - 77AW

(}(}[)][}[}{ } Figure from DistBelief

Asyndhrony: update every N iters B . / /Aw I \\ [Dean et al., NeurlPS 2012]
instead of 1 !

2016 o

Model
Replicas |[

Data
Shards

Various implementations of parameter servers

DistBelief [Dean et al., NeurlPS 201 2]
Parameter server [Li et al,, NeurlPS 201 2], [Li et al., OSDI 201 4]
Bosen [Wei et al., SoCC 201 5]

GeePS [Cui et al,, Eurosys 201 6], Poseidon [Zhang et al.,, ATC 2017]

Why Data Parallelism First

2012 o

import torch.nn.parallel as dist

from torch.nn.parallel import DistributedDataParallel as DDP
2016

dist.init process group("nccl", rank=rank, world size=world size)

for batch in data loader:
loss = train step(ddp model, batch)

Why Data Parallelism First

2012 o Fast connections: PCIE, NVLINK
Nvidia DGX
2016 @

[0,] [t7)] [t2,] 13,]
[Rank O J [Rank 1 J [Rank 2 J [Rank 3 J

Figure from PyTorch Tutorials

e

{ Rank 0 { Rank 1 J [Rank 2 J Rank 3 J
[T = tO+t1+12+t3] [T = tO+t1+t2+t3] [T = tO+t1+12+t3] [T = tO+t1+t2+t3]

o

Data Parallelism

[wl W2 y]
v v v

matmul relu matmul} MSE J

How o iImplement this
communicatione

Two Solutions

®* Parameter Server
* AllIReduce
* Key assumption:
* The model can fit into an (GPU) worker memory hence we can

create many replica

Parameter Server Assumption

P
ot — glt) 1 ¢ Z V[;(G(t),Dg))
p=1

* Very heavy communication per iteration

* Compute : communication = 1:10 in the era of 2012

Parameter Server Naturally emerges

AllIReduce =reduce + broadcast

Reduce(-to-one) | I | | | | | | | Broaacast

Parameter Server Naturally emerges

6 V)
Problems:
0 0 Server bottleneck!

Parameter Server Implementation

* Sharded parameter server: sharded KV stores

* Avoid communication bottleneck

® Redundancy across different PS shards
Parameter Servers

\ VY i SN o AN
NSS4
SEEK
\’4 ~N 4

Workers

When servers nodes == worker nodes

cecuce scatte | | | I | | | | | Algather

Consistency

P
pi+) =9 1 e} v, (60, Dy
p=1

Global Syndhronization Barrier

Device A
f*) ‘ AL O ALQ
kDeviceB)
f¢ 1| A0 A0
Y 20 § &0
| 2 . 3

BSP's Weakness: Stfragglers

* BSP suffers from stragglers
* Slow devices (stragglers) torce all devices to wait
®* More devices — higher chance of having a straggler

Device A

(-)

>

\. J

Device B

~

J

Time

An interesting property of Gradient Descent (ascent)

Machine Learning is Error-tolerant (under certain
conditions)

Bridging/Consistency Model

Background: Asynchronous Communication I
.
(No Consistency)

HT]
=
|

n
L

T

®* Asynchronous (Async): removes all communication barriers
* Maximizes computing tfime
* Transient stragglers will cause messages to be extremely stale

* Ex:Device 2isatt =6, but Device | has only sent message fort =1

* Some Async software: messages can be applied while computing (), A, ()

* Unpredictable behavior, can hurt statistical efficiency!

Device 1 I N
Device 2 Iy) HEEEE) W) EEEE) EE)

Device 3 “@@“““
Device 4 [}@-‘»E’““

Background: Bounded Consistency

Delay - 3 | | Stalenesss =3

Device A

y Block

| e——

J

Device B

20 [Hoetdl., 2013; Dc;ioe]’r5 c]:il., 2015; Wei et dl,] . 3 4 5 A Clock

21

Impacts of Consistency/Staleness:

Unbounded Staleness

Divergence under high delay

N
&)

X
|t
R

\

2.k
N
8 15,
L
4]
o 1|
p
0.5

SSP s=0
|— SSP s=2
— SSP s=3
—SSP s=5
—SSP s=10 |
- - ESSP s=0
-- ESSP s=10|

22

Theory: SSP Expectation Bound

Difference between

SSP estimate and true optimum
A
4 R
_) T -
T Z fi(xe) | — f(x7) < 4FL\/
t=1

AllIReduce

Data Parallelism with All-reduce

import torch.nn.parallel as dist
from torch.nn.parallel import DistributedDataParallel as DDP

dist.init process group("nccl", rank=rank, world size=world size)

ddp model =|DDP(Model(), device ids=[rank])

for batch in data loader:
loss = train step(ddp model, batch)

Allreduce

* [nifially mplemented in Horovod
®* Being Optimized by nvidia (hw/sw co-optimizaiton) in NCCL
®* Being adopted in PyTorch DDP

* Not Fault tolerant

Discussion: Why Allreduce dominates parameter server
todaye

Where We Are

Motivation

History

Parallelism Overview
Data parallelism

Model parallelism

o Inter-op parallelism
o Intra-op parallelism

Auto-parallelization

Computational Graph (Neural Networks) — Stages

Computational Graph

~—

588 - T a e

Devices (e.g., GPUs)

Computational Graph (Neural Networks) — Stages

e Computational Graph

Execution & Data Movement

— — — —
| ~ mMm
ol | ' Data || "~ Data ||™| | ™ Data '||Y| | ¥ £
S w K +) gt + @ 5 = v al!
Qi--» oo » g_ | |:> S » oo » g_ |:> Si--» oo » a |::>: =N I N R |
2 g8 SNEANE NI IENEINES
i & 3| Transfer || 5 & 3| Transfer: || = * 3| Transfer|| = o S
A
~— — ~— ~—
. Device 1 | Device 2 Device 3 ; Device 4

Note: The time spent on data transfer is typically small, since we only
communicates stage outputs at stage boundaries between two stages.

