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• Open Source in AI​

• Why Open Collaboration

• LLM360 Projects

• Planning
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• Model Architecture Choices​

• Hyperparameter study​
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• Preparing Runtime​
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• Model Behavior Analysis

The LLM360 
Open-source

Demystifying LLM Pretraining 
Pipeline with LLM360​
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THE LLM360 OPEN 
SOURCE INITIATIVE

What is LLM360 and why?
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What’s Open Source?
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What’s the current situation for open sourcing foundation models?
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The Landscape of LLMs​
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Challenges in Open Science for AI
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• Cost of reproduction (especially for LLMs)

• Results sensitive to permutations

• Evaluation is difficult

Even the first step: reproduction 

and comparison is difficult
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Broken Collaboration

• Industry owning 
most of the 
training pipeline: 
the expensive and 
time-consuming 
part
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• Academy has few 
access to resources 
and knowledge 
about the pipeline
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The Open Kitchen Way
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LLM360.AI

Transparent:

Not just serve food (weight), but show 

the process

Accessible:

The artifacts need to be accessible, instead 

of “open” but behind a secret paywall

Reproducible:

With the recipe and intermediate steps, 

you can reproduce any step, with the 

infra (cookware) provided, no secret 

sauce (training on test sets)
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LLM360: Towards Open Source AI​

• Even the playground via 
knowledge sharing
• Provide artifacts for 

reproduction and collaboration

• Enable research directions

• Reduce repeated work/reduce 
carbon footprint 

• Build tools and standards to 
enable adoption
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Training Code: https://github.com/llm360/

(up to) 360 Checkpoints: https://huggingface.co/LLM360

Exact Data Sequence

Evaluation Trace: https://wandb.ai/llm360/

And more...  https://www.llm360.ai

Artifacts released for LLM360 models
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The LLM360 Project
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• By releasing the full 
trace of each model, 
one can traverse the 
training timeline and 
zoom into any step:

• Check model 
behavior

• Conduct ablation 
study

• Refer to model 
statistics
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LLM360: Community Ablation

• In this talk, we will see many 
decisions require supports of 
empirical decisions
• E.g., data cleaning strategy, 

data weighting,

• Full ablation of these decisions 
are cost prohibited

• We provide data points and 
decisions as references
• Future work can ablate on 

some of the decisions
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List of Data Processing Decisions for TxT360 
Dataset. Ablation study on all of them is not 
possible for a single team.
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LLM360 PROJECTS
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LLM360 Projects
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Amber: 7B 
English Model

• The first model 
of the LLM360 
project.

Crystal: 7B English 
Model that also excels at 
Code

• More token efficient than 
the Llama series

• A better balance between 
coding and language

Reproducible large 
language model at 
Llama 2 70B level, 
with 35% less 
compute

The first dataset to 
globally deduplicate 99 
CommonCrawl
snapshots and 14 high-
quality data sources, 
enables precise control 
over data distribution
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Overview of Model: Amber​
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ARC​ HellaSwag​ MMLU​

Llama1 7B​ 50.94​ 77.8​ 35.67​

OpenLlama-v2 7B​ 43.69​ 72.20​ 41.29​

MPT 7B​ 47.70​ 77.57​ 30.80​

Falcon 7B​ 47.87​ 78.13​ 27.79​

Amber 7B​ 41.89​ 74.14​ 30.76​
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Overview of Model: Crystal​
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#Tokens​ ARC-C​ HellaSwag​ MMLU​ HumanEval​ MBPP​

Mistral 7B​ - 59.98​ 83.31​ 64.16​ 29.12​ 38.78​

Crystal 7B​ 1.27T​ 47.01​ 71.97​ 48.78​ 35.91​ 36.38​

CodeLlama 7B​ 2.5T​ 39.93​ 60.80​ 31.12​ 33.50​ 41.40​

OpenLlama v2 7B​ 1T​ 43.69​ 72.20​ 41.29​ 15.32​ 12.69​

Llama2 7B​ 2T​ 53.07​ 77.74​ 43.80​ 13.05​ 20.09​

Llama 7B​ 1.4T​ 50.94​ 77.80​ 35.67​ 10.61​ 17.04​

Falcon 7B​ 1.5T​ 47.87​ 78.13​ 27.79​ 9.42​ 13.39​

StarCoder 15B​ 1.03T​ - - - 33.63​ 43.28​
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Overview of Model: Crystal​
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LLM performance through the lens 
of FLOPs. Crystal achieves a better 
token efficiency than many of the 
baselines.​

Crystal also achieves a better balance between 
language and coding ability
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Generation
(6 metrics)​

