
CSE 234: Data Systems for Machine Learning
Winter 2025

1

https://hao-ai-lab.github.io/cse234-w25/

MLSys Basics

Optimizations and Parallelization

LLMSys

“Re-partition” in ML Parallelism yields collectives

all-to-all

all-to-all
Row-partitioned

Replicated

Column-partitioned

Where We Are

• Motivation

• History

• Parallelism Overview

• Data parallelism

• Model parallelism

• Inter and intra-op parallelism

• Auto-parallelization

Why Data Parallelism First

Focus: Data parallelism with Parameter Server

Various implementations of parameter servers
• DistBelief [Dean et al., NeurIPS2012]
• Parameter server [Li et al., NeurIPS 2012], [Li et al., OSDI 2014]
• Bosen [Wei et al., SoCC2015]
• GeePS [Cui et al., Eurosys 2016], Poseidon [Zhang et al., ATC 2017]

2016

2012

Figure from DistBelief
[Dean et al., NeurIPS 2012]Asynchrony: update every N iters

instead of 1

2016

2012

import torch.nn.parallel as dist
from torch.nn.parallel import DistributedDataParallel as DDP

dist.init_process_group("nccl", rank=rank, world_size=world_size)
ddp_model = DDP(Model(), device_ids=[rank])

for batch in data_loader:
loss = train_step(ddp_model, batch)

Why Data Parallelism First

Sergeevet al., "Horovod: fast and easy distributed deep learning in TensorFlow". Preprint 2018.
Li et al., "PyTorchDistributed: Experiences on Accelerating Data Parallel Training". VLDB 2020.

Why Data Parallelism First

2016

2012

Nvidia DGX

Fast connections: PCIE, NVLINK

Figure from PyTorch Tutorials

Data Parallelism

How to implement this
communication?

Two Solutions

• Parameter Server

• AllReduce

• Key assumption:

• The model can fit into an (GPU) worker memory hence we can

create many replica

Parameter Server Assumption

• Very heavy communication per iteration

• Compute : communication = 1:10 in the era of 2012

Parameter Server Naturally emerges

Reduce(-to-one)

AllReduce = reduce + broadcast

Broadcast

Parameter Server Naturally emerges

Problems:
Server bottleneck!

Parameter Server Implementation

• Sharded parameter server: sharded KV stores

• Avoid communication bottleneck

• Redundancy across different PS shards

Allgather

When servers nodes == worker nodes

Reduce-scatter

Consistency

Device A

Device B

Device C

1 2 3 4

Global Synchronization Barrier

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

𝐹() 𝐹()

BSP’s Weakness: Stragglers

• BSP suffers from stragglers

• Slow devices (stragglers) force all devices to wait

• More devices → higher chance of having a straggler

Time

Device A

Device B

Device C

An interesting property of Gradient Descent (ascent)

Machine Learning is Error-tolerant (under certain
conditions)

Background: Asynchronous Communication
(No Consistency)

• Asynchronous (Async): removes all communication barriers

• Maximizes computing time

• Transient stragglers will cause messages to be extremely stale

• Ex: Device 2 is at 𝑡 = 6, but Device 1 has only sent message for 𝑡 = 1

• Some Async software: messages can be applied while computing 𝐹(), Δ𝐿()

• Unpredictable behavior, can hurt statistical efficiency!

1

1

1

1

Device 1

Device 2

Device 3

Device 4

2

2

2

3

3

3

4

4

4

5

5

5 6

6

6

20

Background: Bounded Consistency

Clock

Device A

Device B

Device C

1 2 3 4

Staleness s= 3

5 6

Delay = 3

Block

[Ho et al., 2013; Dai et al., 2015; Wei et al.,
2015]

21

Impacts of Consistency/Staleness:
Unbounded Staleness

Divergence under high delay

22

Theory: SSP Expectation Bound

Difference between
SSP estimate and true optimum

AllReduce

import torch.nn.parallel as dist
from torch.nn.parallel import DistributedDataParallel as DDP

dist.init_process_group("nccl", rank=rank, world_size=world_size)
ddp_model = DDP(Model(), device_ids=[rank])

for batch in data_loader:
loss = train_step(ddp_model, batch)

Sergeevet al., "Horovod: fast and easy distributed deep learning in TensorFlow". Preprint 2018.
Li et al., "PyTorchDistributed: Experiences on Accelerating Data Parallel Training". VLDB 2020.

Data Parallelism with All-reduce

Allreduce

• Initially implemented in Horovod

• Being Optimized by nvidia (hw/sw co-optimizaiton) in NCCL

• Being adopted in PyTorch DDP

• Not Fault tolerant

Discussion: Why Allreduce dominates parameter server
today?

Where We Are

● Motivation
● History
● Parallelism Overview
● Data parallelism
● Model parallelism

○ Inter-op parallelism
○ Intra-op parallelism

● Auto-parallelization

Computational Graph (Neural Networks) → Stages

Computational Graph

Devices (e.g., GPUs)

Device 1 Device 2 Device 3 Device 4

2

Computational Graph (Neural Networks) → Stages

Computational Graph

Device 1 Device 2 Device 3 Device 4
Stage

Devices (e.g., GPUs)

3

Execution & Data Movement

St
ag
e

1

In
pu
t

Ou
tp
ut

 1

St
ag
e

2

Ou
tp
ut

 2

St
ag
e

3

St
ag
e

4

Ou
tp
ut

In
pu
t

2Data

Transfer In
pu
t

3Data

Transfer Ou
tp
ut

 3

In
pu
t

4Data

Transfer

Device 1 Device 2 Device 3 Device 4

Note: The time spent on data transfer is typically small, since we only
communicates stage outputs at stage boundaries between two stages.