Timeline: Visualization of Inter-Operator Parallelism

Dev?ce 1 Pipeline Bubbles
Device 2 P
Device 3
Device 4
Time
e Gray area (indicates devices being idle (a.k.a. Pipeline bubbles).

e Only 1 device activated at a time.

e Pipeline bubble percentage = bubble area / total area
= (D - 1) / D, assuming D devices.

Reduce Pipeline Bubbles via Pipelining Inputs

))))
o — v ~ o m © <
4:-; > gJD -':-; gJD 45, > gJD 4; » g.JD
Q © a © Q © a ©
c + c = < = < 7
H n — " = n H n
— — — —
/ Device 1 a b | c d
Used in inference. Dev?ce 2 a c|d “~{_ Pipeline bubbles percentage
Device 3 a|b|c|d =(-1)/ (D-1+N)
Device 4 a|blc]|d with D devices and N inputs.

v

Time

Training: Forward & Backward Dependency

) '))
T > | =) 0 =) B :%
+ () () () ()
S (o]0)] o0 o0 oo
a © © © © Loss
c + + + +
<] " | <= T | <= | T <= T«
-/ — — -/
Forward Backward Forward
Device 1 a a |, b
Device 2 a a § b
Device 3 a a S— b
Device 4 a a b

Time

v

How to Reduce Pipeline Bubbles for Training?

e Device Placement
e Synchronous Pipeline Parallel Algorithms
o GPipe
o 1F1B
o Interleaved 1F1B
o TeraPipe
o Chimera
e Asynchronous Pipeline Parallel Algorithms
o AMPNet
o Pipedream/Pipedream-2BW

Device Placement

Idea: Slice the branches of a neural network into multiple stages so they can be
calculated concurrently.

)
™ Forward Backward Forward
w
> Device 1 a a g b
— Ve < Device 2 a a g b
v v Device 3 a a Q b
o0 oo)
s) 5 Device 4 a a b
(V) N wn -
w Ll
» oD -
P Time
)
n
~—

Device Placement: Limitations

Only works for specific NNs with Device Utilization is still low:
branches:

. == [Forward Backward
- e— i — Device 1 a a @
""""""" : — B - : - . Device2 a a §
= : - I | - Device 3 a a s

E . Device 4 a a

Inception Module Contrastive Model >

_ =T e Time
® By - :
r - BERT

.r_ : : Note: device placement needs to be combined
C | el ol with the other pipeline schedules discussed

M later to further improve device utilization.

¥ Other ConvNets X Transformers :

Synchronous Pipeline Parallel Schedule

Idea: Modify pipeline schedule to improve efficiency, but
keep the computation and convergence semantics exactly
the same as if training with a single device.

11

GPipe

Idea: Partition the input batch into multiple “micro-batches”. Pipeline the micro-
batches. Accumulate the gradients of the micro-batches:

VLg(z) = % Yiv, VLe(z:)

Example: Slice each input batch into 6 micro-batches:

Forward (for input batch a) Backward (a) Forward (b)
Device 1 o(1(2|3[|4 |5 514(3|12|1]| 60 . 01
Device 2 o(1(2|3/[4]|5 514|132 |1|6 § 0
Device 3 0|11(2|3|14]|5 514 (3|2|1]|6 S—
Device 4 N 011|234 5|54 |3(2|1]6
Time

Pipeline bubbles percentage = (D - 1) / (D - 1 + N)
with D devices and N micro-batches.

12

GPipe: Experimental Results

Table: Normalized training throughput using GPipe with different number of
devices (stages) and different number of micro-batches M on TPUs.

#TPUs =2 #TPUs =4 #TPUs =8
#Micro-batches =1 1 1.07 1.3
#Micro-batches = 4 1.7 3.2 4.8

#Micro-batches = 32 1.8 3.4 6.3

13

GPipe: Memory Usage

= Parameters + Activation x #Micro-Batches

Per-Device , /
Memory ?
Usage =
Intermediate
activation :
Model
parameters
Forward (a) Backward (a) Forward (b)
Device1 | @ |12 |3 (4|5 543210®01
Device 2 0112 |3|4]|5 514132160 @ (%)
Device 3 011(2|3|14]|5 514131216 S—
Device 4 o112 (3|4(5(5|4|3|2|1]|6

v

Time
14

GPipe Schedule:

Device 1
Device 2
Device 3
Device 4

Device 1
Device 2
Device 3

Forward (for input batch a) Backward (a) Forward (b)
@|1]2|3|4]|5 5(4]|3]2 oL@l
@|1]2(3|4]|5 514|321 IS 0
@(1]2|3[4]5 5/4|3|2|1]6@ £
@|1|2|3|4|5|5[4|3|2|1]|6®
Same Latenc
1F1B (1 Forward 1 Backward) Schedule: {7 / y
e 1|23 9041]5]2 3 4 oL@l
lef1]2 lo|3|1]4a|2]|5]3 4 I)
el1] |ol2]2]3]|2]4a[3]5]4 5 2
c|ola]1]2]2]3[3]4a]4a]5]5

Device 4

Perform backward as early as possible

v

15

1F1B Memory Usage

Maximum | = Parameters + Activation x #Micro-Batches
per-device 5 5
memory
usage ; ;
.// O e
Device 1 011|123 014|1|5]| 2 3 .
Device 2 0112 @314 |2|5]3 §
Device 3 0|1 211132 (4|3|5|4 S—
Device 4 %) 1(212(3|3[4|4]5
Time

16

Interleaved 1F1B

Idea: Slice the neural network into more fine-grained stages and assign multiple
stages to reduce pipeline bubble.