Multiple Choice
(16 metrics)​

Math​
(2 metrics)​

Coding
(4 metrics)​

OpenLLM
(6 metrics)​

Medical
(3 metrics)​

K2-65B Chat 57.75 59.97 52.75 55.23 65.23 59.97

K2-65B​ Stage 1 45.28 60.13 44.60 39.23 63.85 62.77

K2-65B Stage 2 53.85 60.65 51.30 48.83 64.25 59.70

Llama2-70B​ 42.83 60.86 46.05 34.43 65.78 60.80

Llama2-70B-Chat​ 42.37 59.68 43.20 35.70 64.77 57.20

Llama1-65B​ 36.77 58.51 42.50 28.79 62.60 56.50

Falcon-40B​ 14.22 53.49 28.85 5.35 56.93 52.90

Falcon-180B 36.07 59.68 49.45 24.24 68.83 62.90

Overview of Model: K2-65B​

16

* Note: all evaluation run by us, results can be sensitive to detail settings.
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Released K2 Artifacts
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120 
intermediate checkpoints are made available to empower research 

into training dynamics

1.4T fully open data sequence artifacts for advanced understanding 

into data mixtures and to kickstart optimal and sustainable future training

40+ metric curves collected through out training lifetime and made publicly 

available on Weights&Biases: wandb.ai/llm360/k2

100+

21

prompts and output showing how the model responses change over 

training lifetime: huggingface.co/spaces/LLM360/k2-gallery

evaluation metrics showing model holistic performance output over 

training lifetime: huggingface.co/spaces/LLM360/k2-eval-gallery

16TB+ collection size of model artifacts, the most complete set of ever released
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K2 Research Artifacts:
Training Data
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Training data is a closely held secret by enterprises such as OpenAI and Meta.

K2 openly shares all data to advance understanding into data mixtures to 

optimally and sustainably train and deliver the next generation of LLMs.
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K2 Results
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Logic, reasoning, math, and coding ability steadily improved throughout training
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Closing the Gap to SOTA

Average of GSM8K, BBH, HumanEval, and MMLU evaluations
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The Landscape of LLMs​
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A WALKTHROUGH OF 
LLM TRAINING

And how LLM360 can help

22
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What Should You Know as a Pre-
Trainer​
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• Today, your boss knock on your door:​
• Boss: Can you to prepare an LLM training 

proposal by EOD? Let’s beat GPT-4 next 
week.​

• You: ??​

• What would you reply?​
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LLM Training is all about planning

• You plan and prepare everything as 
much as you can
• Once the model training launches, you 

have little control

• A lot of research needs to be done 
on model dynamics

24
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LLM Training 
requires a lot of 
budget planning 
and tradeoff.​

Goal and 
Budgets​
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Large Scale Training is about 
Tradeoff
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• A large portion of Large Scale 
Training is engineering

• Engineering is about making 
tradeoff of resources

• The science here is often 
about quantifying and 
predicting the tradeoffs 
(planning)
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Determine Goals and Budgets​
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• As a training team lead, you need to first figure out the goals 
of budgets of your model.​
• What’s the major use case of the model?

• What’s the major knowledge domains that need to be covered? Finance, bio-
medical or legal problems?​

• What’s the ability the model should have? Logical reasoning or programming?​

• Write down the model use case card:​

• Evaluation and Target Scores​

• Data Choices​

• Maybe even Model Capability (e.g., Model Size, Token Size)
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Determine Goals and Budgets​
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• The goal will help determine the budget​
• What’s the minimum needed for achieving the goals?​

• A few Key Budget Decisions:
• Model Capacity​
• Practical Budget Considerations​
• Data Readiness​

• With the goals in mind, the final task might end up to find the 
best trade-offs​
• Optimize performance​
• Optimize performance per dollar​
• Optimize ROI per dollar
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Example Optimization Goals​
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Performance per dollar 

(PPD)

• Find a training setting to 

maximize performance per 

dollar spent

• Dollar can be spent on 

data, computation and 

other resources

Performance (Llama 

setting)

• Highest performance 

achievable given some 

constraints(e.g., limited 

data)

ROI

• In practice, the optimal 

compute budget requires 

one to consider the tradeoff 

between cost of pretraining 

and cost of inference
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Key Decision Model Capacity

30

• Models designed with high capacity can (potentially) achieve 
high performance​

• Factors Affecting Model Capacity​
• Model Architecture (Transformer vs. RNN vs. State Space Model)​

• Training FLOPs​

• # Model Parameters​

• # Tokens​

Neural Scaling Law: studying behaviors of neural networks that are predictable with scaling 
training time, dataset size and model size across many orders of magnitude​
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Scaling Laws​
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L: Loss​​

N: #Model Parameter

D: #Training Token​​

E: A constant capturing the Entropy of the text​​

E, A, B, ɑ, and β are to be fit during experiments​Chinchilla Scaling Law Formulation​

Scaling law study allows one to estimate the model behaviors of high capacity by 
experimenting on low-capacity ones.​

You will see scaling law being applied to almost all aspects for model setup
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Model Capacity
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• Emergent Abilities of Large Language Models, arXiv:2206.07682

