
LLM360: FROM 360
OPEN SOURCE TO 360
COLLABORATION IN AI

Hector Zhengzhong Liu

Director

MBZUAI Institute of Foundation models - Silicon Valley Lab

https://mbzuai.ac.ae/institute-of-foundation-models/

LLM360.AI

Outline

1

• Open Source in AI​

• Why Open Collaboration

• LLM360 Projects

• Planning

• Data Preparation​

• Model Architecture Choices​

• Hyperparameter study​

• Training Curriculum Planning​

• Preparing Runtime​

• The Training Job​

• Training Wrap Up

• Model Behavior Analysis

The LLM360
Open-source

Demystifying LLM Pretraining
Pipeline with LLM360​

LLM360.AI

THE LLM360 OPEN
SOURCE INITIATIVE

What is LLM360 and why?

2

LLM360.AI

What’s Open Source?

3

What’s the current situation for open sourcing foundation models?

LLM360.AI

The Landscape of LLMs​

4

Openess

P
e
rfo

rm
a
n

c
e

OpenAI
GPT-4o

Anthropic
Claude 3.5

Google
Gemini

Close Source LLMs

Meta
Llama3 405B

Open Weight LLMs

Mistral AI
Mistral large2 ~120B

360-Open LLMs

Meta
Llama2 70B

LLM 360
K2 65B

AI2
OLMo 7B

EleutherAI
Pythia 7B

TII
Falcon 180B

LLM 360
Crystal 7B

LLM 360
Amber 7B

Meta
Llama3 70B

DeepSeek V3

LLM360.AI

Challenges in Open Science for AI

5

• Cost of reproduction (especially for LLMs)

• Results sensitive to permutations

• Evaluation is difficult

Even the first step: reproduction

and comparison is difficult

LLM360.AI

Broken Collaboration

• Industry owning
most of the
training pipeline:
the expensive and
time-consuming
part

6

• Academy has few
access to resources
and knowledge
about the pipeline

LLM360.AI

The Open Kitchen Way

7

LLM360.AI

Transparent:

Not just serve food (weight), but show

the process

Accessible:

The artifacts need to be accessible, instead

of “open” but behind a secret paywall

Reproducible:

With the recipe and intermediate steps,

you can reproduce any step, with the

infra (cookware) provided, no secret

sauce (training on test sets)

LLM360.AI

LLM360: Towards Open Source AI​

• Even the playground via
knowledge sharing
• Provide artifacts for

reproduction and collaboration

• Enable research directions

• Reduce repeated work/reduce
carbon footprint

• Build tools and standards to
enable adoption

8

Training Code: https://github.com/llm360/

(up to) 360 Checkpoints: https://huggingface.co/LLM360

Exact Data Sequence

Evaluation Trace: https://wandb.ai/llm360/

And more... https://www.llm360.ai

Artifacts released for LLM360 models

LLM360.AI

The LLM360 Project

9

• By releasing the full
trace of each model,
one can traverse the
training timeline and
zoom into any step:

• Check model
behavior

• Conduct ablation
study

• Refer to model
statistics

LLM360.AI

LLM360: Community Ablation

• In this talk, we will see many
decisions require supports of
empirical decisions
• E.g., data cleaning strategy,

data weighting,

• Full ablation of these decisions
are cost prohibited

• We provide data points and
decisions as references
• Future work can ablate on

some of the decisions

10

List of Data Processing Decisions for TxT360
Dataset. Ablation study on all of them is not
possible for a single team.

LLM360.AI

LLM360 PROJECTS

11

LLM360.AI

LLM360 Projects

12

Amber: 7B
English Model

• The first model
of the LLM360
project.

Crystal: 7B English
Model that also excels at
Code

• More token efficient than
the Llama series

• A better balance between
coding and language

Reproducible large
language model at
Llama 2 70B level,
with 35% less
compute

The first dataset to
globally deduplicate 99
CommonCrawl
snapshots and 14 high-
quality data sources,
enables precise control
over data distribution

LLM360.AI

Overview of Model: Amber​

13

ARC​ HellaSwag​ MMLU​

Llama1 7B​ 50.94​ 77.8​ 35.67​

OpenLlama-v2 7B​ 43.69​ 72.20​ 41.29​

MPT 7B​ 47.70​ 77.57​ 30.80​

Falcon 7B​ 47.87​ 78.13​ 27.79​

Amber 7B​ 41.89​ 74.14​ 30.76​

LLM360.AI

Overview of Model: Crystal​

14

#Tokens​ ARC-C​ HellaSwag​ MMLU​ HumanEval​ MBPP​

Mistral 7B​ - 59.98​ 83.31​ 64.16​ 29.12​ 38.78​

Crystal 7B​ 1.27T​ 47.01​ 71.97​ 48.78​ 35.91​ 36.38​

CodeLlama 7B​ 2.5T​ 39.93​ 60.80​ 31.12​ 33.50​ 41.40​

OpenLlama v2 7B​ 1T​ 43.69​ 72.20​ 41.29​ 15.32​ 12.69​

Llama2 7B​ 2T​ 53.07​ 77.74​ 43.80​ 13.05​ 20.09​

Llama 7B​ 1.4T​ 50.94​ 77.80​ 35.67​ 10.61​ 17.04​

Falcon 7B​ 1.5T​ 47.87​ 78.13​ 27.79​ 9.42​ 13.39​

StarCoder 15B​ 1.03T​ - - - 33.63​ 43.28​

LLM360.AI

Overview of Model: Crystal​

15

LLM performance through the lens
of FLOPs. Crystal achieves a better
token efficiency than many of the
baselines.​