4

Timeline: Visualization of Inter-Operator Parallelism

Device 4
Device 3
Device 2
Device 1

Time

Pipeline Bubbles

● Gray area () indicates devices being idle (a.k.a. Pipeline bubbles).

● Only 1 device activated at a time.

● Pipeline bubble percentage = bubble_area / total_area
= (D - 1) / D, assuming D devices.

5

Reduce Pipeline Bubbles via Pipelining Inputs

St
ag
e

1

St
ag
e

2

St
ag
e

3

St
ag
e

4

In
pu
t

a

In
pu
t

a
In

pu
t

b

a

Device 4

a
Device 3
Device 2
Device 1

Time

b

a
b
c

a
b
c
d

b
c

c

d
d

d

Pipeline bubbles percentage
= (D - 1) / (D - 1 + N)
with D devices and N inputs.

In
pu
t

b

In
pu
t

c

In
pu
t

a

In
pu
t

c

In
pu
t

d

In
pu
t

a

In
pu
t

b

Used in inference.

6

Training: Forward & Backward Dependency

St
ag
e

1

St
ag
e

2

St
ag
e

3

St
ag
e

4

In
pu
t

Loss

Device 4
Device 3
Device 2
Device 1

Time

a
a

a
a

…
a

a
a

a

b
b

b
b

U
pd

at
e

Forward Backward Forward

7

How to Reduce Pipeline Bubbles for Training?

● Device Placement
● Synchronous Pipeline Parallel Algorithms

○ GPipe
○ 1F1B
○ Interleaved 1F1B
○ TeraPipe
○ Chimera

● Asynchronous Pipeline Parallel Algorithms
○ AMPNet
○ Pipedream/Pipedream-2BW

8

Device Placement
St

ag
e

1

St
ag
e

2
St

ag
e

3

St
ag
e

4

Device 4
Device 3
Device 2
Device 1

Time

a
a
a

a

…
a

a
a

a

b
b
b

b

U
pd

at
e

Forward Backward Forward

Idea: Slice the branches of a neural network into multiple stages so they can be
calculated concurrently.

Mir hoseini, Azalia, et al. " De vice placeme nt opt im ization with r einfor cement learning ." ICML 2017. 9

Device Placement: Limitations

Only works for specific NNs with
branches:

Device 4
Device 3
Device 2
Device 1

Time

a
a
a

a

…

a
a
a

a

U
pd

at
e

Forward Backward

Device Utilization is still low:

Inception Module Contrastive Model

Other ConvNets Transformers

Note: device placement needs to be combined
with the other pipeline schedules discussed
later to further improve device utilization.

10

Synchronous Pipeline Parallel Schedule

Idea: Modify pipeline schedule to improve efficiency, but
keep the computation and convergence semantics exactly
the same as if training with a single device.

11

GPipe

Device 4
Device 3
Device 2
Device 1

Time

0
0
1

1
2

2
3

3 4 5
4 5

0
0
1

1
2

2
3

3 4 5
4 5

Forward (for input batch a)

3 2 1 05 4
3 2 1 05 4

3 2 1 05 4
3 2 1 05 4

Backward (a)

U
pd

at
e 0

0
1

…

Forward (b)

Huang , Yanping, et al. " Gpipe: Ef ficie nt tr aining of giant ne ural ne tworks using pipeline pa rallelism." Neur IPS 20 19.

Idea: Partition the input batch into multiple “micro-batches”. Pipeline the micro-
batches. Accumulate the gradients of the micro-batches:

Pipeline bubbles percentage = (D - 1) / (D - 1 + N)
with D devices and N micro-batches.

Example: Slice each input batch into 6 micro-batches:

12

GPipe: Experimental Results

#TPUs = 2 #TPUs = 4 #TPUs = 8

#Micro-batches = 1 1 1.07 1.3

#Micro-batches = 4 1.7 3.2 4.8

#Micro-batches = 32 1.8 3.4 6.3

Table: Normalized training throughput using GPipe with different number of
devices (stages) and different number of micro-batches M on TPUs.

Huang , Yanping, et al. " Gpipe: Ef ficie nt tr aining of giant ne ural ne tworks using pipeline pa rallelism." Neur IPS 20 19. 13

GPipe: Memory Usage

Device 4
Device 3
Device 2
Device 1

Time

0
0
1

1
2

2
3

3

3 2 1 0

U
pd

at
e 0

0
1

4 5
4 5

5 4

…
0

0
1

1
2

2
3

3 4 5
4 5 3 2 1 05 4

3 2 1 05 4
3 2 1 05 4

Forward (a) Backward (a) Forward (b)

Per-Device
Memory
Usage

Model
parameters

Intermediate
activation

= Parameters + Activation × #Micro-Batches

14

Device 4
Device 3
Device 2
Device 1

Time

0
0
1

1
2

2
3

3

3210

U
pd

at
e 0

0
1

4 5
4 5

54

…
0

0
1

1
2

2
3

3 4 5
4 53210 54

3210 54
3210 54

Device 4
Device 3
Device 2
Device 1 0

0
1

1
2

2
3

3

3 2 1 0

U
pd

at
e 0

0
1

4 5
4 5

5 4

…
0

0
1

1
2

2
3

3 4 5
4 5 3 2 1 05 4

3 2 1 05 4
3 2 1 05 4

Forward (for input batch a) Backward (a) Forward (b)

GPipe Schedule:

Fan, Shiqing, et al. " DAPPLE: A pipelined d ata pa rallel appr oach f or tr aining lar ge mo dels." PPo PP 202 1.