• The Phenomenon of 
Emergent Ability makes the 
capacity decision more 
important
• Choose the right budget that 

reaches desired ability

List of Emergent Ability at Different Model Capacity

Key metric/ability may only start to emerge (i.e., beyond 
random) when model exceed certain capability 
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The Power of Scaling Law​
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• Conducting careful scaling laws help predict various model 
behaviors​
• In [1], a 12B model’s memorized sequences can be (somewhat) 

predicted by smaller models​

[1] Emergent and Predictable Memorization in Large Language Models, arXiv:2304.11158​

[2] Cerebras-GPT: Open Compute-Optimal Language Models Trained on the Cerebras Wafer-Scale Cluster, arXiv:2304.03208​

Example: Text Memorization Prediction with scaling law Scaling law of different model families [2]
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Extra Tradeoffs​
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• Scaling Law Study Cost vs. Training Cost​
• The cost to fit a good scaling law curve is also significant, considering all 

the factors to be tried (e.g., hyperparameters, data selection)​

• It is a bit heuristic to decide the budget allocation​

• Though suboptimal, one set of parameter may be reused when training 
conditions are similar (similar domain)​

• Training Resource vs. Supporting Resource​
• Don’t use all your GPUs for training, always reserve enough for 

evaluation, analysis

• Tradeoff between model evaluation frequency vs. rollback cost​
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Details of Scaling Law
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• During implementation, we find there are many details to 
control for scaling law study
• E.g., some noise in smaller scale training can cause the scaling law to be 

unstable.

• Our team are gathering on more details.
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Data is probably 
one of the most 
important step for 
LLM pretraining​

Data 
Preparation
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Data Collection​
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• Recall in Scaling Law, data plays a crucial role in final 
performance​

• Collect high quality and large corpus is essential in producing in 
the final model​
• Data size determine D​

• Data quality changes B and β​

• Determine the data size based on budget and loss goal​

Data Size captured by D, and 
data quality captured by B and β
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Special Domains​
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• Sometimes one may want to collect data with special domains​

Programming Code

• Enable model’s 

programming ability

• Helpful in function call

• Could improve 

reasoning

Non-English

• Non-English corpus

• Not that filtering rules 

that rely on language 

statistics might need 

to be adapted

Expertise Domains

• Professional areas 

such as legal, medical.

• Special document 

formats such as 

tables, forms
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Data Preprocessing​
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• To deal with Internet scale data, the 
typical way is to filter documents 
based on heuristic rules​

• Note that rules will be different from 
different domains​

LLM360 is developing a dataset (TBA) with careful 
data processing, with fully documented decision 
process
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[1] To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis, arXiv:2305.13230

[2] Deduplicating Training Data Makes Language Models Better, arXiv:2107.06499​

[3] Scaling Laws and Interpretability of Learning from Repeated Data, arXiv:2205.10487​

[4] Scaling Data-Constrained Language Models, arXiv:2305.16264

Deduplication​

40

• Empirically, most study confirm that deduplication can help 
improve model quality [1,2,3]​
• Falcon uses Refinedweb​

• BTLM-3B and LLM360/Crystal uses SlimPajama

• There is also attempts to repeat training data
• [4] train the model on multiple epochs​

• Llama1 and several of our models (LLM360/Amber, K2) also upweight 
certain high quality dataset (such as Wikipedia)​. K2 performs pretty well 
after upweighting.
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Deduplication
Dataset

Starting 

Tokens Multiplier

Total 

Tokens % of Total

dm-math 4.33B 3x 13B 1%

pubmed-

abstracts
4.77B 3x 14.3B 1.1%

uspto 4.77B 3x 14.3B 1.1%

pubmed-

central
26B 1x 26B 2%

redpajama.arx

iv
27.3B 1x 27.3B 2.1%

starcoder.spm67.6B 0.5x 33.8B 2.6%

starcoder.fim 67.6B 0.5x 33.8B 2.6%

redpajama.sta

ckexchange
61.1B 1x 61.1B 4.7%

starcoder 132.6B 0.5x 66.3B 5.1%

pile-of-law 76.7B 1x 76.7B 5.9%

redpajama.bo

ok
80.6B 1x 80.6B 6.2%

s2orc 107.9B 1x 107.9B 8.3%

redpajama.wi

kipedia
22.1B 6x 132.6B 10.2%

refinedweb 612.3B 1x 612.3B 47.1%

Totals - - 1.3T 100%
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• In practice, we upsampled
about 10% data in K2 
training.