Crystal also achieves a better balance between
language and coding ability

LLM360.AI

Generation
(6 metrics)​

Multiple Choice
(16 metrics)​

Math​
(2 metrics)​

Coding
(4 metrics)​

OpenLLM
(6 metrics)​

Medical
(3 metrics)​

K2-65B Chat 57.75 59.97 52.75 55.23 65.23 59.97

K2-65B​ Stage 1 45.28 60.13 44.60 39.23 63.85 62.77

K2-65B Stage 2 53.85 60.65 51.30 48.83 64.25 59.70

Llama2-70B​ 42.83 60.86 46.05 34.43 65.78 60.80

Llama2-70B-Chat​ 42.37 59.68 43.20 35.70 64.77 57.20

Llama1-65B​ 36.77 58.51 42.50 28.79 62.60 56.50

Falcon-40B​ 14.22 53.49 28.85 5.35 56.93 52.90

Falcon-180B 36.07 59.68 49.45 24.24 68.83 62.90

Overview of Model: K2-65B​

16

* Note: all evaluation run by us, results can be sensitive to detail settings.

LLM360.AI

Released K2 Artifacts

17

120
intermediate checkpoints are made available to empower research

into training dynamics

1.4T fully open data sequence artifacts for advanced understanding

into data mixtures and to kickstart optimal and sustainable future training

40+ metric curves collected through out training lifetime and made publicly

available on Weights&Biases: wandb.ai/llm360/k2

100+

21

prompts and output showing how the model responses change over

training lifetime: huggingface.co/spaces/LLM360/k2-gallery

evaluation metrics showing model holistic performance output over

training lifetime: huggingface.co/spaces/LLM360/k2-eval-gallery

16TB+ collection size of model artifacts, the most complete set of ever released

LLM360.AI

K2 Research Artifacts:
Training Data

18

Training data is a closely held secret by enterprises such as OpenAI and Meta.

K2 openly shares all data to advance understanding into data mixtures to

optimally and sustainably train and deliver the next generation of LLMs.

LLM360.AI

K2 Results

19

Logic, reasoning, math, and coding ability steadily improved throughout training

LLM360.AI

20

Closing the Gap to SOTA

Average of GSM8K, BBH, HumanEval, and MMLU evaluations

LLM360.AI

The Landscape of LLMs​

21

Openess

P
e
rfo

rm
a
n

c
e

OpenAI
GPT-4o

Anthropic
Claude 3.5

Google
Gemini

Close Source LLMs

Meta
Llama3 405B

Open Weight LLMs

Mistral AI
Mistral large2 ~120B

360-Open LLMs

Meta
Llama2 70B

LLM 360
K2 65B

AI2
OLMo 7B

EleutherAI
Pythia 7B

TII
Falcon 180B

LLM 360
Crystal 7B

LLM 360
Amber 7B

Meta
Llama3 70B

DeepSeek V3

To be announced

LLM360.AI

A WALKTHROUGH OF
LLM TRAINING

And how LLM360 can help

22

LLM360.AI

What Should You Know as a Pre-
Trainer​

23

• Today, your boss knock on your door:​
• Boss: Can you to prepare an LLM training

proposal by EOD? Let’s beat GPT-4 next
week.​

• You: ??​

• What would you reply?​

LLM360.AI

LLM Training is all about planning

• You plan and prepare everything as
much as you can
• Once the model training launches, you

have little control

• A lot of research needs to be done
on model dynamics

24

Goal and budgets Data preparation
Model architecture

choices

Hyperparameter

study

Training curriculum

planning

Preparing

runtime

The

training job

Training

wrap up

LLM360.AI 25

LLM Training
requires a lot of
budget planning
and tradeoff.​

Goal and
Budgets​

LLM360.AI

Large Scale Training is about
Tradeoff

26

• A large portion of Large Scale
Training is engineering

• Engineering is about making
tradeoff of resources

• The science here is often
about quantifying and
predicting the tradeoffs
(planning)

LLM360.AI

Determine Goals and Budgets​

27

• As a training team lead, you need to first figure out the goals
of budgets of your model.​
• What’s the major use case of the model?

• What’s the major knowledge domains that need to be covered? Finance, bio-
medical or legal problems?​

• What’s the ability the model should have? Logical reasoning or programming?​

• Write down the model use case card:​

• Evaluation and Target Scores​

• Data Choices​

• Maybe even Model Capability (e.g., Model Size, Token Size)

LLM360.AI

Determine Goals and Budgets​

28

• The goal will help determine the budget​
• What’s the minimum needed for achieving the goals?​

• A few Key Budget Decisions:
• Model Capacity​
• Practical Budget Considerations​
• Data Readiness​

• With the goals in mind, the final task might end up to find the
best trade-offs​
• Optimize performance​
• Optimize performance per dollar​
• Optimize ROI per dollar

LLM360.AI

Example Optimization Goals​

29

Performance per dollar

(PPD)

• Find a training setting to

maximize performance per

dollar spent

• Dollar can be spent on

data, computation and

other resources

Performance (Llama

setting)

• Highest performance

achievable given some

constraints(e.g., limited

data)

ROI

• In practice, the optimal

compute budget requires

one to consider the tradeoff

between cost of pretraining

and cost of inference

LLM360.AI

Key Decision Model Capacity

30

• Models designed with high capacity can (potentially) achieve
high performance​

• Factors Affecting Model Capacity​
• Model Architecture (Transformer vs. RNN vs. State Space Model)​

