Where We Are

- Motivation
- History
- Parallelism Overview
- Data parallelism
- Model parallelism
 - Inter-op parallelism
 - Intra-op parallelism
- Auto-parallelization

Recap

- Gray area (indicates devices being idle (a.k.a. Pipeline bubbles).
- Only 1 device activated at a time.
- Pipeline bubble percentage = (D 1) / D, assuming D devices.

Recap

...

Recap: Chimera

Idea: Store bi-directional stages and combine bidirectional pipeline to further reduce pipeline bubbles.

Synchronous Pipeline Schedule Summary

Pros:

• Keep the convergence semantics. The training process is exactly the same as training the neural network on a single device.

X Cons:

- Pipeline bubbles.
- Reducing pipeline bubbles typically requires splitting inputs into smaller components, but too small input to the neural network will reduce the hardware efficiency.

Asynchronous Pipeline Schedules

Idea: Start next round of forward pass before backward pass finishes.

Pros:

• No Pipeline bubbles.

X Cons:

- Break the synchronous training semantics. Now the training will involve stalled gradient.
- Algorithms may store multiple versions of model weights for consistency.

Idea: Fully asynchronous. Each device performs forward pass whenever free and updates the weights after every backward pass.

Convergence: Achieve similar accuracy on small datasets (MNIST 97%), hard to generalize to larger datasets.

Gaunt, Alexander L., et al. "AMPNet: Asynchronous model-parallel training for dynamic neural networks." *arXiv 2017.* Yang, Bowen, et al. "Pipemare: Asynchronous pipeline parallel dnn training." *MLSys 2021.*

Pipedream

Idea: Enforce the same version of weight for a single input batch by storing multiple weight versions.

Convergence: Similar accuracy on ImageNet with a 5x speedup compared to data parallel.

Con: No memory saving compared to single device case.

Pipedream-2BW

Idea: Reduce Pipedream's memory usage (only store 2 copies) by updating weights less frequently. Weights always stalled by 1 update.

Convergence: Similar training accuracy on language models (BERT/GPT)

Imbalanced Pipeline Stages

Pipeline schedules works best with balanced stages:

Frontier: Automatic Stage Partitioning

Goal: Minimize maximum stage latency & maximize parallelization

Reinforcement Learning Based (mainly for device placement):

- 1. Mirhoseini, Azalia, et al. "Device placement optimization with reinforcement learning." *ICML 2017.*
- 2. Gao, Yuanxiang, et al. "Spotlight: Optimizing device placement for training deep neural networks." *ICML 2018*.
- 3. Mirhoseini, Azalia, et al. "A hierarchical model for device placement." *ICLR 2018.*
- 4. Addanki, Ravichandra, et al. "Placeto: Learning generalizable device placement algorithms for distributed machine learning." *NeurIPS 2019.*
- 5. Zhou, Yanqi, et al. "Gdp: Generalized device placement for dataflow graphs." *Arxiv 2019.*
- Paliwal, Aditya, et al. "Reinforced genetic algorithm learning for optimizing computation graphs." *ICLR 2020.*

Optimization (Dynamic Programming/Linear Programming) Based:

- 1. Narayanan, Deepak, et al. "PipeDream: generalized pipeline parallelism for DNN training." *SOSP 2019.*
- 2. Tarnawski, Jakub M., et al. "Efficient algorithms for device placement of dnn graph operators." *NeurIPS 2020.*
- 3. Fan, Shiqing, et al. "DAPPLE: A pipelined data parallel approach for training large models." *PPoPP 2021.*
- 4. Tarnawski, Jakub M., Deepak Narayanan, and Amar Phanishayee. "Piper: Multidimensional planner for dnn parallelization." *NeurIPS 2021.*
- 5. Zheng, Lianmin, et al. "Alpa: Automating Inter-and Intra-Operator Parallelism for Distributed Deep Learning." *OSDI* 2022.
- 6. ...

RL-Based Partitioning Algorithm

State: Device assignment plan for a computational graph.Action: Modify the device assignment of a node.Reward: Latency difference between the new and old placements.Trained with policy gradient algorithm.

Inter-operator Parallelism Summary

Idea: Assign different operators of the computational graph to different devices and executed in a pipelined fashion.

Method	General computational graph	No pipeline bubbles	Same convergence as single device
Device Placement	×	×	
Synchronous Schedule		×	 Image: A set of the set of the
Asynchronous Schedule		 Image: A start of the start of	×

Stage Partitioning: Imbalance stage \rightarrow More pipeline bubble

RL-Based / Optimization-Based Automatic Stage Partitioning

Where We Are

- Motivation
- History
- Parallelism Overview
- Data parallelism
- Model parallelism
 - Inter-op parallelism
 - Intra-op parallelism
- Auto-parallelization

Recap: Intra-op and Inter-op

Strategy 1: Inter-operator Parallelism

This section:

- 1. How to parallelize an operator ?
- 2. How to parallelize a graph ?

```
Parallelize One Operator
```

Element-wise operators

📕 device 1 📃 device 2 📃 device 3 📃 device 4

a lot of other variants

. . .

