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Recap

Device 4

Device 3

Device 2

Device 1

Time

Pipeline Bubbles

● Gray area (         ) indicates devices being idle (a.k.a. Pipeline bubbles).

● Only 1 device activated at a time.

● Pipeline bubble percentage = (D - 1) / D, assuming D devices.
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Recap
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Recap: Chimera

Idea: Store bi-directional stages and combine bidirectional pipeline to further reduce 
pipeline bubbles.
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= (D - 2) / (D - 2 + 2N) 

with D devices and N micro-batches.

Li, Shigan g, and  Tor sten Hoe fler. " Chimer a: eff icien tly training  large-scale n eural n etworks with bidirectiona l pipelines."  SC 21.
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Synchronous Pipeline Schedule Summary

Pros:

● Keep the convergence semantics. The training process is exactly the same 

as training the neural network on a single device.

Cons:

● Pipeline bubbles.

● Reducing pipeline bubbles typically requires splitting inputs into smaller 

components, but too small input to the neural network will reduce the 

hardware efficiency.
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Asynchronous Pipeline Schedules

Idea: Start next round of forward pass before backward pass finishes.

Pros:

● No Pipeline bubbles.

Cons:

● Break the synchronous training semantics. Now the training will involve 

stalled gradient.

● Algorithms may store multiple versions of model weights for consistency.
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AMPNet

Idea: Fully asynchronous. Each device performs forward pass whenever free and 

updates the weights after every backward pass.

Gaunt, Alexander L., et al. "AMPNet: Asynchronous model-parallel training for dynamic neural networks." arXiv 2017.
Yang, Bowen, et al. "Pipemare: Asynchronous pipeline parallel dnn training." MLSys 2021.

Convergence: Achieve similar accuracy on small datasets (MNIST 97%), hard to 

generalize to larger datasets.
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Pipedream

Idea: Enforce the same version of weight for a single input batch by storing 

multiple weight versions.

Convergence: Similar accuracy on ImageNet with a 5x speedup compared to 

data parallel.

Nara yanan, De epak, e t al. " Pipe Dr eam:  gener alized pipeline parallelism f or DNN tra in in g." SOSP 2 019.
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Nara yanan, De epak, e t al. " Mem ory-eff icien t pipeline-par allel dnn t raining."  ICML  2021.

Pipedream-2BW

Idea: Reduce Pipedream’s memory usage (only store 2 copies) by updating 

weights less frequently. Weights always stalled by 1 update.

Convergence: Similar training accuracy on language models (BERT/GPT)
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Imbalanced Pipeline Stages 
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Frontier: Automatic Stage Partitioning

Reinforcement Learning Based (mainly for 
device placement):

1. Mirhoseini, Azalia, et al. "Device placement optimization 
with reinforcement learning." ICML 2017.

2. Gao, Yuanxiang, et al. "Spotlight: Optimizing device 
placement for training deep neural networks." ICML 2018.

3. Mirhoseini, Azalia, et al. "A hierarchical model for device 
placement." ICLR 2018.

4. Addanki, Ravichandra, et al. "Placeto: Learning 
generalizable device placement algorithms for distributed 
machine learning." NeurIPS 2019.

5. Zhou, Yanqi, et al. "Gdp: Generalized device placement 
for dataflow graphs." Arxiv 2019.

6. Paliwal, Aditya, et al. "Reinforced genetic algorithm 
learning for optimizing computation graphs." ICLR 2020.

7. …
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Goal: Minimize maximum stage latency & maximize parallelization

Optimization (Dynamic Programming/Linear 
Programming) Based:

1. Narayanan, Deepak, et al. "PipeDream: generalized 
pipeline parallelism for DNN training." SOSP 2019.

2. Tarnawski, Jakub M., et al. "Efficient algorithms for device 
placement of dnn graph operators." NeurIPS 2020.

3. Fan, Shiqing, et al. "DAPPLE: A pipelined data parallel 
approach for training large models." PPoPP 2021.

4. Tarnawski, Jakub M., Deepak Narayanan, and Amar 
Phanishayee. "Piper: Multidimensional planner for dnn 
parallelization." NeurIPS 2021.