Device 4 | Stage 4

17

Interleaved 1F1B

Pro: Con:
Higher pipeline efficiency with fewer More communication overhead

pipeline bubbles.
between stages.

Device 1
Device 2 n 9 101112 n
Device 3 9101112“13“ n
Device 4 4 9“10“11“12@
e l Assign multiple stages

to each device
Device 1 [RRRsAE {2« AN PRI - o [Pipeline bubbles percentage
Device 2. e L MR R R R Rl = (D - 1) / (D - 1+ KN)
Device 3 WERRallls 142 s S HN L REec - SR BT \yith D devices, K stages on each
Device 4 [JIERR 2233 4« AICRRAREE" -+ 7"+ KR i oo RARMIE "4 device, and N micro-batches.
Time

Forward Pass [] Backward Pass o

TeraPipe

Idea: The computation of an input token
only depends on previous tokens but
not future tokens for autoregressive
models.

Further reduce the bubble size by
pipelining within a sequence.

Cat ar

§ e

the bes <eos>

)

Transformer layer N

T

Transformer layer N-1

Transformer layer 2

A

Transformer layer 1

—f [[[)
<sos Cats are the bes
s 7

). " Ter aPipe : To ken-Leve | Fipeline Par allelsm for Training Lar ge-S cale Lan guage Models." ICML 2021

19

TeraPipe e |
Transformer layer 5] I

: Device 5 [
Idea: The computation of an input token ¢ ‘D ;V?C;; B ‘[T Transtormer layer 4 '] i
only depends on previous tokens but S ﬁ - 2' ______________ !
not future tokens for autoregressive fmm e EERNERRY _ ___________ .
models. . Device 3 [Transformer layer 3] |
Further reduce the bubble size by o g.-:? _________ |

pipelining within a sequence.

Token-Leve | Fipeline Parallelsm for Training Lar ge-Scale Lan guage Models." ICML 2021

TeraPipe

Idea: The computation of an input token
only depends on previous tokens but
not future tokens for autoregressive
models.

Further reduce the bubble size by
pipelining within a sequence.

Device 5

Device 4

Device 3

Device 2

Device 1

[Transformer layer 5
=
[Transformer layer 4
—
[Transformer layer 3
—7

[Transformer layer 2

—7
L Transformer layer 1

—9

i ibe To ken-Leve | Fipaline Par allelim for Training Lar ge-Scale Lan guage Models.” ICML 2021,

21

Chimera

Idea: Store bi-directional stages and combine bidirectional pipeline to further reduce
pipeline bubbles.

Extra copy of parameters &

Device 1 (Stage 1) |@] [0| 1], h extra synchronization.

Device 2 %) 1 %) 1 ©

Device 3 o |1]e [|1 8 /

Device 4 (Stage 4] elof1]1]", o1 (51 (54) [@] [a]2[2]3[3]e[[a],
':H:' >D2 0]2/1/3/2]0|3|1| |

D3 (s3] (s2] 2]0/3|1/0]2|1|3] |&

Device1 212133 o D42430@112 3

Device 2 2 3|2 3 g /

Device 3 2l 5 2| |3 15 Pipeline bubbles percentage

Device 4 2 3 2 3 Y,

(D-2)/ (D-2+2N)
with D devices and N micro-batches.

22

Synchronous Pipeline Schedule Summary

Pros:

e Keep the convergence semantics. The training process is exactly the same
as training the neural network on a single device.

X Cons:

Pipeline bubbles.

Reducing pipeline bubbles typically requires splitting inputs into smaller
components, but too small input to the neural network will reduce the
hardware efficiency.

23

Asynchronous Pipeline Schedules

Idea: Start next round of forward pass before backward pass finishes.
Pros:

e No Pipeline bubbles.
¥ Cons:

e Break the synchronous training semantics. Now the training will involve
stalled gradient.
e Algorithms may store multiple versions of model weights for consistency.

24

AMPNet

Idea: Fully asynchronous. Each device performs forward pass whenever free and
updates the weights after every backward pass.

Convergence: Achieve similar accuracy on small datasets (MNIST 97%), hard to

generalize to larger datasets.
Updated weights \
Device 1 1 1 PipeMare: modify the
Device 2 1 1 optimizer to improve
Device 3 1)1 AMPNet convergence
Initial weights Time

Gaunt, Alexander L., et al. "AMPNet: Asynchronous model-parallel training for dynamic neural networks." arXiv 2017.
Yang, Bowen, et al. "Pipemare: Asynchronous pipeline parallel dnn training." MLSys 2021. 25

Pipedream

Idea: Enforce the same version of weight for a single input batch by storing
multiple weight versions.

Convergence: Similar accuracy on ImageNet with a 5x speedup compared to
data parallel.

Con: No memory saving compared to single device case.

Weights Weights Weights updated
Initial weights updated by 0 updated by 0,1 by 0,1,2
N a— -«
Devicel [@ [1 2| 3 %) 4 |1 512 6| 3 7
Device 2 W
Device 3 Initial weights
Device 4

for backward

v

Time

26

Pipedream-2BW

Idea: Reduce Pipedream’s memory usage (only store 2 copies) by updating
weights less frequently. Weights always stalled by 1 update.