No dependency on the two spatial for-loops. Can arbitrarily split the for-loops on different devices.

> Accumulation on this reduction loop. Have to accumulate partial results if we split this for-loop

device 1

device 2 device 3

device 4 replicated

$$\begin{bmatrix} C_1 \\ C_2 \\ C_3 \\ C_4 \end{bmatrix} = \begin{bmatrix} A_1 \\ A_2 \\ A_3 \\ A_4 \end{bmatrix} \times B$$

No dependency on the two spatial for-loops. Can arbitrarily split the for-loops on different devices.

> Accumulation on this reduction loop. Have to accumulate partial results if we split this for-loop

device 1 📃 device 2

device 4 replicated

Parallelize loop k

$$C = A \times B \downarrow k \qquad C = [A_1 \ A_2 \ A_3 \ A_4] \begin{bmatrix} B_1 \\ B_2 \\ B_3 \\ B_4 \end{bmatrix} = A_1 B_1 + A_2 B_2 + A_3 B_3 + A_4 B_4$$
got by all-reduce)

device 1

i

device 2 📒 device 3 📗

B

Х

```
Parallelize loop i and j
```

=

j A: partially tiled Device 1 and 2 hold a replicated tile Device 3 and 4 hold a replicated tile No dependency on the two spatial for-loops. Can arbitrarily split the for-loops on different devices.

> Accumulation on this reduction loop. Have to accumulate partial results if we split this for-loop

C: got by all-reduce

device 4

2D Convolution

Simple case: Parallelize loop n, co, ci, then the parallelization strategies are almost the same as matmul's.

Complicated case: Parallelize loop h and w

Data Parallelism as A Case of Intra-op Parallelism

Replicated Row-partitioned Column-partitioned Matmul Parallelization Type 1 communication cost = 0 b a matmul (c)

Matmul Parallelization Type 2

communication cost = all-reduce(c)

Re-partition Communication Cost

Different operators' parallelization strategies require different partition format of the same tensor

Re-partition Communication Cost

Different operators' parallelization strategies require different partition format of the same tensor

Parallelize All Operators in a Graph

Problem

Minimize Node costs (computation + communication) + Edge costs (re-partition communication)

Solution

Manual design Randomized search Dynamic programming Integer linear programming

Important Projects

Model-specific Intra-op Parallel Strategies

- AlexNet
- Megatron-LM
- GShard MoE

Systems for Intra-op Parallelism

- ZeRO
- Mesh-Tensorflow
- GSPMD
- Tofu
- FlexFlow

AlexNet

Result: increase top-1 accuracy by 1.7%

Megaton-LM

Result: a large language model with 8.3B parameters that outperforms SOTA results

Figure 3 from the paper : How to partition the MLP in the transformer.

Illustrated with the notations in this tutorial

GShard MoE

Result: a multi-language translation model with 600B parameters that outperforms SOTA

ZeRO Optimizer

Problem

Data parallelism replicates gradients, optimizer states and model weights on all devices.

Idea

Partition gradients, optimizer states and model weights.

M is the number of parameters, N is the number of devices.

	Optimizer States (12M)	Gradients (2M)	Model Weights (2M)	Memory Cost	Communication Cost
Data Parallelism	Replicated	Replicated	Replicated	16 <i>M</i>	all-reduce(2M)
ZeRO Stage 1	Partitioned	Replicated	Replicated	$4M + \frac{12M}{N}$	all-reduce(2M)
ZeRO Stage 2	Partitioned	Partitioned	Replicated	$2M + \frac{14M}{N}$	all-reduce(2M)
ZeRO Stage 3	Partitioned	Partitioned	Partitioned	$\frac{16M}{N}$	1.5 all-reduce(2M)

ZeRO Stage 2

Same communication cost but save memory by partitioning more tensors

ZeRO Optimizer

Problem

Data parallelism replicates gradients, optimizer states and model weights on all devices.

Idea

Partition gradients, optimizer states and model weights.

M is the number of parameters, N is the number of devices.

	Optimizer States (12M)	Gradients (2M)	Model Weights (2M)	Memory Cost	Communication Cost
Data Parallelism	Replicated	Replicated	Replicated	16 <i>M</i>	all-reduce(2M)
ZeRO Stage 1	Partitioned	Replicated	Replicated	$4M + \frac{12M}{N}$	all-reduce(2M)
ZeRO Stage 2	Partitioned	Partitioned	Replicated	$2M + \frac{14M}{N}$	all-reduce(2M)
ZeRO Stage 3	Partitioned	Partitioned	Partitioned	$\frac{16M}{N}$	1.5 all-reduce(2M)