5. Zheng, Lianmin, et al. "Alpa: Automating Inter-and Intra-
Operator Parallelism for Distributed Deep Learning." OSDI 
2022.

6. …



RL-Based Partitioning Algorithm

13Addanki, Ravichandra, et al. "Placeto: Learning generalizable device placement algorithms for distributed machine learning." NeurIPS 2019.

State: Device assignment plan for a computational graph.

Action: Modify the device assignment of a node.

Reward: Latency difference between the new and old placements.

Trained with policy gradient algorithm.



Inter-operator Parallelism Summary

Idea: Assign different operators of the computational graph to different devices 

and executed in a pipelined fashion.

Method General 

computational graph

No pipeline 

bubbles

Same convergence 

as single device

Device Placement

Synchronous Schedule

Asynchronous Schedule

Stage Partitioning: Imbalance stage → More pipeline bubble

RL-Based / Optimization-Based Automatic Stage Partitioning
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Recap: Intra-op and Inter-op

x subrelu matmul

w2

matmul

w1

Strategy 1: Inter-operator Parallelism

x subrelu matmul

w2

matmul

w1

Strategy 2: Intra-operator Parallelism

This section:

1. How to parallelize an operator ?

2. How to parallelize a graph ?
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Parallelize One Operator

for n in range(0, N):
for d in range(0, D):
C[n,d] = A[n,d] + B[n,d]  

No dependency on the two for-loops.

Can arbitrarily split the for-loops on different devices.

Element-wise operators

= +C A Bn

d

Parallelize loop n 

= +C A Bn

d

Parallelize both loop n and loop d a lot of

other variants
…

device 1 device 2 device 3 device 4
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for i in range(0, N):
for j in range(0, M):
for k in range(0, K):
C[i,j] = C[i,j] + A[i,k] x B[k,j]  

Parallelize One Operator

No dependency on the two spatial for-loops.

Can arbitrarily split the for-loops on different devices.

Accumulation on this reduction loop.

Have to accumulate partial results if we split 
this for-loop

Matrix multiplication

= xC A Bi

j

Parallelize loop i 

device 1 device 2 device 3 device 4 replicated
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for i in range(0, N):
for j in range(0, M):
for k in range(0, K):
C[i,j] = C[i,j] + A[i,k] x B[k,j]  

Parallelize One Operator

No dependency on the two spatial for-loops.

Can arbitrarily split the for-loops on different devices.

Accumulation on this reduction loop.

Have to accumulate partial results if we split 
this for-loop

Matrix multiplication

device 1 device 2 device 3 device 4 replicated

k

k

Parallelize loop k 

(got by all-reduce)

= xC A B
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for i in range(0, N):
for j in range(0, M):
for k in range(0, K):
C[i,j] = C[i,j] + A[i,k] x B[k,j]  

Parallelize One Operator

No dependency on the two spatial for-loops.

Can arbitrarily split the for-loops on different devices.

Accumulation on this reduction loop.

Have to accumulate partial results if we split 
this for-loop

a lot of

other variants

…

Matrix multiplication

device 1 device 2 device 3 device 4

= xC Ai

j

Parallelize loop i and j 

A: partially tiled

Device 1 and 2 hold a replicated tile

Device 3 and 4 hold a replicated tile

B = xAi

j

Parallelize loop i and k 

C B

C: got by all-reduce
21



for n in range(0, N):
for co in range(0, CO):
for h in range(0, H):
for w in range(0, W):
for ci in range(0, CI):
for kh in range(0, KH):
for kw in range(0, KW):
C[n,co,h,w] += A[n,co,h+kh,w+kw] x B[kh,kw,co,ci]  

Parallelize One Operator

2D Convolution

Simple case: Parallelize loop n, co, ci, then the parallelization strategies are almost the same as matmul’s.

Complicated case: Parallelize loop h and w

Simple spatial loops. Can be arbitrarily split.

Reduction loop. Need to accumulate partial results.

Stencil computation loops. Splitting these requires careful 

boundary handling.

Reduction loops. But usually too small (<= 5) for parallelization.