Convergence: Similar training accuracy on language models (BERT/GPT)

Use initial weights Use weights updated
for input 4,5,6. by input 0,1,2,3
/R / starting input 7.
Device1 (@ |1 |2 | 3 (4|1 (5|2|6]|3 7| 4
Device 2 0112 013(1(4|2|5|3 6| 4|7
Device 3 01 (2113|243 514|6]|5
Device 4 |11 (1|2|2|3]|3 414 |5|5]|6

v

Time

27

Imbalanced Pipeline Stages

Pipeline schedules works best with balanced stages:

Device 1
Balanced Device 2
Stages

Device 3
Device 4

Same single input latency ——

Device 1
Device 2
Device 3

Imbalanced
Stages

Device 4

(@]

N |

€----»

QIC|n (&

d

b

C

d

a

b

v

28

Frontier: Automatic Stage Partitioning

Goal: Minimize maximum stage latency & maximize parallelization

Reinforcement Learning Based (mainly for
device placement):

1.

2.

Mirhoseini, Azalia, et al. "Device placement optimization
with reinforcement learning." ICML 2017.
Gao, Yuanxiang, et al. "Spotlight: Optimizing device

placement for training deep neural networks." ICML 2018.

Mirhoseini, Azalia, et al. "A hierarchical model for device
placement." ICLR 2018.

Addanki, Ravichandra, et al. "Placeto: Learning
generalizable device placement algorithms for distributed
machine learning." NeurlPS 2019.

Zhou, Yanqi, et al. "Gdp: Generalized device placement
for dataflow graphs." Arxiv 2019.

Paliwal, Aditya, et al. "Reinforced genetic algorithm
learning for optimizing computation graphs." ICLR 2020.

Optimization (Dynamic Programming/Linear
Programming) Based:

1.

2.

Narayanan, Deepak, et al. "PipeDream: generalized
pipeline parallelism for DNN training." SOSP 2019.
Tarnawski, Jakub M., et al. "Efficient algorithms for device
placement of dnn graph operators." NeurlPS 2020.

Fan, Shiging, et al. "DAPPLE: A pipelined data parallel
approach for training large models." PPoPP 2021.
Tarnawski, Jakub M., Deepak Narayanan, and Amar
Phanishayee. "Piper: Multidimensional planner for dnn
parallelization." NeurlPS 2021.

Zheng, Lianmin, et al. "Alpa: Automating Inter-and Intra-
Operator Parallelism for Distributed Deep Leaming." OSDI
2022.

29

RL-Based Partitioning Algorithm

State: Device assignment plan for a computational graph.
Action: Modify the device assignment of a node.
Reward: Latency difference between the new and old placements.

Trained with policy gradient algorithm.

State s, RL agent Next state s,,,
Device 1 Policy
>
Graph .
neural —> n:f:’?rk _
Current network Device 2 Sample
R > —’ >
node ’ ~ New
placement
! Reward r, = Runtime(s,,;) - Runtime(s,)
Runtime(s,) Runtime(s,,4)

Addanki, Ravichandra, et al. "Placeto: Learning generalizable device placement algorithms for distributed machine learming." NeurlPS 2019.

Optimization-Based Partitioning Algorithm

Integer Linear Programming:

Variable: Decision variable vector for
each operator, representing device
assignment.

Minimize: Maximum finishing time of all
operators.

Constraint: Execution dependency &
memory capacity of each device.

min

s.t.

TotalLatency
k

Zi:() Tvi =1

subgraph {v € V : z,; = 1} is contiguous

M > Z My * Lyi
v

Commln,; > z,; — Ty;
CommOut,; > Ty — Ty;

TotalLatency > Latency,,
SubgraphStart; > Latency,, - CommlIn,;

SubgraphFinish; = SubgraphStart, + Z Commln,; - ¢,

+ E Tyi - Py + E CommOut,; - ¢,
v v

cpu
v

Latency, = x,o - p
Latency, > z,0 - p;P" + Latency,,
Latency, > z,; - SubgraphFinish;

Tyi €© {0, 1}

31

Inter-operator Parallelism Summary

Idea: Assign different operators of the computational graph to different devices
and executed in a pipelined fashion.

Method General No pipeline | Same convergence
computational graph bubbles as single device
Device Placement X X
Synchronous Schedule X
Asynchronous Schedule X

Stage Partitioning: Imbalance stage — More pipeline bubble

RL-Based / Optimization-Based Automatic Stage Partitioning

32

Where We Are

Motivation

History

Parallelism Overview
Data parallelism

Model parallelism

o Inter-op parallelism
o Intra-op parallelism

Auto-parallelization

Recap: Intra-op and Inter-op

Strategy 1: Inter-operator Parallelism
I

|
X matmul | relu Hmatmuleub]
I

Strategy 2: Intra-operator Parallelism

&n

TR e

This section:
1. How to parallelize an operator ?
2. How to parallelize a graph ?

34

Parallelize One Operator

Element-wise operators

for n in range(@, N): «----------==

—
-
-
-
==
-

for d in range(@, D): «
C[n,d] = A[n,d] + B[n,d]

device 1 device 2 device 3

Parallelize loop n

_ No dependency on the two for-loops.
Can arbitrarily split the for-loops on different devices.

device 4
Parallelize both loop n and loop d a lot of
other variants
n C = A + B
<>

35

Parallelize One Operator

Matrix multiplication

for i in range(@, N):“
for j in range(@, M): a”
for k in range(0, K):«

C[l:J] = C[lJJ] + A[l:k] X B[kJJ]
device 1 device 2 device 3 device 4
Parallelize loop i -Cl-
C,
C = A X B C
3
«—> _C4d

No dependency on the two spatial for-loops.
" Can arbitrarily split the for-loops on different devices.