• Some high quality data 
source such as Wikipedia is 
repeated 6 times.

https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/bigcode/starcoderdata
https://huggingface.co/datasets/bigcode/starcoderdata
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/bigcode/starcoderdata
https://huggingface.co/datasets/pile-of-law/pile-of-law
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/tiiuae/falcon-refinedweb
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• [1] hypothesize that duplicate 
data would cause the model to 
replace generalization ability 
with memorization​
• Duplicate data induce a double-

descent phenomenon​
• Repeat a few times does not cause 

much damage
• Repeat very many times also does not 

cause much damage​
• Eventually grokking would happen hard to 

predict in real-world scenarios

[1] Scaling Laws and Interpretability of Learning from Repeated Data, arXiv:2205.10487​

[2] Superposition, Memorization, and Double Descent, Transformer Circuits Thread​

Deduplication​
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• Connection between this double-descent phenomenon with 
superposition​
• Superposition: a model can represent more features than the dimension 

it has​

• [2] shows a double-descent phase change related to superposition and 
memorization​

[1] Scaling Laws and Interpretability of Learning from Repeated Data, arXiv:2205.10487​

[2] Superposition, Memorization, and Double Descent, the Transformer Circuits Thread​

Deduplication​

Before fitting Generalization Phase​
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[1] Emergent and Predictable Memorization in Large Language Models, arXiv:2304.11158​

[2] Scaling Laws and Interpretability of Learning from Repeated Data, arXiv:2205.10487​

[3] Scaling Data-Constrained Language Models, arXiv:2305.16264​

Deduplication​
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• Deduplicating your dataset is always 
good, even if you want to duplicate the 
data later, you can control which portion 
to duplicate precisely​
• In [2], the authors observed gains with 4 

epochs of repetition similar to unique data, 
but diminishing return​

• However, the study of [2] is done on 
maximally 9B model, notice that the 
double descent penalty comes early with 
larger models​
• Empirically, we find that performance a 65B 

model seems fine from 3-4 times of 
repetition​

The region of double descent 
comes earlier with larger models
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Deduplication

• The Fineweb [1] report 
shows that deduplicating 
more greedily and globally 
actually hurts performance.

• Deduplicating within each 
dump (organized by year) is 
the best?!
• [1] suggests if a doc does not 

have duplications across dumps 
(years), they are low quality

• More -> downsample high 
quality data

45

[1] https://huggingface.co/spaces/HuggingFaceFW/blogpost-fineweb-v1
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[1] Emergent and Predictable Memorization in Large Language Models, arXiv:2304.11158​

[2] Scaling Laws and Interpretability of Learning from Repeated Data, arXiv:2205.10487​

[3] Scaling Data-Constrained Language Models, arXiv:2305.16264​

Deduplication

46

• Whether duplication have negative impact on the performance 
have mixed empirical results.
• Be careful when repeating the data, or multiple epoch​
• Repeating high quality data is a bit safer
• Conduct scaling law study on memorization [1,2] could be helpful

• Take-away:
• Dedup in a way that you control repetition yourself, and know what you are 

deduplicating
• Deduplication is just another form for data weighting

• Know what you remove is important
• Monitor when the training process reaches repeated data​

• Check for key metrics at the start of epochs​
• Pay attention to generation results in additional to memorization tasks
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TxT360
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[1] https://huggingface.co/spaces/LLM360/TxT360

• TxT360: a dataset of both 
Web data + Non Web curated 
data with Global dedup
• This allows one to have precise 

control of which data point to 
use, enabling precise weight 
control

Our simple weighting recipe shows a better 

learning curve than baselines. Read more in 

our blog [1]



LLM360.AI

TxT360 Blog: the tedious but 
useful documentation
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• We release a very detailed 
blog describing every steps 
of the implementation, 
including comparison and 
data samples
• It is tedious to read but you 

will find everything you need 
to reproduce

• A technical paper with more 
results is coming soon.

[1] https://huggingface.co/spaces/LLM360/TxT360
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Vocabulary​

49

• Vocabulary is typically determined by a subword tokenization 
algorithm over the dataset.​

• A few important decisions:​
• Special characters (such as control tokens in StarCoder)​

• Vocabulary size: a hyperparameter to choose​

• If multilingual, take special care with tokenization [1], especially with the 
case of continuously pretraining​

• A few metrics can be used to help decisions:​
• Fertility​

• # of unseen (sub)word​

[1] How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models. arXiv:2012.15613​

[2] StarCoder: may the source be with you! arXiv:2305.06161​
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Vocabulary​

50
[1] Scaling Laws with Vocabulary: Larger Models Deserve Larger Vocabularies. arxiv:2407.13623
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Model Architecture
Choices

Choose 
your architecture 
that fits your 
requirements
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Model Architecture Choices​
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• There are now quite a few architectures​
• Transformer based: GPT series, Llama variants​

• State Space Model: Mamba, Striped Hyena​

• RNN like models: RWKV​

• In LLM360 experiments, transformer-based models still 
work consistently well.​
• In our preliminary study, we find SSMs are hard to be trained for coding 

tasks​

• To make training and inference work well, some model choices 
can be hardware dependent​
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Hardware Aware Decisions​
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• The actual engineering 
process depends a lot on the 
underlying hardware.​
• E.g., on Nvidia GPUs we would 

want to control matrix 
dimensions to be multipliers 
of 8 or 16 according to the 
official documentation[1]​

• More parameter suggestions 
can be found in a study [2], key 
heuristic in the table​