• Training FLOPs​

• # Model Parameters​

• # Tokens​

Neural Scaling Law: studying behaviors of neural networks that are predictable with scaling
training time, dataset size and model size across many orders of magnitude​

LLM360.AI

Scaling Laws​

31

L: Loss​​

N: #Model Parameter

D: #Training Token​​

E: A constant capturing the Entropy of the text​​

E, A, B, ɑ, and β are to be fit during experiments​Chinchilla Scaling Law Formulation​

Scaling law study allows one to estimate the model behaviors of high capacity by
experimenting on low-capacity ones.​

You will see scaling law being applied to almost all aspects for model setup

LLM360.AI

Model Capacity

32

• Emergent Abilities of Large Language Models, arXiv:2206.07682

• The Phenomenon of
Emergent Ability makes the
capacity decision more
important
• Choose the right budget that

reaches desired ability

List of Emergent Ability at Different Model Capacity

Key metric/ability may only start to emerge (i.e., beyond
random) when model exceed certain capability

LLM360.AI

The Power of Scaling Law​

33

• Conducting careful scaling laws help predict various model
behaviors​
• In [1], a 12B model’s memorized sequences can be (somewhat)

predicted by smaller models​

[1] Emergent and Predictable Memorization in Large Language Models, arXiv:2304.11158​

[2] Cerebras-GPT: Open Compute-Optimal Language Models Trained on the Cerebras Wafer-Scale Cluster, arXiv:2304.03208​

Example: Text Memorization Prediction with scaling law Scaling law of different model families [2]

LLM360.AI

Extra Tradeoffs​

34

• Scaling Law Study Cost vs. Training Cost​
• The cost to fit a good scaling law curve is also significant, considering all

the factors to be tried (e.g., hyperparameters, data selection)​

• It is a bit heuristic to decide the budget allocation​

• Though suboptimal, one set of parameter may be reused when training
conditions are similar (similar domain)​

• Training Resource vs. Supporting Resource​
• Don’t use all your GPUs for training, always reserve enough for

evaluation, analysis

• Tradeoff between model evaluation frequency vs. rollback cost​

LLM360.AI

Details of Scaling Law

35

• During implementation, we find there are many details to
control for scaling law study
• E.g., some noise in smaller scale training can cause the scaling law to be

unstable.

• Our team are gathering on more details.

Goal and budgets Data preparation
Model architecture

choices

Hyperparameter

study

Training curriculum

planning

Preparing

runtime

The

training job

Training

wrap up

LLM360.AI 36

Data is probably
one of the most
important step for
LLM pretraining​

Data
Preparation

LLM360.AI

Data Collection​

37

• Recall in Scaling Law, data plays a crucial role in final
performance​

• Collect high quality and large corpus is essential in producing in
the final model​
• Data size determine D​

• Data quality changes B and β​

• Determine the data size based on budget and loss goal​

Data Size captured by D, and
data quality captured by B and β

LLM360.AI

Special Domains​

38

• Sometimes one may want to collect data with special domains​

Programming Code

• Enable model’s

programming ability

• Helpful in function call

• Could improve

reasoning

Non-English

• Non-English corpus

• Not that filtering rules

that rely on language

statistics might need

to be adapted

Expertise Domains

• Professional areas

such as legal, medical.

• Special document

formats such as

tables, forms

LLM360.AI

Data Preprocessing​

39

• To deal with Internet scale data, the
typical way is to filter documents
based on heuristic rules​

• Note that rules will be different from
different domains​

LLM360 is developing a dataset (TBA) with careful
data processing, with fully documented decision
process

LLM360.AI

[1] To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis, arXiv:2305.13230

[2] Deduplicating Training Data Makes Language Models Better, arXiv:2107.06499​

[3] Scaling Laws and Interpretability of Learning from Repeated Data, arXiv:2205.10487​

[4] Scaling Data-Constrained Language Models, arXiv:2305.16264

Deduplication​

40

• Empirically, most study confirm that deduplication can help
improve model quality [1,2,3]​
• Falcon uses Refinedweb​

• BTLM-3B and LLM360/Crystal uses SlimPajama

• There is also attempts to repeat training data
• [4] train the model on multiple epochs​

• Llama1 and several of our models (LLM360/Amber, K2) also upweight
certain high quality dataset (such as Wikipedia)​. K2 performs pretty well
after upweighting.

LLM360.AI

Deduplication
Dataset

Starting

Tokens Multiplier

Total

Tokens % of Total

dm-math 4.33B 3x 13B 1%

pubmed-

abstracts
4.77B 3x 14.3B 1.1%

uspto 4.77B 3x 14.3B 1.1%

pubmed-

central
26B 1x 26B 2%

redpajama.arx

iv
27.3B 1x 27.3B 2.1%

starcoder.spm67.6B 0.5x 33.8B 2.6%

starcoder.fim 67.6B 0.5x 33.8B 2.6%

redpajama.sta

ckexchange
61.1B 1x 61.1B 4.7%

starcoder 132.6B 0.5x 66.3B 5.1%

pile-of-law 76.7B 1x 76.7B 5.9%

redpajama.bo

ok
80.6B 1x 80.6B 6.2%

s2orc 107.9B 1x 107.9B 8.3%

redpajama.wi

kipedia
22.1B 6x 132.6B 10.2%

refinedweb 612.3B 1x 612.3B 47.1%

Totals - - 1.3T 100%

41

• In practice, we upsampled
about 10% data in K2
training.