22



Data Parallelism as A Case of Intra-op Parallelism

matmul (c)

b

a

Matmul Parallelization Type 1

communication cost = 0

matmul (c)

b

a

Matmul Parallelization Type 2

communication cost = all-reduce(c)

Replicated Column-partitionedRow-partitioned

x MSE

y

relu matmul

w2

matmul

w1

Forward Pass

Two “Type 1” matmuls: no communication

new_w2new_w1

matmul

matmul

MSE’

matmul

relu’

Backward Pass

One “Type 1” matmul: no communication
Two “Type 2” matmuls: require all-reduce
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Re-partition Communication Cost

x

w1 w2

matmul matmulrelu

matmul relu matmul

w2

relu

Do not need re-

partition

matmul

w2

relu

…

Need re-partition

by all-gather

Replicated Column-partitionedRow-partitioned

Different operators’ parallelization strategies require different partition format of the same tensor

24



Re-partition Communication Cost

all-to-all

all-to-all

Different operators’ parallelization strategies require different partition format of the same tensor

Row-partitioned

Replicated

Column-partitioned

25



Parallelize All Operators in a Graph

Minimize Node costs (computation + communication) + Edge costs (re-partition communication)

Pick a parallel strategy

of each operator

x relu matmul

w2

matmul

w1

Problem

Manual design

Randomized search
Dynamic programming
Integer linear programming

Solution

26



Important Projects

Model-specific Intra-op Parallel Strategies
- AlexNet

- Megatron-LM

- GShard MoE

Systems for Intra-op Parallelism
- ZeRO

- Mesh-Tensorflow

- GSPMD

- Tofu

- FlexFlow

27



AlexNet

Assign a group convolution layer to 2 GPUs

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks.” NeurIPS 2012

Result: increase top-1 accuracy by 1.7%
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Megaton-LM

Result: a large language model with 8.3B parameters that outperforms SOTA results

Shoeybi, Mohammad, et al. "Megatron-LM: Training multi-billion parameter language models using model parallelism."

Figure 3 from the paper：
How to partition the MLP in the transformer.

x gelu matmul

w2

matmul

w1

Replicated Column-partitionedRow-partitioned

dropout

Illustrated with the notations in this tutorial

all-reduce during forward

all-reduce during backward
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GShard MoE

Result: a multi-language translation model with 600B parameters that outperforms SOTA

x x
batch
matmul

MoE 
Layers

matmul

Normal 
layers

Replicated Expert-partitionedRow-partitioned

X

Illustrated with the notations in this class

all-to-all re-partition communication

Lepikhin, Dmitry, et al. "GShard: Scaling giant models with conditional computation and automatic sharding." ICLR 2021
30



ZeRO Optimizer

Problem

Data parallelism replicates gradients, optimizer states and model weights on all devices.

Idea

Partition gradients, optimizer states and model weights.

Optimizer 

States (12M)

Gradients

(2M)

Model 

Weights (2M)

Memory

Cost

Communication

Cost

Data Parallelism Replicated Replicated Replicated all-reduce(2M)

ZeRO Stage 1 Partitioned Replicated Replicated all-reduce(2M)

ZeRO Stage 2 Partitioned Partitioned Replicated all-reduce(2M)

ZeRO Stage 3 Partitioned Partitioned Partitioned 1.5 all-reduce(2M)

Rajbhandari, Samyam, et al. "Zero: Memory optimizations toward training trillion parameter models." SC 2020

M is the number of parameters, N is the number of devices.
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ZeRO Stage 2

Key Idea: all-reduce = reduce-scatter + all-gather

partial
gradients

gradients multiply-add multiply-add

momentum weights

all-reduce
new

weights

Data Parallelism

partial
gradients

gradients multiply-add multiply-add

momentum weights

reduce-scatter
new

weights

all-gather

ZeRO Stage 2

Same communication cost but save memory by partitioning more tensors

Replicated Partitioned
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ZeRO Stage 3

ZeRO Stage 2

communication cost 
= all-reduce

forward backward
optimizer

state update
weights
update

weights

reduce-scatter

all-gather all-gather

ZeRO Stage 3

communication cost
= 1.5 all-reduce

forward backward
optimizer

state update
weights
update

weights

reduce-scatter

all-gather

Replicated Partitioned
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ZeRO Optimizer

Problem

Data parallelism replicates gradients, optimizer states and model weights on all devices.