Accumulation on this reduction loop.
Have to accumulate partial results if we split
this for-loop

replicated

XB

36

Parallelize One Operator

Matrix multiplication No dependency on the two spatial for-loops.
- ;5’ Can arbitrarily split the for-loops on different devices.
for i in range(@, N):< Piad
for j in range(@, M): “” Accumulation on this reduction loop.
for k in range(@, K)i¢-=----- oo —- Have to accumulate partial results if we split
C[i,3] = C[1,J] + A[1i,k] x B[k,J] this for-loop
device 1 device 2 device 3 device 4 replicated

Parallelize loop k

B,
B
C = A x B |k C=[A1 4 43 A]|p’| = A1By + A8, + A3Bs + A4B,
B,
<>
k

(got by all-reduce)

37

Parallelize One Operator

Matrix multiplication No dependency on the two spatial for-loops.
- ;5’ Can arbitrarily split the for-loops on different devices.
for i in range(@, N):< Piad
for j in range(@, M): “” Accumulation on this reduction loop.
for k in rangg(? K):« Diutntatialladd ettt Have to accumulate partial results if we split
C[l:J] = C[lJJ] + A[l:k] X B[kJJ] thiSfOl’-lOOp
device 1 device 2 device 3 device 4
Parallelize loop i and | Parallelize loop i and k a lot of
other variants
C = A X B i C = A X B
J A: partially tiled J
Device 1 and 2 hold a replicated tile C: got by all-reduce

Device 3 and 4 hold a replicated tile %

Parallelize One Operator

2D Convolution

== Simple spatial loops. Can be arbitrarily split.

_-=" P _ Stencil computation loops. Splitting these requires careful
for n in range(@, N):“ _- =% boundary handling.
for co in range(@, CO):“ PP e

for h in range(@, H):« ™~ _-- - _ - - Reduction loop. Need to accumulate partial results.
for w in range(@, W):* -
for ci in range(@, CI):4~
for kh in range(@, KH):<--- -zz=- Reduction loops. But usually too small (<= 5) for parallelization.

for kw in range(@, KW):4~~
C[n,co,h,w] += A[n,co,h+kh,w+kw] x B[kh,kw,co,ci]

Simple case: Parallelize loop n, co, ci, then the parallelization strategies are almost the same as matmul’s.

Complicated case: Parallelize loop h and w 39

Data Parallelism as A Case of Intra-op Parallelism

D Replicated D Row-partitioned D Column-partitioned

Matmul Parallelization Type 1
communication cost =0

-

[a H matmul (c)]

Matmul Parallelization Type 2
communication cost = all-reduce(c)

i

[a H matmul (c)]

Forward Pass

Two “Type 1" matmuls: no communication

2
v
matmul relu matmul
\ |

matmul MSE’ J/

1

Backward Pass
One “Type 1” matmul: no communication
Two “Type 2° matmuls: require all-reduce

40

Re-partition Communication Cost

Different operators’ parallelization strategies require different partition format of the same tensor

D Replicated D Row-partitioned D Column-partitioned
[X]—»[matmul]—»[r'elu

cTTETEEEEEET N
:{ i Do not pged re-
:[matmulHrelu ' partiion [r‘elu]—>[matmul]

e o o o o =

Need re-partition
by all-gather I

e o o o o =

41

Re-partition Communication Cost

Different operators’ parallelization strategies require different partition format of the same tensor

Replicated

O all-to-all . D

all-to-all
Row-partitioned Column-partitioned
42

Parallelize All Operators in a Graph

Problem

Pick a parallel strategy

of each operator ~

Sa

[meatmul]—»[relu]—»[matmul]

Minimize (computation + communication) +

Solution

Manual design
Randomized search
Dynamic programming
Integer linear programming

(re-partition communication)

43

Important Projects

Model-specific Intra-op Parallel Strategies
- AlexNet
- Megatron-LM
- GShard MoE

Systems for Intra-op Parallelism
- ZeRO
- Mesh-Tensorflow
- GSPMD
- Tofu
- FlexFlow

44

AlexNet

Result: increase top-1 accuracy by 1.7%

2048 ag \dense

. - 192 192
27 128 -]]
A\a3 13 13
----------- / . S— T
T 3] \b o EXN) Q 3041 >
- N 13 TE= 13 dense dense,
27 ENR 1 }I A
3. | 1000
o 192 192 128 Max RET -
: 2048
Max‘ 128 Max / poo"ng < 2048
pooling pooling

Assign a group convolution layer to 2 GPUs

Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks.” NeurIlPS 2012

Megaton-LM

Result: a large language model with 8.3B parameters that outperforms SOTA results

Figure 3 from the paper : lllustrated with the notations in this tutorial
How to partition the MLP in the transformer.

g ¥ = GeLU(XA) I,f"“'z'"i)',;,;,;;;(,?;;')""\‘ DRepIicated DRow-partitioned D Column-partitioned

EA XA, uc%_%o YiBy k> ‘i
I il 2 E |
'XA; --E 2By
B matAmulH gelu HmatmulH dr‘opoutJ

A
1
|
I
|
|

o 9> g 2 ’/

all-reduce during backward

all-reduce during forward

46
Shoeybi, Mohammad, et al. "Megatron-LM: Training multi-billion parameter language models using model parallelism."

GShard MoE

Result: a multi-language translation model with 600B parameters that outperforms SOTA

MoE Transfomer Encoder
with device placement

lllustrated with the notations in this tutorial
' 1 D Replicated D Row-partitioned D Expert-partitioned
1 t MoE
3 Layers
[T mmne—— -
”:'_.—'_ Wodel-pecallel i *\",‘ v
— “ L v
e) batch
B f | m = X matmul X 1 X
CTC T J T matmu ?
.A'l i § r".’:'\ "Y i t lll"i‘ :: I I
.; Device 1 kH Devies | I I
Irowt wheteiogs T all-to-all re-partition communication

47

ZeRO Optimizer

Problem

Data parallelism replicates gradients, optimizer states and model weights on all devices.