• Some high quality data
source such as Wikipedia is
repeated 6 times.

https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/bigcode/starcoderdata
https://huggingface.co/datasets/bigcode/starcoderdata
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/bigcode/starcoderdata
https://huggingface.co/datasets/pile-of-law/pile-of-law
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/tiiuae/falcon-refinedweb

LLM360.AI

42

• [1] hypothesize that duplicate
data would cause the model to
replace generalization ability
with memorization​
• Duplicate data induce a double-

descent phenomenon​
• Repeat a few times does not cause

much damage
• Repeat very many times also does not

cause much damage​
• Eventually grokking would happen hard to

predict in real-world scenarios

[1] Scaling Laws and Interpretability of Learning from Repeated Data, arXiv:2205.10487​

[2] Superposition, Memorization, and Double Descent, Transformer Circuits Thread​

Deduplication​

LLM360.AI

43

• Connection between this double-descent phenomenon with
superposition​
• Superposition: a model can represent more features than the dimension

it has​

• [2] shows a double-descent phase change related to superposition and
memorization​

[1] Scaling Laws and Interpretability of Learning from Repeated Data, arXiv:2205.10487​

[2] Superposition, Memorization, and Double Descent, the Transformer Circuits Thread​

Deduplication​

Before fitting Generalization Phase​

LLM360.AI

[1] Emergent and Predictable Memorization in Large Language Models, arXiv:2304.11158​

[2] Scaling Laws and Interpretability of Learning from Repeated Data, arXiv:2205.10487​

[3] Scaling Data-Constrained Language Models, arXiv:2305.16264​

Deduplication​

44

• Deduplicating your dataset is always
good, even if you want to duplicate the
data later, you can control which portion
to duplicate precisely​
• In [2], the authors observed gains with 4

epochs of repetition similar to unique data,
but diminishing return​

• However, the study of [2] is done on
maximally 9B model, notice that the
double descent penalty comes early with
larger models​
• Empirically, we find that performance a 65B

model seems fine from 3-4 times of
repetition​

The region of double descent
comes earlier with larger models

LLM360.AI

Deduplication

• The Fineweb [1] report
shows that deduplicating
more greedily and globally
actually hurts performance.

• Deduplicating within each
dump (organized by year) is
the best?!
• [1] suggests if a doc does not

have duplications across dumps
(years), they are low quality

• More -> downsample high
quality data

45

[1] https://huggingface.co/spaces/HuggingFaceFW/blogpost-fineweb-v1

LLM360.AI

[1] Emergent and Predictable Memorization in Large Language Models, arXiv:2304.11158​

[2] Scaling Laws and Interpretability of Learning from Repeated Data, arXiv:2205.10487​

[3] Scaling Data-Constrained Language Models, arXiv:2305.16264​

Deduplication

46

• Whether duplication have negative impact on the performance
have mixed empirical results.
• Be careful when repeating the data, or multiple epoch​
• Repeating high quality data is a bit safer
• Conduct scaling law study on memorization [1,2] could be helpful

• Take-away:
• Dedup in a way that you control repetition yourself, and know what you are

deduplicating
• Deduplication is just another form for data weighting

• Know what you remove is important
• Monitor when the training process reaches repeated data​

• Check for key metrics at the start of epochs​
• Pay attention to generation results in additional to memorization tasks

LLM360.AI

TxT360

47
[1] https://huggingface.co/spaces/LLM360/TxT360

• TxT360: a dataset of both
Web data + Non Web curated
data with Global dedup
• This allows one to have precise

control of which data point to
use, enabling precise weight
control

Our simple weighting recipe shows a better

learning curve than baselines. Read more in

our blog [1]

LLM360.AI

TxT360 Blog: the tedious but
useful documentation

48

• We release a very detailed
blog describing every steps
of the implementation,
including comparison and
data samples
• It is tedious to read but you

will find everything you need
to reproduce

• A technical paper with more
results is coming soon.

[1] https://huggingface.co/spaces/LLM360/TxT360

LLM360.AI

Vocabulary​

49

• Vocabulary is typically determined by a subword tokenization
algorithm over the dataset.​

• A few important decisions:​
• Special characters (such as control tokens in StarCoder)​

• Vocabulary size: a hyperparameter to choose​

• If multilingual, take special care with tokenization [1], especially with the
case of continuously pretraining​

• A few metrics can be used to help decisions:​
• Fertility​

• # of unseen (sub)word​

[1] How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models. arXiv:2012.15613​

[2] StarCoder: may the source be with you! arXiv:2305.06161​

LLM360.AI

Vocabulary​

50
[1] Scaling Laws with Vocabulary: Larger Models Deserve Larger Vocabularies. arxiv:2407.13623

Goal and budgets Data preparation
Model architecture

choices

Hyperparameter

study

Training curriculum

planning

Preparing

runtime

The

training job

Training

wrap up

LLM360.AI 51

Model Architecture
Choices

Choose
your architecture
that fits your
requirements

LLM360.AI

Model Architecture Choices​

52

• There are now quite a few architectures​
• Transformer based: GPT series, Llama variants​

• State Space Model: Mamba, Striped Hyena​

• RNN like models: RWKV​

• In LLM360 experiments, transformer-based models still
work consistently well.​
• In our preliminary study, we find SSMs are hard to be trained for coding

tasks​

• To make training and inference work well, some model choices
can be hardware dependent​