Idea

Partition gradients, optimizer states and model weights.

Optimizer 

States (12M)

Gradients

(2M)

Model 

Weights (2M)

Memory

Cost

Communication

Cost

Data Parallelism Replicated Replicated Replicated all-reduce(2M)

ZeRO Stage 1 Partitioned Replicated Replicated all-reduce(2M)

ZeRO Stage 2 Partitioned Partitioned Replicated all-reduce(2M)

ZeRO Stage 3 Partitioned Partitioned Partitioned 1.5 all-reduce(2M)

Rajbhandari, Samyam, et al. "Zero: Memory optimizations toward training trillion parameter models." SC 2020

M is the number of parameters, N is the number of devices.
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Mesh-Tensorflow

Shazeer, Noam, et al. "Mesh-tensorflow: Deep learning for supercomputers." NeurIPS 2018.

Map tensor dimension to mesh dimension for parallelism

Tensor dimension

Mesh dimension

Mapping

35



GSPMD

- Use annotations to specify partition strategy

- Propagate the annotations to whole graph
- Use compiler to generate SPMD (Single Program Multiple Data) parallel executables

Xu, Yuanzhong, et al. "GSPMD: general and scalable parallelization for ML computation graphs." arXiv 2021
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Combine Intra-op Parallelism and Inter-op Parallelism

Computational Graph

Stage

Intra-op Parallelism

Inter-op Parallelism

Narayanan, Deepak, et al. "Efficient large-scale language model training on gpu clusters using megatron-lm." SC 2021

Zheng, Lianmin, et al. "Alpa: Automating Inter-and Intra-Operator Parallelism for Distributed Deep Learning." OSDI 2022

Device

Mesh

39



Intra-operator Parallelism Summary

- We can parallelize a single operator by exploiting its internal parallelism

- To do this for a whole computational graph, we need to choose strategies for 

all nodes in the graph to minimize the communication cost

- Intra-op and inter-op can be combined
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Other Techniques for Training Large Models

System-level Memory Optimizations

- Rematerialization/Gradient Checkpointing

- Swapping

ML-level Optimizations

- Quantization

- Sparsification

- Low-rank approximation

Chen, Tianqi, et al. "Training deep nets with sublinear memory cost." arXiv 2016

Rajbhandari, Samyam, et al. "Zero-infinity: Breaking the gpu memory wall for extreme scale deep learning." SC 2021.
Tang, Hanlin, et al. "1-bit adam: Communication efficient large-scale training with adam’s convergence speed." ICML 2021.

Shazeer, Noam, and Mitchell Stern. "Adafactor: Adaptive learning rates with sublinear memory cost." ICML 2018.
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Auto-parallelization: Motivation

Parallelisms

Data 

parallelism

Operator 

partitioning

Pipeline

parallelism

ZeRO

CNNs Bert GPT-3 MoE 
Models

ML developer: which one is for 
my model and my cluster?Megatron-LM

GPipe

Mesh-TF

1F1B

fairscale.FSDP

GSPMD
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Auto-parallelization: Problem
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Auto-parallelization: Problem

node node

node Node

A B DC

…

A B DC

A B DC

A B DC

x MSE

y

relu matmul

w2

matmul

w1

matmul

matmul

MSE’

matmul

relu’

sub sub

Model Cluster

Strategy
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The Search Space is Huge

100 - 10K

#ops in a real model

(nodes to color)

#devices on a cluster

(available colors)

80 - 200+

#op types

(type of nodes)

10s - 1000s
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Automatic Parallelization Methods

Learning-based methods

● Reinforcement Learning:

➔ [Mirhoseini et al., 2017]

➔ [Mirhoseini et al., 2018]

➔ [Addanki, et al., 2019]

● ML-based cost model: 

➔ [Chen et al., 2018], 

➔ [Zhou et al., 2020],

➔ [Zhang, 2020]

● Bayesian optimization:

➔ [Sergeev et al., 2018], 

➔ [Peng et al., 2019]

Optimization-based methods

● Dynamic programming

➔ [Wang, et al., 2018]

➔ [Narayanan, et al., 2019]

➔ [Li, et al., 2021]

➔ [Narayanan, et al., 2012]