Perform backward as early as possible

Same Latency
1F1B (1 Forward 1 Backward) Schedule:

15

1F1B Memory Usage

Device 4
Device 3
Device 2
Device 1

Time

0
0
1

1
2

2
3

3

3210

U
pd

at
e 0

0
1

4 5
4 5

54

…
0

0
1

1
2

2
3

3 4 5
4 53210 54

3210 54
3210 54

Maximum
per-device
memory
usage

Fan, Shiqing, et al. " DAPPLE: A pipelined d ata pa rallel appr oach f or tr aining lar ge mo dels." PPo PP 202 1.

= Parameters + Activation × #Micro-Batches #Devices

16

Device 1

Device 2

Device 3

Device 4

Interleaved 1F1B

Stage 1

Stage 2

Stage 3

Stage 4

Idea: Slice the neural network into more fine-grained stages and assign multiple
stages to reduce pipeline bubble.

Nara yanan, De epak, e t al. " Ef ficie nt larg e-scale lan guage model t raining o n gpu clu sters u sin g meg atron-lm." SC 2021.

L1 L2 L3 L4 L5 L6 L7 L8

Stage 1

Stage 2

Stage 3

Stage 4

Device 1

Device 2

Device 3

Device 4

Stage 5

Stage 6

Stage 7

Stage 8

L1 L2 L3 L4 L5 L6 L7 L8

17

Interleaved 1F1B
Pro:
Higher pipeline efficiency with fewer
pipeline bubbles.

Con:
More communication overhead
between stages.

Pipeline bubbles percentage
= (D - 1) / (D - 1 + KN)
with D devices, K stages on each
device, and N micro-batches.

18

TeraPipe

…

Cat
s

<sos
>

ar
e

Cats

the

are

bes
t

the

<eos>

bes
t

Transformer layer 1

Transformer layer 2

Transformer layer N-1

Transformer layer N

Li, Zhuoh an, et al. " Ter aPipe : To ken-Leve l Pipeline Par allelism for Tr aining Lar ge-Scale Lan guage Models." ICML 2021.

Idea: The computation of an input token
only depends on previous tokens but
not future tokens for autoregressive
models.

Further reduce the bubble size by
pipelining within a sequence.

19

TeraPipe

Transformer layer 1

Transformer layer 2

Transformer layer 3

Transformer layer 4

Transformer layer 5

Device 1

Device 2

Device 3

Device 4

Device 5

Li, Zhuoh an, et al. " Ter aPipe : To ken-Leve l Pipeline Par allelism for Tr aining Lar ge-Scale Lan guage Models." ICML 2021. 20

Idea: The computation of an input token
only depends on previous tokens but
not future tokens for autoregressive
models.

Further reduce the bubble size by
pipelining within a sequence.

TeraPipe

Transformer layer 1

Transformer layer 2

Transformer layer 3

Transformer layer 4

Transformer layer 5

Device 1

Device 2

Device 3

Device 4

Device 5

Li, Zhuoh an, et al. " Ter aPipe : To ken-Leve l Pipeline Par allelism for Tr aining Lar ge-Scale Lan guage Models." ICML 2021. 21

Idea: The computation of an input token
only depends on previous tokens but
not future tokens for autoregressive
models.

Further reduce the bubble size by
pipelining within a sequence.

Chimera

Idea: Store bi-directional stages and combine bidirectional pipeline to further reduce
pipeline bubbles.

Device 4
Device 3
Device 2
Device 1 0

0
1

1

10

U
pd

at
e

0
0

1
1

10
10

10Stage 1
Stage 2
Stage 3
Stage 4

Device 4
Device 3
Device 2
Device 1 2

2
3

3

32
U

pd
at

e

2
2

3
3

32
32

32Stage 4
Stage 3
Stage 2
Stage 1

D4
D3
D2
D1 0

0
1

1

10

U
pd

at
e

0
0

1
1

10
10

10S1
S2
S3
S4

2
2

3
3

32
2

2
3

3
32

32
32S4

S3
S2
S1

Pipeline bubbles percentage
= (D - 2) / (D - 2 + 2N)
with D devices and N micro-batches.

Li, Shigan g, and Tor sten Hoe fler. " Chimer a: eff icien tly training large-scale n eural n etworks with bidirectiona l pipelines." SC 21. 22

Extra copy of parameters &
extra synchronization.

Synchronous Pipeline Schedule Summary

Pros:

● Keep the convergence semantics. The training process is exactly the same
as training the neural network on a single device.

Cons:

● Pipeline bubbles.
● Reducing pipeline bubbles typically requires splitting inputs into smaller

components, but too small input to the neural network will reduce the
hardware efficiency.

23

Asynchronous Pipeline Schedules

Idea: Start next round of forward pass before backward pass finishes.

Pros:

● No Pipeline bubbles.

Cons:

● Break the synchronous training semantics. Now the training will involve
stalled gradient.

● Algorithms may store multiple versions of model weights for consistency.

24

AMPNet

Idea: Fully asynchronous. Each device performs forward pass whenever free and
updates the weights after every backward pass.