LLM360.AI

Hardware Aware Decisions​

53

• The actual engineering
process depends a lot on the
underlying hardware.​
• E.g., on Nvidia GPUs we would

want to control matrix
dimensions to be multipliers
of 8 or 16 according to the
official documentation[1]​

• More parameter suggestions
can be found in a study [2], key
heuristic in the table​

Parameter​ Recommendation​

Vocab size​ divisible by 64

b​ As large as possible​

b*s, h/a, and h/t​ divisible by a power of 2​

(b*a)/t​ should be an integer​

t​ As small as possible

a: # attention heads
s: seq length
t: tensor-parallel size
h: hidden dimension size
b: microbatch size

[1] https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc
[2] The Case for Co-Designing Model Architectures with Hardware, arXiv:2401.14489

https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc

LLM360.AI

Model Architecture Efficiency

54

• Bottlenecks in LLM models often happen with memory
constraints
• KV-Cache Memory

• Group Query Attention in place of regular MQA

• Flashattention [1]

• Architecture design often need to consider the efficiencies of an
architecture on hardware
• Mamba [2] has better FLOPs but seems to be slower according to Wall

Time

[1] FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness, Dao et.al. 2022

[2] Mamba: Linear-Time Sequence Modeling with Selective State Spaces, Dao etl.al. 2023

Goal and budgets Data preparation
Model architecture

choices

Hyperparameter

study

Training curriculum

planning

Preparing

runtime

The

training job

Training

wrap up

LLM360.AI 55

Hyperparameter
study

Tuning hyperparam
eters makes a
difference in a long
term​

LLM360.AI

Hyperparameter Study​

56

• Goal: you want your model to
behave nicely over the entire training
run
• Training samples contribute equally to

your model

• Gradient has fewer noise and on the
right direction

• Often conducted during scaling
law study​
• How do we know if

some hyperparameter can work
across model sizes?​

• Some tools are available for
us, particularly µP and µTransfer [1]​

[1] Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer, arXiv:2203.03466​

Under µP settings, [1] shows that log2(LearningRate)
is stable across different model width​

LLM360.AI

µTransfer

57

• µP advantage:​
• Transferring model parameters tuned in µP is very scalable across model

size*​

• Empirically, weight norm and gradient norms behave similar across scale​

• Can use this as a sanity check for training implementation)​

• Zero-shot transfer hyperparameters via µTransfer

• * In Tensor Program V, µP only proves the mechanism for “widthwise hyperparameter transfer”, though people use the method
beyond the theoretical guarantee (applied on depth, different data sizes).

• Recently in Tensor Program VI, “depthwise transfer” is proposed:
• Tensor Programs VI: Feature Learning in Infinite-Depth Neural Networks, arXiv:2310.02244​

LLM360.AI

Hyperparameter Study:
Tune on the Proxy​

58

• We can first tune hyperparameter efficiently on a small model
(the proxy model)

A hyperparameter search experiment when training JAIS​

LLM360.AI

µTransfer

59

• µTransferable parameters can be zero-shot transfer from the
proxy model to large model (small -> large), which works very
well with Scaling Law​

Tables denote the µTransfer rules

LLM360.AI

Additional Notes on µP

60

• Besides µTransfer, µP allows each layer to separate and
theoretically better learning rates
• In µP, the learning rate of the Transformer backbone is scaled down with

width while that of the embedding layer and output layer remains high.​

• While using µP, we empirically find linear learning rate decay
scheduling works better than cosine learning rate decay​

• A few model choices are not theoretically µTransferrable (such
as decay type), empirically we find them works well across scale​
• LLM360 is conducting more experiments around µP, especially

with depth µP.

Batch Size

LLM360.AI

61

• Many LLM training uses batch size based on prior work​
• LLM360/Amber also follows Llama’s 4M token batch size (2048 instance *

2048 context)​

• In LLM training, the batch size need to be understood on
both #instances and padded length of each instances (i.e.,
context size)​
• Roughly speaking, ↑ context length means ↓ number of instances

packed​

• Though larger effective batch size can be achieved via gradient
accumulation​

[1] An Empirical Model of Large-Batch Training, arXiv:1812.06162​

Batch Size

LLM360.AI

62

• Batch size: what is it?​
• During training, one cannot compute the real loss

of the whole dataset​
• We choose a batch, and hope to use the batch

loss to approximate the real loss​

• What’s the tradeoffs?​
• Increasing batch size will reduce the variant of

loss approximation​
• Smaller batch means the gradient has more

noise.​

• The return of this is diminishing​
• Once our approximation of loss is quite accurate,

increasing the batch size will help very little​
• But the cost will increase for using large batches​

• The gradient update is similar, but the computation
increases​

• Should identify the point where the return is not
worth increasing the batch size anymore​

• Known as the Critical Batch Size [1]

[1] An Empirical Model of Large-Batch Training, arXiv:1812.06162​

Batch Size

LLM360.AI

63

• [1] shows the two regime of batch size
• Small batch regime, increase batch size almost linearly improve training time​

• Large batch regime, increase batch size almost has no effect​

• Gradient noise scale​
• a measure of the signal-to-noise ratio of gradient​

• When batch size is much smaller than the noise scale == small batch regime​

• When batch size is much larger than the noise scale == large batch regime​

• We can find the critical batch size where the effectiveness of
larger batch start to drop​
• [1] shows that this can be predicted at the order of magnitude level

[1] An Empirical Model of Large-Batch Training, arXiv:1812.06162​

Goal and budgets Data preparation
Model architecture

choices

Hyperparameter

study

Training curriculum

planning

Preparing

runtime

The

training job

Training

wrap up

LLM360.AI 64

Training Curriculum

Planning

Plan the
training according to
your practical needs​

Determine Training Curriculum​

LLM360.AI

65

• Model training is a very long and costly process,
• Before starting, we should plan on a few key decisions.