Idea

Partition gradients, optimizer states and model weights.

M is the number of parameters, N is the number of devices.

Optimizer Gradients
States (12M) | (2M)

Data Parallelism | Replicated Replicated
ZeRO Stage 1 Partitioned Replicated
ZeRO Stage 2 Partitioned Partitioned

ZeRO Stage 3 Partitioned Partitioned

Model
Weights (2M)

Replicated
Replicated
Replicated

Partitioned

Memory
Cost

16M

12M
4M + ——

IM + 14M
N

16M

Communication
Cost

all-reduce(2M)
all-reduce(2M)
all-reduce(2M)

1.5 all-reduce(2M)

48

ZeRO Stage 2

Key ldea: all-reduce = reduce-scatter + all-gather ([JReplicated] Partitioned

Data Parallelism

momentum weights
Dpartial all-reduce . .) Dﬂew
SRt =Lgrad1entslﬁ{:multlply—add:}+{mult1ply-addj > weights

ZeRO Stage 2
momentum weights
\4 A\ 4
; reduce-scatter all-gather
partial ‘(. . _ . _) _ new
SradfLane rLgradlents}—{:multlply add:}+[mult1ply ade "R

Same communication cost but save memory by partitioning more tensors 49

ZeRO Stage 3

ZeRO Stage 2 all-gather

weights J<

\

‘(optihizer
reduce-scatter | state update

communication cost
= all-reduce

b

we{ghts
update

backward

ZeRO Stage 3 weights

all-gather

communication cost
= 1.5 all-reduce

_f optihizer

weights
reduce-scatter | state update

update

backward

50

Mesh-Tensorflow

Map tensor dimension to mesh dimension for parallelism

batch = mtf.Dimension("batch", b) <
io = mtf.Dimension("io", d_io)
hidden = mtf.Dimension("hidden", d_h)

x.shape == [batch, io]

w = mtf.get_variable("w", shape=[io, hidden])
bias = mtf.get_variable("bias", shape=[hidden])
v = mtf.get_variable("v", shape=[hidden, io])

h
y

mtf.einsum(h, v, output_shape=[batch, io])

mesh_shape =

computation_layout = [("batch", "rows"), ("hidden", "cols")] <

Shazeer, Noam, et al. "Mesh-tensorflow: Deep learning for supercomputers." Neurl/PS 2018.

mtf.relu(mtf.einsum(x, w, output_shape=[batch, hidden]) + bias)

Tensor dimension

< Mesh dimension
[("rows", r), ("cols", c)]

Mapping

GSPMD

- Use annotations to specify partition strategy
- Propagate the annotations to whole graph
- Use compiler to generate SPMD (Single Program Multiple Data) parallel executables

Partition inputs along group (G) dim.

+ inputs = split(inputs, 0, D)
Replicate the gating weights

+ wg = replicate(wg)
gates = softmax(einsum("GSM,ME->GSE", inputs, wg))
combine_weights, dispatch_mask = Top2Gating(gating_logits)
dispatched_expert_inputs = einsum(

"GSEC ,GSM->EGCM", dispatch_mask, reshaped_inputs)
Partition dispatched inputs along expert (E) dim.

ORI & W N -

=
+

dispatched_expert_inputs = split(dispatched_expert_inputs, 0, D)
11 h = einsum("EGCM,EMH->EGCH", dispatched_expert_inputs, wi)

[SV

Xu, Yuanzhong, et al. "GSPMD: general and scalable parallelization for ML computation graphs." arXiv 2021

52

Tofu

Tensor description language for automatic parallelization analysis

@tofu.op
def convld(data, filters):
return lambda b, co, Xx:

Sum(lambda ci, dx: data[b, ci, x+dx]x*filters[ci, co, dx]

Dynamic programming for graph-level optimization
- Use graph coarsening to merge operators (e.g., elementwise-ops)
- Use dynamic programming with recursive partitioning

53

Parallelizable Dimensions
Operator

(S)ample (A)ttribute (P)arameter
1D pooling sample length, channel
F I eX F I OW 1D convolution sample length channel
2D convolution sample height, width channel
Matrix multiplication | sample channel
SOAP parallelismspagce oo L Sy L2 S LI :
- Sample, Operator, Attribute, Parameter 3 - I 3 2
6 818 o i
NEEENZ & 7 s
Sample hd Sample A Sample e Sample e

Data Parallelism Model Parallelism Hybrid Parallelism Hybrid Parallelism
(s) (P) (s, P) (5,A,P)
Intra-op Parallelism Inter-op Parallelism

(w/o pipeline)

Simulator + MCMC for finding parallel strategies
- Details will be discussed later

54
Jia, Zhihao, Matei Zaharia, and Alex Aiken. "Beyond Data and Model Parallelism for Deep Neural Networks." ML Sys 2019

Combine Intra-op Parallelism and Inter-op Parallelism

e Computational Graph

COC) T AR N
:\ v v
L o
Stag;e --------------
Device e
\ Mesh / ','"
Intra-op Parallelism { E E ag @ E : ig m
X = 1= j

Inter-op Parallelism

Combine Intra-op Parallelism and Inter-op Parallelism

GPT GShard MoE Wide-ResNet
—~4.0 : ~ 3.0 : ~0.6
n 7 7
a M Inter-op only a M Inter-op only a M Inter-op only
S 3.01 ™ Intra-op only S M Intra-op only S M Intra-op only
a ; a 2.0 : & 0.4 ;
o m Combined (= = Combined (= m Combined
52.0 5 5
=% o o
£ 51.0 0.2
3 1.0 = 3
e e e
= : ﬁoo e : foo -
0.0 1 4 8 16 32 64 : ' 1 4 8 16 32 64 : ' 1 4 8 16 32 64

#GPUs #GPUs #GPUs

Combining inter- and intra-operator parallelism scales to more devices.