Gaunt, Alexander L., et al. "AMPNet: Asynchronous model-parallel training for dynamic neural networks." arXiv 2017.
Yang, Bowen, et al. "Pipemare: Asynchronous pipeline parallel dnn training." MLSys 2021.

Convergence: Achieve similar accuracy on small datasets (MNIST 97%), hard to
generalize to larger datasets.

Device 3
Device 2
Device 1 0 2 3

320

4 5

4
0

0
2

2
3

4
4 5 320

320

3

6 7
6

Time

1

1
1

1
1

1

Initial weights

Updated weights

PipeMare: modify the
optimizer to improve
AMPNet convergence

25

Pipedream

Idea: Enforce the same version of weight for a single input batch by storing
multiple weight versions.
Convergence: Similar accuracy on ImageNet with a 5x speedup compared to
data parallel.

Nara yanan, De epak, e t al. " Pipe Dr eam: gener alized pipeline parallelism f or DNN tra in in g." SOSP 2 019.

Device 4
Device 3
Device 2
Device 1

0 1 2 3

3210

4 5

4

…
0

0
1

1
2

2
3

3 4
4 53210

3210 6
4

4

5

0 1 2 3 4 5 210 6 3 7

Weights
updated by 0

Weights
updated by 0,1

Weights updated
by 0,1,2 Initial weights

Initial weights
for backward

Con: No memory saving compared to single device case.

Time

26

Nara yanan, De epak, e t al. " Mem ory-eff icien t pipeline-par allel dnn t raining." ICML 2021.

Pipedream-2BW

Idea: Reduce Pipedream’s memory usage (only store 2 copies) by updating
weights less frequently. Weights always stalled by 1 update.

Convergence: Similar training accuracy on language models (BERT/GPT)

Device 4
Device 3
Device 2
Device 1

0 1 2 3

3210

4 5

4

…
0

0
1

1
2

2
3

3 4
4 53210

3210 6
4

4

5

0 1 2 3 4 5 210 6 3 7
7
4

6
5

5
6

Time

Use weights updated
by input 0,1,2,3
starting input 7.

Use initial weights
for input 4,5,6.

27

Imbalanced Pipeline Stages

a

Device 4

a
a

a
Device 3
Device 2
Device 1 b

b
b

b

c
c

c
c

d
d

d
d

Pipeline schedules works best with balanced stages:

Balanced
Stages

a

Device 4

a
a

a
Device 3
Device 2
Device 1

Time

b
b

b
b

c
c

c
c

d
d

d
d

Imbalanced
Stages

28

Same single input latency

Frontier: Automatic Stage Partitioning

Reinforcement Learning Based (mainly for
device placement):

1. Mirhoseini, Azalia, et al. "Device placement optimization
with reinforcement learning." ICML 2017.

2. Gao, Yuanxiang, et al. "Spotlight: Optimizing device
placement for training deep neural networks." ICML 2018.

3. Mirhoseini, Azalia, et al. "A hierarchical model for device
placement." ICLR 2018.

4. Addanki, Ravichandra, et al. "Placeto: Learning
generalizable device placement algorithms for distributed
machine learning." NeurIPS 2019.

5. Zhou, Yanqi, et al. "Gdp: Generalized device placement
for dataflow graphs." Arxiv 2019.

6. Paliwal, Aditya, et al. "Reinforced genetic algorithm
learning for optimizing computation graphs." ICLR 2020.

7. …

29

Goal: Minimize maximum stage latency & maximize parallelization

Optimization (Dynamic Programming/Linear
Programming) Based:

1. Narayanan, Deepak, et al. "PipeDream: generalized
pipeline parallelism for DNN training." SOSP 2019.

2. Tarnawski, Jakub M., et al. "Efficient algorithms for device
placement of dnn graph operators." NeurIPS 2020.

3. Fan, Shiqing, et al. "DAPPLE: A pipelined data parallel
approach for training large models." PPoPP 2021.

4. Tarnawski, Jakub M., Deepak Narayanan, and Amar
Phanishayee. "Piper: Multidimensional planner for dnn
parallelization." NeurIPS 2021.

5. Zheng, Lianmin, et al. "Alpa: Automating Inter-and Intra-
Operator Parallelism for Distributed Deep Learning." OSDI
2022.

6. …

RL-Based Partitioning Algorithm

30Addanki, Ravichandra, et al. "Placeto: Learning generalizable device placement algorithms for distributed machine learning." NeurIPS 2019.

State: Device assignment plan for a computational graph.
Action: Modify the device assignment of a node.
Reward: Latency difference between the new and old placements.
Trained with policy gradient algorithm.

Optimization-Based Partitioning Algorithm

31Tarnawski, Ja kub M. , et a l. "Efficient algorithm s for device place ment of dnn grap h oper ator s." Neu rIPS 2020.

Integer Linear Programming:

Variable: Decision variable vector for
each operator, representing device
assignment.

Minimize: Maximum finishing time of all
operators.

Constraint: Execution dependency &
memory capacity of each device.

Inter-operator Parallelism Summary

Idea: Assign different operators of the computational graph to different devices
and executed in a pipelined fashion.

Method General
computational graph

No pipeline
bubbles

Same convergence
as single device

Device Placement

Synchronous Schedule

Asynchronous Schedule

Stage Partitioning: Imbalance stage → More pipeline bubble

RL-Based / Optimization-Based Automatic Stage Partitioning
32

Where We Are

● Motivation
● History
● Parallelism Overview
● Data parallelism
● Model parallelism

○ Inter-op parallelism
○ Intra-op parallelism

● Auto-parallelization

Recap: Intra-op and Inter-op

x subrelu matmul

w2

matmul

w1

Strategy 1: Inter-operator Parallelism

x subrelu matmul

w2

matmul

w1

Strategy 2: Intra-operator Parallelism

This section:
1. How to parallelize an operator ?
2. How to parallelize a graph ?