• Determine what happens during training, or what’s the Training
Curriculum*​

• What should we consider in a training curriculum? For example:​
• During early stage, we hope to the model to warm-up well​

• Based on project needs, at the middle stages we could consider some
special curriculum such as Model Off Ramp, or Multi Stage Training

• During model wrap up, we want to make sure the model converge well​

* Not to be confused with curriculum learning, though some ideas are very similar

Learning Rate Schedule​

LLM360.AI

66

• Learning Rate Scheduling is
a key choice in training LLMs​
• Since the model will be trained for

months, too large or
small learning rate will cause
instability or major performance
slow down.​

Learning Rate Schedule​

LLM360.AI

67

Phase 1​ Phase 2​ Phase 3​

LR Warmup Steps​ 86​ 86​ 276​

LR Start Value​ 0.012​ 0.0087825​ 0.002​

LR Final Value​ 0.00012408​ 0.00013679​ 0.0002​

LR Decay​ Linear​ Linear​ Linear​

LLM360/Amber uses cosine decay with an initial from
3e−4 and decay to the final rate of 3e-5. The learning rate
is warm up for 2,000 steps.

LLM360/Crystal’s multi-phase schedule. Note that
only the base LR is shown, per-layer learning is
scaled with model width using µP.

In LLM360, note that Amber uses SP while Crystal uses µP, hence Amber uses a shared learning rate while Crystal uses a per-layer
learning rate.

Ramp-off and Warmups

LLM360.AI

68

• In practice, there are other factors affecting learning rate​
• When your datasets come in as multiple stages (may contain distribution

shift)​
• When you want to output intermediate checkpoints​
• When you want to do continual training​

• Here are some possible strategies:​
• Prepare a learning rate schedule for all the stages, and ramp-off models at

each stage​
• Pro: Overall training is smoother, no risk with incorrect warmup​
• Con: Hard to predict the whole learning rate schedule without knowing the full

data size​
• Have a learning rate schedule for each stage, and re-warmup at each stage​

• Pro: Easy to plan and implement​
• Con: Warm-up and hyperparameter choices can be tricky​

Ramp-off and Warmups​

LLM360.AI

69

[1] https://github.com/Stability-AI/StableLM/?tab=readme-ov-file#stablelm-3b-4e1t​
[2] Continual Pre-Training of Large Language Models: How to (re)warm your model? arXiv:2308.04014​

Ramp-off approach, used in Jais-30B model.
Prior work such as [1] suggested to linearly decay
to zero​

Multi-stage warm-up approach, as in
LLM360/Crystal. Prior work such as [2]
empirically confirms that warmup is necessary in
different settings

Precision Curriculum​

LLM360.AI

70

• Setting the right model precision is another tradeoff*​
• Higher precision means little loss of information and more stable​
• In Transformer, people set the precisions based on the typical ranges of

the layers​

• Intuitively, models also tend to get more stable as training goes
on​
• We empirically find that increasing the precision for latter stages of

training do not change the model performance significantly​

• We can also view lower precision as a form of quantization​
• Several work in quantization [1,2] suggest that it might be beneficial to

have higher precision at early the stage of training​

[1] DSD: Dense-Sparse-Dense Training for Deep Neural Networks, arXiv:1607.04381

[2] Pufferfish: Communication-efficient Models At No Extra Cost, arXiv:2103.03936​

* This tradeoff is also hardware specific, for
example, some Nvidia GPUs have special computation
units for FP16, FP8. TPUs only support FP32 and BF16.

Data Weighting and Mix

LLM360.AI

71

• Fixed data weighting​
• Methods such as DoReMi [1] target at computing the best data weights.​

• However, we empirically find the DoReMi predicitons are different when using different proxy
sizes​

• A more common approach is to find data weighting empirically by performing sweeps​

• Dynamic/multi-stage data weighting scheduling​
• Note that most scaling law study assume the dataset is sampled uniformly from

the same distribution across training​

• Hence it is possible to estimate data mix with a small proxy model​

• It is uncertain whether we can estimate a shifting data schedule with a proxy​
• Intuitively, larger model may learn certain “ability” with less data, allowing them to be ready

for “next step” earlier​

• In LLM360, we attempt to estimate this phenomenon but don’t have enough computation
resources to draw conclusions​

[1] DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining, arXiv:2305.10429​

Data Readiness​

LLM360.AI

72

• In reality, not everything is ready at the start of training​

• LLM training usually spans over weeks if not months​
• New requirement, new data may be available during training​

• Since several choices model’s training curriculum has been
decided in advance, improper planning here will result in
suboptimal models​

• Practically, we suggest model ramp-off and warm-up strategies
as described earlier​

Goal and budgets Data preparation
Model architecture

choices

Hyperparameter

study

Training curriculum

planning

Preparing

runtime

The

training job

Training

wrap up

LLM360.AI 73

Preparing
Runtime​

Plan the
training according to
your practical needs​

LLM360.AI

Training Framework​

74

• There are various requirements we need from the
training framework:
• Code stability and implementation correctness​

• Parallelization Support​

LLM360.AI

Background on Parallel Training

75

1. The input dataset is very large.

😃 Easy.
Data parallelism: partition input data
and replicate the model

2. The model is very large.

😖 Hard !!