Zheng, Lianmin, et al. "Alpa: Automating Inter-and Intra-Operator Parallelism for Distributed Deep Learning." OSD/I 2022

Intra-operator Parallelism Summary
- We can parallelize a single operator by exploiting its internal parallelism

- To do this for a whole computational graph, we need to choose strategies for
all nodes in the graph to minimize the communication cost

- Intra-op and inter-op can be combined

57

Other Techniques for Training Large Models

System-level Memory Optimizations
- Rematerialization/Gradient Checkpointing
- Swapping

ML-level Optimizations

- Quantization
- Sparsification
- Low-rank approximation

58

Where We Are

Motivation

History

Parallelism Overview
Data parallelism

Model parallelism

o Inter-op parallelism
o Intra-op parallelism

Auto-parallelization

Auto-parallelization: Motivation

Parallelisms

fairscale.FSDP

‘
ZeRO ¢ P= Ly
7, deepspeed —_—
Pineli
parISIIeellri]sem GPipe 1F1B
ML developer: which oneis for

Operator { Megatron-LM GSPMD my model and my cluster?
partitioning Mesh-TF

Data ! o (A)
parallelism v
. ® ® ® Models

CNNs Bert GPT-3 MoE

60

Auto-parallelization: Problem

max Performance(Model, Cluster)
strategy

s.t. strategy € Inter-op U Intra-op

61

Auto-parallelization: Problem
Model

Cluster

node

node

node

Node

v

62

The Search Space is Huge

#ops in a real model #op types #devices on a cluster
(nodes to color) (type of nodes) (available colors)

100 -10K 80 - 200+ 10s -1000s

63

Automatic Parallelization Methods

Search-based methods

e MCMC:

-

N

[Jia et al., 2018]
[Jia et al., 2019]

e Heuristics

-

[Fan et al., 2021]

Learning-based methods

Optimization-based methods

e Reinforcement Learning: e Dynamic programming

- [Mirhoseini et al., 2017] - [Wang, et al., 2018]

= [Mirhoseini et al., 2018] = [Narayanan, et al., 2019]

- [Addanki, et al., 2019] - [Li etal., 2021]
e ML-based cost model: - [Narayanan, et al., 2012]

- [Chenetal., 2018], = [Tarnawski, et al., 2020]

- [Zhou et al., 2020], - [Tarnawski, et al., 2021]

- [Zhang, 2020] ® [nteger linear programming
e Bayesian optimization: = [Tarnawski, et al., 2020]

- [Sergeev et al., 2018],
- [Pengetal., 2019] >

e Hierarchical Optimization

[Zheng, et al., 2022]
64

Automatic Parallelization Methods

Learning-based methods

e Reinforcement Learning:
- [Mirhoseini et al., 2017]

71

ColocRL (a.k.a. Device Placement Optimization)

Space of Inter-op
strategies

policy

7~ 3

(Y

gradients

* Real
Runtime

ML
Model

candidates

72

https://arxiv.org/search/cs?searchtype=author&query=Mirhoseini%2C+A

ColocRL: Model

Device Device Device
Softmax foropl | forop2 | \ for 0p100
\
1
1
\
Attention \
\
1
1
Hidden \
state |‘
\
\
Embedding || % e | o e || S . \ \ \
\ \ \
) f f . _ A
\ / \ / \ /
opl op2 opl00 \ \ N

Figure from [Mirhoseini et al., ICML 2017]
Mirhoseini, et al. "Device Placement Optimization with Reinforcement Learning." ICML 2017.

73

https://arxiv.org/search/cs?searchtype=author&query=Mirhoseini%2C+A

ColocRL: Training

Epn(p|g;0)[R(P)|| G]

g: computational graph

R(P) Real runtime of a placement

77(’): output distributed of the RNN

74

https://arxiv.org/search/cs?searchtype=author&query=Mirhoseini%2C+A

ColocRL: Other Improvement

(Placer \

Softmax °m' =l | Dm""";' \ \ om"'“;:

1 \ \
1 1 \ /
1 | \
1 1 1
Attention | 1 |
1] 1
\ 1 \
|] |
Hidden > I 1, l] L, \
state i o n Vg Vo ' CJ
\ \ \
\ \ \
\ \ \
average average average \ \ \
Embedding of group 1 of group 2 . of group 10 90 \ \ \
embedding embedding - embeddng \ \ \ x
’\ g Y \ /q ~ N7 /
\ - ‘.‘ Caa
/Grouper ___-‘4""- ‘_,,—"‘ s \
=" \ L N
Softmax qr:o qr:p gr:up V:’W
A E
Embedding | | tvee| Sihet type | Sapet type | Sooer type | aoe Figure from [Mirhoseini et al., ICLR 201 8]
\ opl op2 op3 opl0000 J

Mirhoseini, et al. "A Hierarchical Model for Device Placement." ICLR 2018

75

https://arxiv.org/search/cs?searchtype=author&query=Mirhoseini%2C+A

Results Discussion

;,,, | I N . |» - | | D__,

CONYTWT T m DH B
D“““'m’m’ iy i “ " ' ﬂ g1 "ﬂ&ﬂﬂ
H H W “ " {}l | ﬂ'l -
L 0
Tasks | Single-CPU Single-GPU | #GPUs ~ Scotch MinCut Expert | RL-based ~Speedup
RNNLM 6.89 1.57 2 13.43 11.94 3.81 1.57 0.0%
(batch 64) ’ ’ 4 11.52 10.44 4.46 1.57 0.0%
NMT 2 14.19 11.54 4.99 4.04 23.5%
2