34

Parallelize One Operator

for n in range(0, N):
for d in range(0, D):
C[n,d] = A[n,d] + B[n,d]

No dependency on the two for-loops.
Can arbitrarily split the for-loops on different devices.

Element-wise operators

= +C A Bn

d

Parallelize loop n

= +C A Bn

d

Parallelize both loop n and loop d a lot of
other variants
…

device 1 device 2 device 3 device 4

35

for i in range(0, N):
for j in range(0, M):
for k in range(0, K):
C[i,j] = C[i,j] + A[i,k] x B[k,j]

Parallelize One Operator

No dependency on the two spatial for-loops.
Can arbitrarily split the for-loops on different devices.

Accumulation on this reduction loop.
Have to accumulate partial results if we split
this for-loop

Matrix multiplication

= xC A Bi

j

Parallelize loop i

device 1 device 2 device 3 device 4 replicated

36

for i in range(0, N):
for j in range(0, M):
for k in range(0, K):
C[i,j] = C[i,j] + A[i,k] x B[k,j]

Parallelize One Operator

No dependency on the two spatial for-loops.
Can arbitrarily split the for-loops on different devices.

Accumulation on this reduction loop.
Have to accumulate partial results if we split
this for-loop

Matrix multiplication

device 1 device 2 device 3 device 4 replicated

k

k

Parallelize loop k

(got by all-reduce)

= xC A B

37

for i in range(0, N):
for j in range(0, M):
for k in range(0, K):
C[i,j] = C[i,j] + A[i,k] x B[k,j]

Parallelize One Operator

No dependency on the two spatial for-loops.
Can arbitrarily split the for-loops on different devices.

Accumulation on this reduction loop.
Have to accumulate partial results if we split
this for-loop

a lot of
other variants
…

Matrix multiplication

device 1 device 2 device 3 device 4

= xC Ai

j

Parallelize loop i and j

A: partially tiled
Device 1 and 2 hold a replicated tile
Device 3 and 4 hold a replicated tile

B = xAi

j

Parallelize loop i and k

C B

C: got by all-reduce
38

for n in range(0, N):
for co in range(0, CO):
for h in range(0, H):
for w in range(0, W):
for ci in range(0, CI):
for kh in range(0, KH):
for kw in range(0, KW):
C[n,co,h,w] += A[n,co,h+kh,w+kw] x B[kh,kw,co,ci]

Parallelize One Operator

2D Convolution

Simple case: Parallelize loop n, co, ci, then the parallelization strategies are almost the same as matmul’s.

Complicated case: Parallelize loop h and w

Simple spatial loops. Can be arbitrarily split.

Reduction loop. Need to accumulate partial results.

Stencil computation loops. Splitting these requires careful
boundary handling.

Reduction loops. But usually too small (<= 5) for parallelization.

39

Data Parallelism as A Case of Intra-op Parallelism

matmul (c)

b

a

Matmul Parallelization Type 1
communication cost = 0

matmul (c)

b

a

Matmul Parallelization Type 2
communication cost = all-reduce(c)

Replicated Column-partitionedRow-partitioned

x MSE

y

relu matmul

w2

matmul

w1

Forward Pass
Two “Type 1” matmuls: no communication

new_w2new_w1

matmul

matmul

MSE’

matmul

relu’

Backward Pass
One “Type 1” matmul: no communication
Two “Type 2” matmuls: require all-reduce 40

Re-partition Communication Cost

x

w1 w2

matmul matmulrelu

matmul relu matmul

w2

relu

Do not need re-
partition

matmul

w2

relu

…

Need re-partition
by all-gather

Replicated Column-partitionedRow-partitioned

Different operators’ parallelization strategies require different partition format of the same tensor

41

Re-partition Communication Cost

all-to-all

all-to-all

Different operators’ parallelization strategies require different partition format of the same tensor

Row-partitioned

Replicated

Column-partitioned
42

Parallelize All Operators in a Graph

Minimize Node costs (computation + communication) + Edge costs (re-partition communication)

Pick a parallel strategy
of each operator

x relu matmul

w2

matmul

w1

Problem

Manual design
Randomized search
Dynamic programming
Integer linear programming

Solution

43

Important Projects

Model-specific Intra-op Parallel Strategies
- AlexNet
- Megatron-LM
- GShard MoE

Systems for Intra-op Parallelism
- ZeRO
- Mesh-Tensorflow
- GSPMD
- Tofu
- FlexFlow

44

AlexNet

Assign a group convolution layer to 2 GPUs

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks.” NeurIPS 2012

Result: increase top-1 accuracy by 1.7%

45

Megaton-LM

Result: a large language model with 8.3B parameters that outperforms SOTA results

Shoeybi, Mohammad, et al. "Megatron-LM: Training multi-billion parameter language models using model parallelism."