➔ [Tarnawski, et al., 2020]

➔ [Tarnawski, et al., 2021]

● Integer linear programming

➔ [Tarnawski, et al., 2020]

● Hierarchical Optimization

➔ [Zheng, et al., 2022]

Search-based methods

● MCMC:

➔ [Jia et al., 2018]

➔ [Jia et al., 2019]

● Heuristics 

➔ [Fan et al., 2021]

48

The complete list of 

references is available 

on  the tutorial website



General Recipe

reduce space Smaller
Space

*
Evaluator

A B DC
A B DC

A B DC
A B DC

Search Space
Search 
method

candidates

50



Automatic Parallelization Methods

Learning-based methods

● Reinforcement Learning:

➔ [Mirhoseini et al., 2017]

➔ [Mirhoseini et al., 2018]

➔ [Addanki, et al., 2019]

● ML-based cost model: 

➔ [Chen et al., 2018], 

➔ [Zhou et al., 2020],

➔ [Zhang, 2020]

● Bayesian optimization:

➔ [Sergeev et al., 2018], 

➔ [Peng et al., 2019]

Optimization-based methods

● Dynamic programming

➔ [Wang, et al., 2018]

➔ [Narayanan, et al., 2019]

➔ [Li, et al., 2021]

➔ [Narayanan, et al., 2012]

➔ [Tarnawski, et al., 2020]

➔ [Tarnawski, et al., 2021]

● Integer linear programming

➔ [Tarnawski, et al., 2020]

● Hierarchical optimization

➔ [Zheng, et al., 2022]

Search-based methods

● MCMC:

➔ [Jia et al., 2018]

➔ [Jia et al., 2019]

● Heuristics 

➔ [Fan et al., 2021]
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The complete list of 
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on  the tutorial website



ColocRL (a.k.a. Device Placement Optimization)

Real
Runtime

*

A B DC
A B DC

A B DC
A B DC

Space of Inter-op 

strategies

ML 
Model

candidates

policy 
gradients

56
Mirhoseini, et al. "Device Placement Optimization with Reinforcement Learning." ICML 2017.

https://arxiv.org/search/cs?searchtype=author&query=Mirhoseini%2C+A


ColocRL: Model

57

Figure from [Mirhoseini et al., ICML 2017]

Mirhoseini, et al. "Device Placement Optimization with Reinforcement Learning." ICML 2017.

https://arxiv.org/search/cs?searchtype=author&query=Mirhoseini%2C+A


: computational graph

: Real runtime of a placement 

: output distributed of the RNN

ColocRL: Training

58
Mirhoseini, et al. "Device Placement Optimization with Reinforcement Learning." ICML 2017.

https://arxiv.org/search/cs?searchtype=author&query=Mirhoseini%2C+A


ColocRL: Other Improvement

59
Mirhoseini, et al. "A Hierarchical Model for Device Placement." ICLR  2018.

Figure from [Mirhoseini et al., ICLR 2018]

https://arxiv.org/search/cs?searchtype=author&query=Mirhoseini%2C+A


Results Discussion 

60

Figure and table from [Mirhoseini et al., ICML 2017]



Automatic Parallelization Methods

Learning-based methods

● Reinforcement Learning:

➔ [Mirhoseini et al., 2017]

➔ [Mirhoseini et al., 2018]

➔ [Addanki, et al., 2019]

● ML-based cost model: 

➔ [Chen et al., 2018], 

➔ [Zhou et al., 2020],

➔ [Zhang, 2020]

● Bayesian optimization:

➔ [Sergeev et al., 2018], 

➔ [Peng et al., 2019]

Optimization-based methods

● Dynamic programming

➔ [Wang, et al., 2018]

➔ [Narayanan, et al., 2019]

➔ [Li, et al., 2021]

➔ [Narayanan, et al., 2012]

➔ [Tarnawski, et al., 2020]

➔ [Tarnawski, et al., 2021]

● Integer linear programming

➔ [Tarnawski, et al., 2020]

● Hierarchical optimization

➔ Alpa [Zheng, et al., 2022]

Search-based methods

● MCMC:

➔ [Jia et al., 2018]

➔ [Jia et al., 2019]