(batch64) | 1072 OOM 4 1123 1178 473 | 3.92 20.6%
Inception-V3 2621 4.60 2 25.24 22.88 11.22 | 4.60 0.0%
(batch 32) T ’ 4 2341 24.52 10.65 | 3.85 19.0%

Figure and table from [Mirhoseini et al., ICML 2017]

Automatic Parallelization Methods

Optimization-based methods

e Hierarchical optimization

- Alpa[Zheng, et al., 2022]
77

Optimization-based Method: Alpa

[x]—»[matmul]—»[relu]—»[matmul]—»[MSE]

Inter-op parallelism
I

|
| relu]—»[matmul]—P[MSE]

Intra-op parallelism
[x]—»[matmul]—»[relu]—»[matmulHMSE]

Trade-off
Inter-operator Intra-operator
Parallelism Parallelism
Communication More
Device Idle Time More

78

Alpa Rationale

D Device 1
[x]—»[matmul]—»[relu]—»[matmul]—»[MSE] D Device 2

Alpa

Inter-op parallelism _
I Fast connections

| <« Slow connections

ot ot) _|g tee

»

Intra-op parallelism node node

‘e En} ek CORE cOf cf ENf ED
W W
relu HmatmulHMSEJ)

-
<

A 4

79

Alpa Hierarchical Space

® Inter-op Parallelism

Alpa Compiler: Hierarchical Optimization

SYeatas

Computational
Graph

\

Dynamic Programming

Integer Linear Programming

Y

v

Inter-op Pass

v

Intra-op Pass

Ll

Cost Estimation

81

Inter-op Pass

Computational Graph
[X]—»[conv]—>[relu J—'[conv]—»[addHavgpooleatmul]—'[r‘eluHmatmuleoftmax]

82

Inter-op Pass

Graph Partitioning

Stage1

or

—————————

[X]—*[conv]-’[relu]*—>[conv] [addHavgpooleatmu l]*'[relu Hmatmul]—’[softmax]

or

83

Inter-op Pass

Partltloned Computatlonal Graph

84

Inter-op Pass

Partltloned Computatlonal Graph

Cluster (2D Device Mesh)

A

Nodes §®

#

GPUs within a Node ‘ﬁ

85

Inter-op Pass

Submesh Choice 1 Submesh Choice 2

86

Inter-op Pass

Solved together by
Dynamic Programming

87

Intra-op Pass

Solved by |
Integer Linear stage i i
programming | inacs {0 {Fela} -t

Stage with intra-operator
parallelization

88

Intra-op Pass

Integer Linear Programming Formulation

Decision vector
Parallel strategies of each

operator \

matmul]—’[Pelu]"[matmﬂ]

Minimize Computation cost + Communication cost

89

Evaluation: Comparing with Previous Works

GPT (up to 39B)

B
<)

M Best Manual System
™ Alpa

W
o

=
o

Throughput (PFLOPS)
N
o

o
)

1 4 8 16 32 64
#GPUs

Match specialized
manual systems.

GShard MoE (up to 70B)

)
w
o

M Best Manual System
M Alpa

g
(=)

-y
(=)

Throughput (PFLOPS

o
o

1 4 8 16 32 64

#GPUs

Outperform the manual
baseline by up to 8x.

X

Wide-ResNet (up to 13B)

)
o
o

M Another Auto System
M Alpa

o
»

o
[N

Throughput (PFLOPS

o
=]

1 4 8 16 32 64
#GPUs

Generalize to models
without manual plans.

Weak scaling results where the model size grow with #GPUSs.
Evaluated on 8 AWS EC2 p3.16xlarge nodes with 8 16GB V100s each (64 GPUs in total).

90

Automatic Parallelization Methods

Search-based methods

Easy to extend the search space
No training cost

2 High inference cost

K Not explainable

2 No optimality guarantee

Learning-based methods

Easy to extend the search space
2 High training cost

Low inference cost

2 Not explainable

2 No optimality guarantee

Optimization-based methods

¥ Non-trivial to extend the search space
No training cost

Medium inference cost

Explainable

Some optimality guarantee

91

Intra-op Parallelism
(w/ operator-level)

Summary Megatron-LM

Mesh-Tensorflow
GShard

Megatron-L
V2

PipeDream
Dapple

ColocRL

Automatic

92

	Slide 1: CSE 234: Data Systems for Machine Learning Winter 2025
	Slide 2: “Re-partition” in ML Parallelism yields collectives
	Slide 3: Where We Are
	Slide 4: Why Data Parallelism First
	Slide 5: Why Data Parallelism First
	Slide 6: Why Data Parallelism First
	Slide 7: Data Parallelism
	Slide 8: Two Solutions
	Slide 9: Parameter Server Assumption
	Slide 10: Parameter Server Naturally emerges
	Slide 11: AllReduce = reduce + broadcast
	Slide 12: Parameter Server Naturally emerges
	Slide 13: Parameter Server Implementation
	Slide 14: When servers nodes == worker nodes
	Slide 15: Consistency
	Slide 16: BSP’s Weakness: Stragglers
	Slide 17: An interesting property of Gradient Descent (ascent)
	Slide 18: Machine Learning is Error-tolerant (under certain conditions)
	Slide 19: Background: Asynchronous Communication (No Consistency)
	Slide 20: Background: Bounded Consistency
	Slide 21: Impacts of Consistency/Staleness: Unbounded Staleness
	Slide 22: Theory: SSP Expectation Bound
	Slide 23: AllReduce
	Slide 24: Data Parallelism with All-reduce
	Slide 25: Allreduce
	Slide 26
	Slide 27: Next Lecture