Figure 3 from the paper：
How to partition the MLP in the transformer.

x gelu matmul

w2

matmul

w1

Replicated Column-partitionedRow-partitioned

dropout

Illustrated with the notations in this tutorial

all-reduce during forward

all-reduce during backward

46

GShard MoE

Result: a multi-language translation model with 600B parameters that outperforms SOTA

x x batch
matmul

MoE
Layers

matmul

Normal
layers

Replicated Expert-partitionedRow-partitioned

X

Illustrated with the notations in this tutorial

all-to-all re-partition communication

Lepikhin, Dmitry, et al. "GShard: Scaling giant models with conditional computation and automatic sharding." ICLR 2021
47

ZeRO Optimizer
Problem
Data parallelism replicates gradients, optimizer states and model weights on all devices.

Idea
Partition gradients, optimizer states and model weights.

Optimizer
States (12M)

Gradients
(2M)

Model
Weights (2M)

Memory
Cost

Communication
Cost

Data Parallelism Replicated Replicated Replicated all-reduce(2M)

ZeRO Stage 1 Partitioned Replicated Replicated all-reduce(2M)

ZeRO Stage 2 Partitioned Partitioned Replicated all-reduce(2M)

ZeRO Stage 3 Partitioned Partitioned Partitioned 1.5 all-reduce(2M)

Rajbhandari, Samyam, et al. "Zero: Memory optimizations toward training trillion parameter models." SC 2020

M is the number of parameters, N is the number of devices.

48

ZeRO Stage 2

Key Idea: all-reduce = reduce-scatter + all-gather

partial
gradients gradients multiply-add multiply-add

momentum weights

all-reduce new
weights

Data Parallelism

partial
gradients gradients multiply-add multiply-add

momentum weights

reduce-scatter new
weights

all-gather

ZeRO Stage 2

Same communication cost but save memory by partitioning more tensors

Replicated Partitioned

49

ZeRO Stage 3

ZeRO Stage 2

communication cost
= all-reduce

forward backward optimizer
state update

weights
update

weights

reduce-scatter

all-gather all-gather

ZeRO Stage 3

communication cost
= 1.5 all-reduce

forward backward optimizer
state update

weights
update

weights

reduce-scatter

all-gather

Replicated Partitioned

50

Mesh-Tensorflow

Shazeer, Noam, et al. "Mesh-tensorflow: Deep learning for supercomputers." NeurIPS 2018.

Map tensor dimension to mesh dimension for parallelism

Tensor dimension

Mesh dimension

Mapping

51

GSPMD
- Use annotations to specify partition strategy
- Propagate the annotations to whole graph
- Use compiler to generate SPMD (Single Program Multiple Data) parallel executables

Xu, Yuanzhong, et al. "GSPMD: general and scalable parallelization for ML computation graphs." arXiv 2021
52

Tofu

Wang, Minjie, Chien-chin Huang, and Jinyang Li. "Supporting very large models using automatic dataflow graph partitioning." EuroSys 2019

Tensor description language for automatic parallelization analysis

Dynamic programming for graph-level optimization
- Use graph coarsening to merge operators (e.g., elementwise-ops)
- Use dynamic programming with recursive partitioning

53

FlexFlow

Jia, Zhihao, Matei Zaharia, and Alex Aiken. "Beyond Data and Model Parallelism for Deep Neural Networks." MLSys 2019

SOAP parallelism space
- Sample, Operator, Attribute, Parameter

Simulator + MCMC for finding parallel strategies
- Details will be discussed later

Intra-op Parallelism Inter-op Parallelism
(w/o pipeline)

54

Combine Intra-op Parallelism and Inter-op Parallelism
Computational Graph

Stage

Intra-op Parallelism

Inter-op Parallelism

Narayanan, Deepak, et al. "Efficient large-scale language model training on gpu clusters using megatron-lm." SC 2021
Zheng, Lianmin, et al. "Alpa: Automating Inter-and Intra-Operator Parallelism for Distributed Deep Learning." OSDI 2022

Device
Mesh

55

Combine Intra-op Parallelism and Inter-op Parallelism

Zheng, Lianmin, et al. "Alpa: Automating Inter-and Intra-Operator Parallelism for Distributed Deep Learning." OSDI 2022
56

GPT GShard MoE Wide-ResNet

Combining inter- and intra-operator parallelism scales to more devices.

Intra-operator Parallelism Summary

- We can parallelize a single operator by exploiting its internal parallelism

- To do this for a whole computational graph, we need to choose strategies for
all nodes in the graph to minimize the communication cost

- Intra-op and inter-op can be combined

57

Other Techniques for Training Large Models

System-level Memory Optimizations

- Rematerialization/Gradient Checkpointing
- Swapping

ML-level Optimizations

- Quantization
- Sparsification
- Low-rank approximation

Chen, Tianqi, et al. "Training deep nets with sublinear memory cost." arXiv 2016
Rajbhandari, Samyam, et al. "Zero-infinity: Breaking the gpu memory wall for extreme scale deep learning." SC 2021.
Tang, Hanlin, et al. "1-bit adam: Communication efficient large-scale training with adam’s convergence speed." ICML 2021.
Shazeer, Noam, and Mitchell Stern. "Adafactor: Adaptive learning rates with sublinear memory cost." ICML 2018.