Parameter​ Recommendation​

Vocab size​ divisible by 64

b​ As large as possible​

b*s, h/a, and h/t​ divisible by a power of 2​

(b*a)/t​ should be an integer​

t​ As small as possible

a: # attention heads
s: seq length
t: tensor-parallel size
h: hidden dimension size
b: microbatch size

[1] https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc
[2] The Case for Co-Designing Model Architectures with Hardware, arXiv:2401.14489

https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc
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Model Architecture Efficiency

54

• Bottlenecks in LLM models often happen with memory 
constraints
• KV-Cache Memory

• Group Query Attention in place of regular MQA

• Flashattention [1]

• Architecture design often need to consider the efficiencies of an 
architecture on hardware
• Mamba [2] has better FLOPs but seems to be slower according to Wall 

Time

[1] FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness, Dao et.al. 2022

[2] Mamba: Linear-Time Sequence Modeling with Selective State Spaces, Dao etl.al. 2023
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Hyperparameter
study

Tuning hyperparam
eters makes a 
difference in a long 
term​
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Hyperparameter Study​
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• Goal: you want your model to 
behave nicely over the entire training 
run
• Training samples contribute equally to 

your model

• Gradient has fewer noise and on the 
right direction

• Often conducted during scaling 
law study​
• How do we know if 

some hyperparameter can work 
across model sizes?​

• Some tools are available for 
us, particularly µP and µTransfer [1]​

[1] Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer, arXiv:2203.03466​

Under µP settings, [1] shows that log2(LearningRate) 
is stable across different model width​
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µTransfer
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• µP advantage:​
• Transferring model parameters tuned in µP is very scalable across model 

size*​

• Empirically, weight norm and gradient norms behave similar across scale​

• Can use this as a sanity check for training implementation)​

• Zero-shot transfer hyperparameters via µTransfer

• * In Tensor Program V, µP only proves the mechanism for “widthwise hyperparameter transfer”, though people use the method 
beyond the theoretical guarantee (applied on depth, different data sizes).

• Recently in Tensor Program VI, “depthwise transfer” is proposed:
• Tensor Programs VI: Feature Learning in Infinite-Depth Neural Networks, arXiv:2310.02244​
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Hyperparameter Study:
Tune on the Proxy​

58

• We can first tune hyperparameter efficiently on a small model 
(the proxy model)

A hyperparameter search experiment when training JAIS​
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µTransfer

59

• µTransferable parameters can be zero-shot transfer from the 
proxy model to large model (small -> large), which works very 
well with Scaling Law​

Tables denote the µTransfer rules
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Additional Notes on µP

60

• Besides µTransfer, µP allows each layer to separate and 
theoretically better learning rates
• In µP, the learning rate of the Transformer backbone is scaled down with 

width while that of the embedding layer and output layer remains high.​

• While using µP, we empirically find linear learning rate decay 
scheduling works better than cosine learning rate decay​

• A few model choices are not theoretically µTransferrable (such 
as decay type), empirically we find them works well across scale​
• LLM360 is conducting more experiments around µP, especially 

with depth µP.
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• Many LLM training uses batch size based on prior work​
• LLM360/Amber also follows Llama’s 4M token batch size (2048 instance * 

2048 context)​

• In LLM training, the batch size need to be understood on 
both #instances and padded length of each instances (i.e., 
context size)​
• Roughly speaking, ↑ context length means ↓ number of instances 

packed​

• Though larger effective batch size can be achieved via gradient 
accumulation​

[1] An Empirical Model of Large-Batch Training, arXiv:1812.06162​
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• Batch size: what is it?​
• During training, one cannot compute the real loss 

of the whole dataset​
• We choose a batch, and hope to use the batch 

loss to approximate the real loss​

• What’s the tradeoffs?​
• Increasing batch size will reduce the variant of 

loss approximation​
• Smaller batch means the gradient has more 

noise.​

• The return of this is diminishing​
• Once our approximation of loss is quite accurate, 

increasing the batch size will help very little​
• But the cost will increase for using large batches​

• The gradient update is similar, but the computation 
increases​

• Should identify the point where the return is not 
worth increasing the batch size anymore​

• Known as the Critical Batch Size [1]

[1] An Empirical Model of Large-Batch Training, arXiv:1812.06162​
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• [1] shows the two regime of batch size
• Small batch regime, increase batch size almost linearly improve training time​

• Large batch regime, increase batch size almost has no effect​

• Gradient noise scale​
• a measure of the signal-to-noise ratio of gradient​

• When batch size is much smaller than the noise scale == small batch regime​

• When batch size is much larger than the noise scale == large batch regime​

• We can find the critical batch size where the effectiveness of 
larger batch start to drop​
• [1] shows that this can be predicted at the order of magnitude level

[1] An Empirical Model of Large-Batch Training, arXiv:1812.06162​
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Training Curriculum

Planning

Plan the 
training according to 
your practical needs​
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• Model training is a very long and costly process,
• Before starting, we should plan on a few key decisions.