GPU 1

GPU 2

Model

Model

Input batch 1

Input batch 2

Model
(350 GB)

GPU 1
(32 GB)

GPU 2
(32 GB)

Challenge: How to partition
a computational graph?

LLM360.AI

Heuristic Distributed Params Tuning

76

FSDP v.s. 3D parallelization
- FSDP

Throughput: 2600*224/s = 582.4k/s
- Megatron MP (tensor-model parallelism);

PP (pipeline parallelism):

3D parallelism performance tuning
on 56 4xA100 80G DGX nodes (224
GPUs in total).

An example parallelization tuning for
the LLM360 65B model training job.

LLM360.AI

Heuristic Distributed Params
Tuning

77

• 3D parallelism performance
tuning on 8 4xA100 40G
DGX nodes (32 GPUs in
total).

• It is more important to tune
if the cluster is not-so-
advanced. We see tuning
can achieve 3x different in
throughput.

LLM360.AI

Final Model Parallelism Solution

78

The training parallelism strategy of K2

DP: Data Parallelism

TP: Tensor Parallelism

PP: Pipeline Parallelism

We also used Context

Parallelism (CP) along with the

TP dimension

LLM360.AI

LLM360 Developments

79

• We are currently working on training infrastructures for long
context and mixture of expert training.

LLM360.AI

Fault Tolerance

80

• The LLM pre-training still has
many issues:
• Hardware failure, e.g.,

CUDA NCCL error.
• Unknown

hardware/network
slowing down.

• Loss spikes during
training.

• NaN loss and training
divergence.

LLM360.AI

Type of Hardware Failure

81

Type of failure Description

NCCL test timeout Timeout duration has been exceeded by init container.

Low active tensor core Low fractions of active tensor core slows training down.

Bad GPU A GPU is down.

Unhealthy GPU nodes GPU node-level hardware failure.

OS input/output error File systems issue/failure.

Lustre error GPU nodes reboot due to lustre error.

Mount failure GPU nodes mount failures because he user job is stuck in pending state.

Lack of storage Running out of disk space on the cluster.

LLM360.AI

Fault Tolerance

82

Replacing “failed” node with a new one
from the backup GPU pool.

Training GPU Pool

e.g., × 60

Backup GPU Pool

e.g., × 4

Skip the current data batch when
loss spike or NaN loss are
observed.

LLM360.AI

Precision

83

• Setting precision is a tradeoff between numeric accuracy vs. cost

• By changing the precision (e.g., FP32->FP16 or BF16), the numeric range
changes significantly

• Underflow: the smaller exponent range of FP16 causes it easy to underflow
• Loss scaling can help but not always

• Loss scaling: multiply the gradient by a large value before back-prop, and scale back
before applying the update. (usually used on FP16, FP8)

• BF16 has the same exponent range as FP32, which reduces the risk of
underflow
• BF16 retains more precision for small values, sacrificing precision for large values (like

integers larger than 200)

• We found in the public Megatron-LM implementation, BF16 is used for position index,
which causes many nearby positions to have the same value.

LLM360.AI

Problems Encountered

84

• During LLM360 training, we have encountered a few problems
in runtime

• Configuration bug in Lit-llama repository
• Models get stored at incorrect precision (FP16) at certain environment

• Incorrect precision in Megatron-LLM repository
• BF16 is used to store position index, which hits beyond BF16’s weak

range

• Precision changes midway due to Cerebras hardware upgrade

Goal and budgets Data preparation
Model architecture

choices

Hyperparameter

study

Training curriculum

planning

Preparing

runtime

The

training job

Training

wrap up

LLM360.AI 85

The Training
Job

Monitor your
training
job closely

LLM360.AI

Evaluation and Logging

86

• Remember to plan enough resources for evaluation
• One embarrassing lesson we learn during LLM360 is that we don’t have

enough evaluation machines for the 65B model
• Frequent evaluation will ensure we don’t waste time on an ill-behaved model

for too long
• This is again a tradeoff: evaluation resources vs. training resource

• Common evaluation:
• Held-out perplexity: one of the most direct measure

• Practically the trend in training loss works well enough (if the data is dedup)
• Held-out set is still important to ensure no accidental data repetition

• Benchmark: task-based benchmarks to direct measure desired metrics, just
ensure we don’t have data leak

• Test out generation: trainers should constantly sample output from the model

LLM360.AI

Benchmarks

Generation Multiple Choice

87

• Example: BigBench, GSM8K, MBPP

• Often involve CoT, or complex
generation

• More reliable for generation tasks

• Difficult and high variance for small-
scaled models

• Example: MMLU, Arc

• Easy to implement and evaluate

• Implemented by:

• Actual generation: hard to control

• Perplexity choices: require normalizing
over choice length

• Some metrics can be misleading and
cannot detect degenerated models

LLM360.AI

Deal with Problems

88

• Loss Spikes
• Loss spikes are common problems during large scale pretraining

• Empirically, we only observe spikes during our 65B model training but not in
the 7B training

• Solutions to loss spikes

• Reduce influence of data point, such as embedding layer gradient shrink [1]

• Simple ones can simply skip a data instance and restart the training

• Some other methods are also reported to alleviate spikes, such as model
averaging [2]