58

Where We Are

● Motivation
● History
● Parallelism Overview
● Data parallelism
● Model parallelism

○ Inter-op parallelism
○ Intra-op parallelism

● Auto-parallelization

Auto-parallelization: Motivation
Parallelisms

Data
parallelism

Operator
partitioning

Pipeline
parallelism

ZeRO

CNNs Bert GPT-3 MoE
Models

ML developer: which one is for
my model and my cluster?Megatron-LM

GPipe

Mesh-TF

1F1B

fairscale.FSDP

GSPMD

60

Auto-parallelization: Problem

61

Auto-parallelization: Problem

node node

node Node

A B DC

…

A B DC

A B DC

A B DC

x MSE

y

relu matmul

w2

matmul

w1

matmul

matmul

MSE’

matmul

relu’

sub sub

Model Cluster

Strategy

62

The Search Space is Huge

100 - 10K

#ops in a real model
(nodes to color)

#devices on a cluster
(available colors)

80 - 200+

#op types
(type of nodes)

10s - 1000s

63

Automatic Parallelization Methods

Learning-based methods

● Reinforcement Learning:
➔ [Mirhoseini et al., 2017]

➔ [Mirhoseini et al., 2018]

➔ [Addanki, et al., 2019]

● ML-based cost model:
➔ [Chen et al., 2018],

➔ [Zhou et al., 2020],

➔ [Zhang, 2020]

● Bayesian optimization:
➔ [Sergeev et al., 2018],

➔ [Peng et al., 2019]

Optimization-based methods

● Dynamic programming
➔ [Wang, et al., 2018]

➔ [Narayanan, et al., 2019]

➔ [Li, et al., 2021]

➔ [Narayanan, et al., 2012]

➔ [Tarnawski, et al., 2020]

➔ [Tarnawski, et al., 2021]

● Integer linear programming
➔ [Tarnawski, et al., 2020]

● Hierarchical Optimization
➔ [Zheng, et al., 2022]

Search-based methods

● MCMC:
➔ [Jia et al., 2018]

➔ [Jia et al., 2019]

● Heuristics
➔ [Fan et al., 2021]

64

The complete list of
references is available
on the tutorial website

Automatic Parallelization Methods

Learning-based methods

● Reinforcement Learning:
➔ [Mirhoseini et al., 2017]

➔ [Mirhoseini et al., 2018]

➔ [Addanki, et al., 2019]

● ML-based cost model:
➔ [Chen et al., 2018],

➔ [Zhou et al., 2020],

➔ [Zhang, 2020]

● Bayesian optimization:
➔ [Sergeev et al., 2018],

➔ [Peng et al., 2019]

Optimization-based methods

● Dynamic programming
➔ [Wang, et al., 2018]

➔ [Narayanan, et al., 2019]

➔ [Li, et al., 2021]

➔ [Narayanan, et al., 2012]

➔ [Tarnawski, et al., 2020]

➔ [Tarnawski, et al., 2021]

● Integer linear programming
➔ [Tarnawski, et al., 2020]

● Hierarchical optimization
➔ [Zheng, et al., 2022]

Search-based methods

● MCMC:
➔ [Jia et al., 2018]

➔ [Jia et al., 2019]

● Heuristics
➔ [Fan et al., 2021]

71

The complete list of
references is available
on the tutorial website

ColocRL (a.k.a. Device Placement Optimization)

Real
Runtime

*

A B DC
A B DC

A B DC
A B DC

Space of Inter-op
strategies

ML
Model

candidates

policy
gradients

72
Mirhoseini, et al. "Device Placement Optimization with Reinforcement Learning." ICML 2017.

https://arxiv.org/search/cs?searchtype=author&query=Mirhoseini%2C+A

ColocRL: Model

73

Figure from [Mirhoseini et al., ICML 2017]

Mirhoseini, et al. "Device Placement Optimization with Reinforcement Learning." ICML 2017.

https://arxiv.org/search/cs?searchtype=author&query=Mirhoseini%2C+A

: computational graph

: Real runtime of a placement

: output distributed of the RNN

ColocRL: Training

74
Mirhoseini, et al. "Device Placement Optimization with Reinforcement Learning." ICML 2017.

https://arxiv.org/search/cs?searchtype=author&query=Mirhoseini%2C+A

ColocRL: Other Improvement

75
Mirhoseini, et al. "A Hierarchical Model for Device Placement." ICLR 2018.

Figure from [Mirhoseini et al., ICLR 2018]

https://arxiv.org/search/cs?searchtype=author&query=Mirhoseini%2C+A

Results Discussion

76
Figure and table from [Mirhoseini et al., ICML 2017]

Automatic Parallelization Methods

Learning-based methods

● Reinforcement Learning:
➔ [Mirhoseini et al., 2017]

➔ [Mirhoseini et al., 2018]

➔ [Addanki, et al., 2019]

● ML-based cost model:
➔ [Chen et al., 2018],

➔ [Zhou et al., 2020],

➔ [Zhang, 2020]

● Bayesian optimization:
➔ [Sergeev et al., 2018],

➔ [Peng et al., 2019]

Optimization-based methods

● Dynamic programming
➔ [Wang, et al., 2018]

➔ [Narayanan, et al., 2019]

➔ [Li, et al., 2021]

➔ [Narayanan, et al., 2012]

➔ [Tarnawski, et al., 2020]

➔ [Tarnawski, et al., 2021]

● Integer linear programming
➔ [Tarnawski, et al., 2020]

● Hierarchical optimization
➔ Alpa [Zheng, et al., 2022]

Search-based methods

● MCMC:
➔ [Jia et al., 2018]

➔ [Jia et al., 2019]

● Heuristics
➔ [Fan et al., 2021]