• Determine what happens during training, or what’s the Training 
Curriculum*​

• What should we consider in a training curriculum? For example:​
• During early stage, we hope to the model to warm-up well​

• Based on project needs, at the middle stages we could consider some 
special curriculum such as Model Off Ramp, or Multi Stage Training

• During model wrap up, we want to make sure the model converge well​

* Not to be confused with curriculum learning, though some ideas are very similar
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• Learning Rate Scheduling is 
a key choice in training LLMs​
• Since the model will be trained for 

months, too large or 
small learning rate will cause 
instability or major performance 
slow down.​
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Phase 1​ Phase 2​ Phase 3​

LR Warmup Steps​ 86​ 86​ 276​

LR Start Value​ 0.012​ 0.0087825​ 0.002​

LR Final Value​ 0.00012408​ 0.00013679​ 0.0002​

LR Decay​ Linear​ Linear​ Linear​

LLM360/Amber uses cosine decay with an initial from 
3e−4 and decay to the final rate of 3e-5. The learning rate 
is warm up for 2,000 steps.

LLM360/Crystal’s multi-phase schedule. Note that 
only the base LR is shown, per-layer learning is 
scaled with model width using µP.

In LLM360, note that Amber uses SP while Crystal uses µP, hence Amber uses a shared learning rate while Crystal uses a per-layer
learning rate.
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• In practice, there are other factors affecting learning rate​
• When your datasets come in as multiple stages (may contain distribution 

shift)​
• When you want to output intermediate checkpoints​
• When you want to do continual training​

• Here are some possible strategies:​
• Prepare a learning rate schedule for all the stages, and ramp-off models at 

each stage​
• Pro: Overall training is smoother, no risk with incorrect warmup​
• Con: Hard to predict the whole learning rate schedule without knowing the full 

data size​
• Have a learning rate schedule for each stage, and re-warmup at each stage​

• Pro: Easy to plan and implement​
• Con: Warm-up and hyperparameter choices can be tricky​
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[1] https://github.com/Stability-AI/StableLM/?tab=readme-ov-file#stablelm-3b-4e1t​
[2] Continual Pre-Training of Large Language Models: How to (re)warm your model? arXiv:2308.04014​

Ramp-off approach, used in Jais-30B model. 
Prior work such as [1] suggested to linearly decay 
to zero​

Multi-stage warm-up approach, as in 
LLM360/Crystal. Prior work such as [2] 
empirically confirms that warmup is necessary in 
different settings
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• Setting the right model precision is another tradeoff*​
• Higher precision means little loss of information and more stable​
• In Transformer, people set the precisions based on the typical ranges of 

the layers​

• Intuitively, models also tend to get more stable as training goes 
on​
• We empirically find that increasing the precision for latter stages of 

training do not change the model performance significantly​

• We can also view lower precision as a form of quantization​
• Several work in quantization [1,2] suggest that it might be beneficial to 

have higher precision at early the stage of training​

[1] DSD: Dense-Sparse-Dense Training for Deep Neural Networks, arXiv:1607.04381

[2] Pufferfish: Communication-efficient Models At No Extra Cost, arXiv:2103.03936​

* This tradeoff is also hardware specific, for 
example, some Nvidia GPUs have special computation 
units for FP16, FP8. TPUs only support FP32 and BF16.
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• Fixed data weighting​
• Methods such as DoReMi [1] target at computing the best data weights.​

• However, we empirically find the DoReMi predicitons are different when using different proxy 
sizes​

• A more common approach is to find data weighting empirically by performing sweeps​

• Dynamic/multi-stage data weighting scheduling​
• Note that most scaling law study assume the dataset is sampled uniformly from 

the same distribution across training​

• Hence it is possible to estimate data mix with a small proxy model​

• It is uncertain whether we can estimate a shifting data schedule with a proxy​
• Intuitively, larger model may learn certain “ability” with less data, allowing them to be ready 

for “next step” earlier​

• In LLM360, we attempt to estimate this phenomenon but don’t have enough computation 
resources to draw conclusions​

[1] DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining, arXiv:2305.10429​
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• In reality, not everything is ready at the start of training​

• LLM training usually spans over weeks if not months​
• New requirement, new data may be available during training​

• Since several choices model’s training curriculum has been 
decided in advance, improper planning here will result in 
suboptimal models​

• Practically, we suggest model ramp-off and warm-up strategies 
as described earlier​
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Preparing 
Runtime​

Plan the 
training according to 
your practical needs​
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Training Framework​
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• There are various requirements we need from the 
training framework:
• Code stability and implementation correctness​

• Parallelization Support​
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Background on Parallel Training
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1. The input dataset is very large.

😃 Easy.
Data parallelism: partition input data
and replicate the model

2. The model is very large.

😖 Hard !!