● Heuristics 

➔ [Fan et al., 2021]

61

The complete list of 
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on  the tutorial website



x MSErelu matmul

w2

matmul

w1

Optimization-based Method: Alpa

Device 1

Device 2

x MSErelu matmul

w2

matmul

w1

Inter-op parallelism

x MSErelu matmul

w2

matmul

w1

Intra-op parallelism

Inter-operator

Parallelism

Intra-operator

Parallelism

Communication Less More

Device Idle Time More Less

Trade-off
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x MSErelu matmul

w2

matmul

w1

Alpa Rationale

Device 1

Device 2

x MSErelu matmul

w2

matmul

w1

Inter-op parallelism

x MSErelu matmul

w2

matmul

w1

Intra-op parallelism

node node

node node

Fast connections

Slow connections
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A B DC

Computational Graph

A B DC

…

A B DC

A B DC

A B DC

Whole Search Space Alpa Hierarchical Space

A B DC

A B DC

…

Inter-op Parallelism

A

A B DC

B DC

… …

Intra-op Parallelism

Search Space
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Alpa Compiler: Hierarchical Optimization

Computational 

Graph

Device 

Cluster

Inter-op Pass

Intra-op Pass

Cost Estimation

Dynamic Programming

Integer Linear Programming
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Inter-op Pass

matmul matmulx

w1 w2

Computational Graph

relu softmaxavgpoolconv convrelu add

k1 k2
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Inter-op Pass

matmul matmulx

w1 w2

relu softmaxavgpoolconv convrelu add

k1 k2Stage 1
Stage 2

Stage 3
Stage 4

matmul matmulx

w1 w2

relu softmaxavgpoolconv convrelu add

k1 k2Stage 1 Stage 2 Stage 3 Stage 4

or

or

…

G
ra

p
h

 P
a

rt
it
io

n
in

g
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Inter-op Pass

Partitioned Computational Graph

matmul matmulx

w1 w2

relu softmaxavgpoolconv convrelu add

k1 k2Stage 1
Stage 2

Stage 3
Stage 4

Device Assignment
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Inter-op Pass

Cluster (2D Device Mesh)

GPUs within a Node 

Nodes 

Partitioned Computational Graph

matmul matmulx

w1 w2

relu softmaxavgpoolconv convrelu add

k1 k2Stage 1
Stage 2

Stage 3
Stage 4

69



Inter-op Pass

matmul matmulx

w1 w2

relu softmaxavgpoolconv convrelu add

k1 k2Stage 1
Stage 2

Stage 3
Stage 4

or or …

Submesh Choice 1 Submesh Choice 2 70



Inter-op Pass

matmul matmulx

w1 w2

relu softmaxavgpoolconv convrelu add

k1 k2

M

Solved together by

Dynamic Programming

Stage 1
Stage 2

Stage 3
Stage 4

N
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Stage 4

Time

Stage 3

Stage 2

Stage 1

b

a b c d

a b c

a b c

a

d

d

dct3

t4t2

t1

(B - 1) ⋅ t3

warmup phase stable phase

𝑇 = 

𝑖

𝑆

𝑡𝑖 + 𝐵 − 1 ⋅ max
1≤𝑗≤𝑆

{𝑡𝑗}

Pipeline Execution Latency
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Time = 0 Time = 1 Time = 2 Time = 3 Time = 4 …

Inter-op Pass



Optimization objective: Find the optimal (stage, mesh) pairs that minimize 𝑇.

Solution:

Enumerate all possible max
1≤𝑗≤𝑆

{𝑡𝑗} (stable phase) and convert the first term σ𝑖
𝑆 𝑡𝑖

(warmup phase) into a 2-dimensional knapsack problem.