77

The complete list of
references is available
on the tutorial website

x MSErelu matmul

w2

matmul

w1

Optimization-based Method: Alpa
Device 1

Device 2

x MSErelu matmul

w2

matmul

w1

Inter-op parallelism

x MSErelu matmul

w2

matmul

w1

Intra-op parallelism

Inter-operator
Parallelism

Intra-operator
Parallelism

Communication Less More

Device Idle Time More Less

Trade-off

78

x MSErelu matmul

w2

matmul

w1

Alpa Rationale
Device 1

Device 2

x MSErelu matmul

w2

matmul

w1

Inter-op parallelism

x MSErelu matmul

w2

matmul

w1

Intra-op parallelism

node node

node node

Fast connections
Slow connections

79

A B DC

Computational Graph

A B DC

…

A B DC

A B DC

A B DC

Whole Search Space Alpa Hierarchical Space

A B DC

A B DC

…

Inter-op Parallelism

A

A B DC

B DC
… …

Intra-op Parallelism

Search Space

80

Alpa Compiler: Hierarchical Optimization

Computational
Graph

Device
Cluster

Inter-op Pass

Intra-op Pass

Cost Estimation

Dynamic Programming

Integer Linear Programming

81

Inter-op Pass

matmul matmulx

w1 w2

Computational Graph

relu softmaxavgpoolconv convrelu add

k1 k2

82

Inter-op Pass

matmul matmulx

w1 w2

relu softmaxavgpoolconv convrelu add

k1 k2Stage 1
Stage 2

Stage 3
Stage 4

matmul matmulx

w1 w2

relu softmaxavgpoolconv convrelu add

k1 k2Stage 1 Stage 2 Stage 3 Stage 4

or

or
…

G
ra

ph
 P

ar
tit

io
ni

ng

83

Inter-op Pass

Partitioned Computational Graph

matmul matmulx

w1 w2

relu softmaxavgpoolconv convrelu add

k1 k2Stage 1
Stage 2

Stage 3
Stage 4

Device Assignment

84

Inter-op Pass

Cluster (2D Device Mesh)

GPUs within a Node

Nodes

Partitioned Computational Graph

matmul matmulx

w1 w2

relu softmaxavgpoolconv convrelu add

k1 k2Stage 1
Stage 2

Stage 3
Stage 4

85

Inter-op Pass

matmul matmulx

w1 w2

relu softmaxavgpoolconv convrelu add

k1 k2Stage 1
Stage 2

Stage 3
Stage 4

or or …

Submesh Choice 1 Submesh Choice 2 86

Inter-op Pass

matmul matmulx

w1 w2

relu softmaxavgpoolconv convrelu add

k1 k2

M

Solved together by
Dynamic Programming

Stage 1
Stage 2

Stage 3
Stage 4

N

87

Intra-op Pass

matmul matmul

w1 w2

relu

Stage Submesh

stage
input

w2Solved by
Integer Linear
Programming

Stage with intra-operator
parallelization

matmul matmul

w1

relustage
input

88

Minimize Computation cost + Communication cost

w2

matmul matmul

w1

relustage
input

Decision vector
Parallel strategies of each
operator

Intra-op Pass

Integer Linear Programming Formulation

89

Evaluation: Comparing with Previous Works

Weak scaling results where the model size grow with #GPUs.
Evaluated on 8 AWS EC2 p3.16xlarge nodes with 8 16GB V100s each (64 GPUs in total).

Match specialized
manual systems.

GPT (up to 39B) GShard MoE (up to 70B) Wide-ResNet (up to 13B)

Outperform the manual
baseline by up to 8x.

Generalize to models
without manual plans.

90

Automatic Parallelization Methods

Learning-based methods

Easy to extend the search space

High training cost

Low inference cost

Not explainable

No optimality guarantee

Optimization-based methods

Non-trivial to extend the search space

No training cost

Medium inference cost

Explainable

Some optimality guarantee

Search-based methods

Easy to extend the search space

No training cost

High inference cost

Not explainable

No optimality guarantee

91

Inter-op Parallelism
(w/ pipeline)

Intra-op Parallelism
(w/ operator-level)

Automatic

Summary Megatron-LM

Mesh-Tensorflow

GShard

Megatron-LM
V2

GPipe
PipeDream

Dapple

Alpa

92

ZeRO

Tofu
FlexFlow

ColocRL

	Slide 1: CSE 234: Data Systems for Machine Learning Winter 2025
	Slide 2: “Re-partition” in ML Parallelism yields collectives
	Slide 3: Where We Are
	Slide 4: Why Data Parallelism First
	Slide 5: Why Data Parallelism First
	Slide 6: Why Data Parallelism First
	Slide 7: Data Parallelism
	Slide 8: Two Solutions
	Slide 9: Parameter Server Assumption
	Slide 10: Parameter Server Naturally emerges
	Slide 11: AllReduce = reduce + broadcast
	Slide 12: Parameter Server Naturally emerges
	Slide 13: Parameter Server Implementation
	Slide 14: When servers nodes == worker nodes
	Slide 15: Consistency
	Slide 16: BSP’s Weakness: Stragglers
	Slide 17: An interesting property of Gradient Descent (ascent)
	Slide 18: Machine Learning is Error-tolerant (under certain conditions)
	Slide 19: Background: Asynchronous Communication (No Consistency)
	Slide 20: Background: Bounded Consistency
	Slide 21: Impacts of Consistency/Staleness: Unbounded Staleness
	Slide 22: Theory: SSP Expectation Bound
	Slide 23: AllReduce
	Slide 24: Data Parallelism with All-reduce
	Slide 25: Allreduce
	Slide 26
	Slide 27: Next Lecture