GPU 1

GPU 2

Model

Model

Input batch 1

Input batch 2

Model
(350 GB)

GPU 1
(32 GB)

GPU 2
(32 GB)

Challenge: How to partition 
a computational graph?
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FSDP v.s. 3D parallelization
- FSDP

Throughput: 2600*224/s = 582.4k/s
- Megatron MP (tensor-model parallelism); 

PP (pipeline parallelism):

3D parallelism performance tuning 
on 56 4xA100 80G DGX nodes (224 
GPUs in total).

An example parallelization tuning for 
the LLM360 65B model training job. 
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Heuristic Distributed Params 
Tuning
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• 3D parallelism performance 
tuning on 8 4xA100 40G 
DGX nodes (32 GPUs in 
total).

• It is more important to tune 
if the cluster is not-so-
advanced. We see tuning 
can achieve 3x different in 
throughput.
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Final Model Parallelism Solution
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The training parallelism strategy of K2

DP: Data Parallelism

TP: Tensor Parallelism

PP: Pipeline Parallelism

We also used Context 

Parallelism (CP) along with the 

TP dimension
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LLM360 Developments
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• We are currently working on training infrastructures for long 
context and mixture of expert training.
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Fault Tolerance
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• The LLM pre-training still has 
many issues:
• Hardware failure, e.g., 

CUDA NCCL error.
• Unknown 

hardware/network 
slowing down.

• Loss spikes during 
training.

• NaN loss and training 
divergence.
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Type of Hardware Failure 
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Type of failure Description

NCCL test timeout Timeout duration has been exceeded by init container.

Low active tensor core Low fractions of active tensor core slows training down.

Bad GPU A GPU is down.

Unhealthy GPU nodes GPU node-level hardware failure.

OS input/output error File systems issue/failure.

Lustre error GPU nodes reboot due to lustre error.

Mount failure GPU nodes mount failures because he user job is stuck in pending state.

Lack of storage Running out of disk space on the cluster.
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Fault Tolerance
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Replacing “failed” node with a new one
from the backup GPU pool.

Training GPU Pool

e.g., × 60

Backup GPU Pool

e.g., × 4

Skip the current data batch when
loss spike or NaN loss are
observed.
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• Setting precision is a tradeoff between numeric accuracy vs. cost

• By changing the precision (e.g., FP32->FP16 or BF16), the numeric range 
changes significantly

• Underflow: the smaller exponent range of FP16 causes it easy to underflow
• Loss scaling can help but not always

• Loss scaling: multiply the gradient by a large value before back-prop, and scale back 
before applying the update. (usually used on FP16, FP8)

• BF16 has the same exponent range as FP32, which reduces the risk of 
underflow
• BF16 retains more precision for small values, sacrificing precision for large values (like 

integers larger than 200)

• We found in the public Megatron-LM implementation, BF16 is used for position index, 
which causes many nearby positions to have the same value.
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Problems Encountered
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• During LLM360 training, we have encountered a few problems 
in runtime

• Configuration bug in Lit-llama repository
• Models get stored at incorrect precision (FP16) at certain environment

• Incorrect precision in Megatron-LLM repository
• BF16 is used to store position index, which hits beyond BF16’s weak 

range

• Precision changes midway due to Cerebras hardware upgrade
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The Training 
Job

Monitor your 
training 
job closely
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Evaluation and Logging

86

• Remember to plan enough resources for evaluation
• One embarrassing lesson we learn during LLM360 is that we don’t have 

enough evaluation machines for the 65B model 
• Frequent evaluation will ensure we don’t waste time on an ill-behaved model 

for too long
• This is again a tradeoff: evaluation resources vs. training resource

• Common evaluation:
• Held-out perplexity: one of the most direct measure

• Practically the trend in training loss works well enough (if the data is dedup)
• Held-out set is still important to ensure no accidental data repetition

• Benchmark: task-based benchmarks to direct measure desired metrics, just 
ensure we don’t have data leak

• Test out generation: trainers should constantly sample output from the model
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Benchmarks

Generation Multiple Choice
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• Example: BigBench, GSM8K, MBPP

• Often involve CoT, or complex 
generation

• More reliable for generation tasks

• Difficult and high variance for small-
scaled models 

• Example: MMLU, Arc

• Easy to implement and evaluate

• Implemented by:

• Actual generation: hard to control

• Perplexity choices: require normalizing 
over choice length

• Some metrics can be misleading and 
cannot detect degenerated models
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• Loss Spikes
• Loss spikes are common problems during large scale pretraining

• Empirically, we only observe spikes during our 65B model training but not in 
the 7B training

• Solutions to loss spikes

• Reduce influence of data point, such as embedding layer gradient shrink [1]

• Simple ones can simply skip a data instance and restart the training

• Some other methods are also reported to alleviate spikes, such as model 
averaging [2]

[1] GLM-130B: An Open Bilingual Pre-trained Model arXiv:2210.02414
[2] Early Weight Averaging meets High Learning Rates for LLM Pre-training arXiv:2306.03241
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• How do you know if you model 
behave normally?
• We provide the LLM360 traces 

(intermediate checkpoints [1] , 
model outputs [2] , evaluation 
results [3])