[1] GLM-130B: An Open Bilingual Pre-trained Model arXiv:2210.02414
[2] Early Weight Averaging meets High Learning Rates for LLM Pre-training arXiv:2306.03241

LLM360.AI

LLM360 Traces

89

• How do you know if you model
behave normally?
• We provide the LLM360 traces

(intermediate checkpoints [1] ,
model outputs [2] , evaluation
results [3])

• One can compare the training
trace with ours as references

[1] https://huggingface.co/LLM360
[2] https://huggingface.co/spaces/LLM360/k2-gallery
[3] https://wandb.ai/llm360

Goal and budgets Data preparation
Model architecture

choices

Hyperparameter

study

Training curriculum

planning

Preparing

runtime

The

training job

Training

wrap up

LLM360.AI 90

Training
Wrap Up

After training,
there’s still
something left​

LLM360.AI

Annealing Stage

91

Linear decay to 0 at
annealing stage

LLM360.AI

[1] LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

[2] https://pytorch.org/docs/stable/quantization.html

[3] https://www.tensorflow.org/model_optimization/guide/quantization/training

Quantization

92

• Quantization allows one to represent the final model in much
lower precision (e.g., BP16 to Int4)
• Some work [1] show that some parts of a model may not be suitable for

quantization

• Quantization Aware Training (QAT)
• QAT models the effects of quantization during training allowing for higher

accuracy compared to other quantization methods

• These techniques are supported by popular learning framework such as
PyTorch [2] and Tensorflow [3]

LLM360.AI

Finetuning and Alignment

93

• Finetune an instruction-following or other (i.e., agent) models
• Finetune for enhance specific abilities: arithmetic, coding

• Tune with safety and culture alignment
• Larger models tend to overfit on finetuning data a lot more (our natively

tuned K2-Model)

• Finetune with vision ability
• CyrstalVision and K2Vision are coming soon (work led by Dr. Zhiqiang

Shen)

LLM360.AI

RESEARCH EXAMPLES
WITH LLM360

Case Study of Research with LLM360 Models

94

LLM360.AI

Lifetime Analysis of LLMs

• The intermediate checkpoints
during pretraining allows one
to study closely the
development of LLMs
• This allows one to conduct a

lifetime analysis of the model

• We present several example
research analysis

95

LLM360.AI

Case Study:
the Pythia Memorization Study

96
* Memorization is defined with k-extractible (k=32). A string s is said to be k-extractible if it exists in the training data;
or is generated by the language model by prompting with k prior tokens.

Heatmap indicating proportion of
sequence memorized

The figure shows the distribution of memorization scores for 10 selected checkpoints, and annotate the percentage of score = 1 (indicating the sequence is memorized*):

1. More than 1of the sequences 10 are memorized from AMBER
2. AMBER can memorize more sequences with the training going
3. Since we consider more than 32 tokens memorized as equally memorized, the spike at score = 1, indicating that AMBER can memorize a much larger number of tokens than 32

LLM360.AI

Case Study:
the Pythia Memorization Study

• We group the data chunks
according to the selected
checkpoints, and plot the
memorization score on each
data chunk group for each
checkpoint
• AMBER checkpoints memorize

the latest seen data much
more than previous data

• For each data chunk, the
memorization score drops a bit
with additional training, but
keeps increasing afterwards.

97

Memorization score on data chunk for each checkpoint. The
marked spots indicate the latest chunk seen by that checkpoint.
The part on right of each mark indicates unseen data.

LLM360.AI

Case Study:
the Pythia Memorization Study

• We show the correlation
between sequences in terms
k-extractible
• Note that all sequences are

seen by all the checkpoints,
even the least trained one

• The correlation across
checkpoints is strong

98In the original memorization paper: the authors wrote “hope that future work may replicate some of our findings on entirely
distinct corpora”. In LLM360, we confirm these findings.

Heat maps visualizing the correlation between which
sequences are memorized by different checkpoints.

LLM360.AI

Case Study:
Representation over time

Some initial results: we plot the accuracy using different
layer’s hidden neurons at predicting different emotions,
larger value are closer to the output layer.

1. The reading vectors from higher layers and some
lower layers predicts the emotion better

2. With the training going on, more layers start to obtain
the cognitive ability

99

• Analyze the representation
over time experiment
• The Representation

Engineering [1] method allow
one to find relevant neurons to
cognitive phenomena in neural
networks

• We perform the RepE scan
method on LLM360/Crystal
models

[1] Representation Engineering: A Top-Down Approach to AI
Transparency. arXiv:2310.01405

4% 25%

50% 85%

LLM360.AI

Case Study: Winograd Schema

100

• The Winograd Schema asks the model to
resolve an anaphora task with common
sense reasoning

• William needed to borrow some money
from Lawrence so William could pay off
some of his debt.

• William needed to lend money to
Lawrence so Lawrence could pay off some
of his debt.

• Winograd schema are often in pairs, and
one small change can cause significant
change in semantics

• This allows one to study the small but
significant change

• We can further utilize the pair to localize
the differences of the internal activations.

Isolated activities
near the differences
“borrow” and the
output “William”

• Utilizing the pair structure, we take the
activation value from both sentences and take
the differences.

• This cancels out most of the same activities and
sheds light on how an LLM solves the Winograd
Schema

LLM360.AI

Optimizer Study for learning
behaviors

101

• Researchers are using K2 spike checkpoints and optimization
states to study the learning behaviors

• https://wandb.ai/llm360/k2

https://wandb.ai/llm360/k2

LLM360.AI

THANK YOU

102