Inter-op Pass: Dynamic Programming

𝑡𝑖 = 𝑡intra
∗ (stage𝑖, mesh𝑖)

warmup phase stable phase

𝑇 = 

𝑖

𝑆

𝑡𝑖 + 𝐵 − 1 ⋅ max
1≤𝑗≤𝑆

{𝑡𝑗}

the optimal latency of executing 
stage 𝑖 on its assigned mesh 𝑖 :
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Intra-op Pass

matmul matmul

w1 w2

relu

Stage
Submesh

stage 
input

w2Solved by

Integer Linear 

Programming

Stage with intra-operator 

parallelization

matmul matmul

w1

relu
stage 
input
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Intra-op Pass: Computation

75

x matmul

w1

[i,k]

[k,j]

[i,j]

matmul[i, j] = Σk x[i, k] × w1[k, j]

Algo#1: ×=

Algo#2: ×=

Cost

Cost1

Cost2

Cost3Algo#3: ×=

Algo#4: …

Device 1

Device 2
Row-partitioned Column-partitioned Replicated

loop i

loop j

loop k

Intra-op Pass



Intra-op Pass: Communication

76

Layout Conversion Cost

matmul1x matmul1 matmul2

w1 w2

Algo#1 Algo#1

0

all-gathermatmul1x matmul1 matmul2

w1 w2

Algo#1 Algo#2

x matmul matmul2

w1 w2

Algo#3 Algo#2

all-reducematmul1
matmul
matmul1

Device 1

Device 2
Row-partitioned Column-partitioned Replicated

Algo#1: ×=

Algo#2: ×=

Algo#3: ×=

Intra-op Pass



Intra-op Pass: Layout Conversion

77

all-gather

slice

slice

all-gather

all-to-all

all-to-all

Device 1

Device 2
Row-partitioned Column-partitioned Replicated

Intra-op Pass



Intra-op Pass: ILP Formulation

78

For every node (op), enumerate all 
possible parallel algorithms

For every edge, infer the cost 
due to layout conversion

Minimize node-cost 

Goal: Within each stage, “color” every node in the stage, so the execution 

latency of this stage on its assigned mesh is minimized. 

+  edge-cost

s.t. peak memory usage < memory budget  

Intra-op Pass



Minimize Computation cost + Communication cost

w2

matmul matmul

w1

relu
stage 
input

Decision vector

Parallel strategies of each 
operator

Intra-op Pass

Integer Linear Programming Formulation
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Evaluation: Comparing with Previous Works

Weak scaling results where the model size grow with #GPUs.

Evaluated on 8 AWS EC2 p3.16xlarge nodes with 8 16GB V100s each (64 GPUs in total). 

Match specialized 

manual systems.

GPT (up to 39B) GShard MoE (up to 70B) Wide-ResNet (up to 13B)

Outperform the manual 

baseline by up to 8x.

Generalize to models 

without manual plans.
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Automatic Parallelization Methods

Learning-based methods

Easy to extend the search space

High training cost

Low inference cost

Not explainable

No optimality guarantee

Optimization-based methods

Non-trivial to extend the search space

No training cost

Medium inference cost

Explainable

Some optimality guarantee

Search-based methods

Easy to extend the search space

No training cost

High inference cost

Not explainable

No optimality guarantee
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Inter-op Parallelism
(w/ pipeline)

Intra-op Parallelism
(w/ operator-level)

Automatic

Summary Megatron-LM

Mesh-Tensorflow

GShard

Megatron-LM 

V2

GPipe
PipeDream

Dapple

Alpa
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ZeRO

Tofu

FlexFlow

ColocRL



Summary: How to Choose Parallelism

1. Use automatic compiler if not transformer

2. Manual parallelism search for transformers:

● Factors to consider

○ #GPUs you have

○ Model size

○ JCT (Job completion time)

○ Communication bandwidth

○ etc.
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Hao’s Ultimate Guide

if your model training

can fit into a single gpu
Yes

scale with data

parallelism until JCT ok

No
Check mem opt

and can fit?

JCT ok? Yes

JCT ok?

No

Yes

No

Yes

No
+intra/inter-op

parallelism (turn off
memopt)

GPUs are

connected all with

nvlink (<=8)

GPUs are connected

w/o nvlink
Yes

WTV but typically

Megatron-style TP

Scale beyond 8 GPUs

with 3D parallelism
still

cannot fit

High-bandwidth connect
(>=100gbps/gpu), e.g.

infiniband

medium-to-low-bandwidth

connect (<100gbps/gpu)

inter-op parallelism

tune #mb and mbs

turn on memopt

cannot fitzero-2 zero-3cannot fit
turn on memopt cannot fit

You are deepseek,

what you do?
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