• One can compare the training 
trace with ours as references 

[1] https://huggingface.co/LLM360
[2] https://huggingface.co/spaces/LLM360/k2-gallery
[3] https://wandb.ai/llm360
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Training 
Wrap Up

After training, 
there’s still 
something left​
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Annealing Stage
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Linear decay to 0 at 
annealing stage
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[1] LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

[2] https://pytorch.org/docs/stable/quantization.html

[3] https://www.tensorflow.org/model_optimization/guide/quantization/training

Quantization
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• Quantization allows one to represent the final model in much 
lower precision (e.g., BP16 to Int4)
• Some work [1] show that some parts of a model may not be suitable for 

quantization

• Quantization Aware Training (QAT) 
• QAT models the effects of quantization during training allowing for higher 

accuracy compared to other quantization methods

• These techniques are supported by popular learning framework such as 
PyTorch [2] and Tensorflow [3]
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Finetuning and Alignment
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• Finetune an instruction-following or other (i.e., agent) models
• Finetune for enhance specific abilities: arithmetic, coding

• Tune with safety and culture alignment
• Larger models tend to overfit on finetuning data a lot more (our natively 

tuned K2-Model )

• Finetune with vision ability
• CyrstalVision and K2Vision are coming soon (work led by Dr. Zhiqiang

Shen) 
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RESEARCH EXAMPLES 
WITH LLM360

Case Study of Research with LLM360 Models

94
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Lifetime Analysis of LLMs

• The intermediate checkpoints 
during pretraining allows one 
to study closely the 
development of LLMs
• This allows one to conduct a 

lifetime analysis of the model

• We present several example 
research analysis

95
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Case Study: 
the Pythia Memorization Study
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* Memorization is defined with k-extractible (k=32). A string s is said to be k-extractible if it exists in the training data; 
or is generated by the language model by prompting with k prior tokens.

Heatmap indicating proportion of 
sequence memorized 

The figure shows the distribution of memorization scores for 10 selected checkpoints, and annotate the percentage of score = 1 (indicating the sequence is memorized*): 

1. More than 1of the sequences 10 are memorized from AMBER
2. AMBER can memorize more sequences with the training going
3. Since we consider more than 32 tokens memorized as equally memorized, the spike at score = 1, indicating that AMBER can memorize a much larger number of tokens than 32
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Case Study: 
the Pythia Memorization Study

• We group the data chunks 
according to the selected 
checkpoints, and plot the 
memorization score on each 
data chunk group for each 
checkpoint 
• AMBER checkpoints memorize 

the latest seen data much 
more than previous data

• For each data chunk, the 
memorization score drops a bit 
with additional training, but 
keeps increasing afterwards.

97

Memorization score on data chunk for each checkpoint. The 
marked spots indicate the latest chunk seen by that checkpoint. 
The part on right of each mark indicates unseen data.
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Case Study: 
the Pythia Memorization Study

• We show the correlation 
between sequences in terms 
k-extractible
• Note that all sequences are 

seen by all the checkpoints, 
even the least trained one 

• The correlation across 
checkpoints is strong

98In the original memorization paper: the authors wrote “hope that future work may replicate some of our findings on entirely 
distinct corpora”. In LLM360, we confirm these findings.

Heat maps visualizing the correlation between which 
sequences are memorized by different checkpoints.
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Case Study: 
Representation over time

Some initial results: we plot the accuracy using different 
layer’s hidden neurons at predicting different emotions, 
larger value are closer to the output layer.

1. The reading vectors from higher layers and some 
lower layers predicts the emotion better

2. With the training going on, more layers start to obtain 
the cognitive ability

99

• Analyze the representation 
over time experiment
• The Representation 

Engineering [1] method allow 
one to find relevant neurons to 
cognitive phenomena in neural 
networks

• We perform the RepE scan 
method on LLM360/Crystal 
models

[1] Representation Engineering: A Top-Down Approach to AI 
Transparency. arXiv:2310.01405

4% 25%

50% 85%
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Case Study: Winograd Schema
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• The Winograd Schema asks the model to 
resolve an anaphora task with common 
sense reasoning

• William needed to borrow some money 
from Lawrence so William could pay off 
some of his debt. 

• William needed to lend money to 
Lawrence so Lawrence could pay off some 
of his debt. 

• Winograd schema are often in pairs, and 
one small change can cause significant 
change in semantics

• This allows one to study the small but 
significant change

• We can further utilize the pair to localize 
the differences of the internal activations.

Isolated activities 
near the differences 
“borrow” and the 
output “William”

• Utilizing the pair structure, we take the 
activation value from both sentences and take 
the differences.

• This cancels out most of the same activities and 
sheds light on how an LLM solves the Winograd 
Schema



LLM360.AI

Optimizer Study for learning 
behaviors
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• Researchers are using K2 spike checkpoints and optimization 
states to study the learning behaviors

• https://wandb.ai/llm360/k2

https://wandb.ai/llm360/k2
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THANK YOU
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