Mesh-Tensorflow

Map tensor dimension to mesh dimension for parallelism

GSPMD

- Use annotations to specify partition strategy
- Propagate the annotations to whole graph
- Use compiler to generate SPMD (Single Program Multiple Data) parallel executables

```
# Partition inputs along group (G) dim.
     inputs = split(inputs, 0, D)
2
     # Replicate the gating weights
3
     wg = replicate(wg)
4
     gates = softmax(einsum("GSM,ME->GSE", inputs, wg))
5
     combine_weights, dispatch_mask = Top2Gating(gating_logits)
6
7
     dispatched_expert_inputs = einsum(
8
       "GSEC,GSM->EGCM", dispatch_mask, reshaped_inputs)
     # Partition dispatched inputs along expert (E) dim.
9
10
     dispatched_expert_inputs = split(dispatched_expert_inputs, 0, D)
   +
11
     h = einsum("EGCM,EMH->EGCH", dispatched_expert_inputs, wi)
12
      . . .
```

Combine Intra-op Parallelism and Inter-op Parallelism

Narayanan, Deepak, et al. "Efficient large-scale language model training on gpu clusters using megatron-Im." *SC 2021* Zheng, Lianmin, et al. "Alpa: Automating Inter-and Intra-Operator Parallelism for Distributed Deep Learning." *OSDI 2022*
Intra-operator Parallelism Summary

- We can parallelize a single operator by exploiting its internal parallelism
- To do this for a whole computational graph, we need to choose strategies for all nodes in the graph to minimize the communication cost
- Intra-op and inter-op can be combined

Other Techniques for Training Large Models

System-level Memory Optimizations

- Rematerialization/Gradient Checkpointing
- Swapping

ML-level Optimizations

- Quantization
- Sparsification
- Low-rank approximation

Chen, Tianqi, et al. "Training deep nets with sublinear memory cost." *arXiv 2016* Rajbhandari, Samyam, et al. "Zero-infinity: Breaking the gpu memory wall for extreme scale deep learning." *SC* 2021. Tang, Hanlin, et al. "1-bit adam: Communication efficient large-scale training with adam's convergence speed." *ICML* 2021. Shazeer, Noam, and Mitchell Stern. "Adafactor: Adaptive learning rates with sublinear memory cost." *ICML* 2018.

Where We Are

- Motivation
- History
- Parallelism Overview
- Data parallelism
- Model parallelism
 - Inter-op parallelism
 - Intra-op parallelism
- Auto-parallelization

Auto-parallelization: Motivation

Auto-parallelization: Problem

$\max_{ ext{strategy}} ext{Performance(Model, Cluster)} \ s. t. ext{ strategy} \in ext{Inter-op} \cup ext{Intra-op}$

Auto-parallelization: Problem

The Search Space is Huge

#ops in a real model (nodes to color)

#op types (type of nodes) #devices on a cluster (available colors)

100 - 10K 80 - 200+ 10s - 1000s

Automatic Parallelization Methods

Search-based methods

- MCMC:
 - → [Jia et al., 2018]
 - → [Jia et al., 2019]
- Heuristics
 - → [Fan et al., 2021]

The complete list of references is available on the tutorial website

Learning-based methods

- Reinforcement Learning:
 - → [Mirhoseini et al., 2017]
 - → [Mirhoseini et al., 2018]
 - → [Addanki, et al., 2019]
- ML-based cost model:
 - → [Chen et al., 2018],
 - → [Zhou et al., 2020],
 - → [Zhang, 2020]
- Bayesian optimization:
 - → [Sergeev et al., 2018],
 - → [Peng et al., 2019]

Optimization-based methods

- Dynamic programming
 - → [Wang, et al., 2018]
 - → [Narayanan, et al., 2019]
 - → [Li, et al., 2021]
 - → [Narayanan, et al., 2012]
 - → [Tarnawski, et al., 2020]
 - → [Tarnawski, et al., 2021]
- Integer linear programming
 - → [Tarnawski, et al., 2020]
- Hierarchical Optimization
 - → [Zheng, et al., 2022]

General Recipe

Automatic Parallelization Methods

Search-based methods

- MCMC:
 - → [Jia et al., 2018]
 - → [Jia et al., 2019]
- Heuristics
 - → [Fan et al., 2021]

The complete list of references is available on the tutorial website

Learning-based methods

- Reinforcement Learning:
 - → [Mirhoseini et al., 2017]
 - → [Mirhoseini et al., 2018]
 - → [Addanki, et al., 2019]
- ML-based cost model:
 - → [Chen et al., 2018]
 - → [Zhou et al., 2020],
 - → [Zhang, 2020]
- Bayesian optimization:
 - → [Sergeev et al., 2018]
 - → [Peng et al., 2019]

Optimization-based methods

- Dynamic programming
- → [Wang, et al., 2018]
- → [Narayanan, et al., 2019]
- → [Li, et al., 2021]
- → [Narayanan, et al., 2012]
- → [Tarnawski, et al., 2020]
- → [Tarnawski, et al., 2021]
- Integer linear programming
 - → [Tarnawski, et al., 2020]
- Hierarchical optimization
 - → [Zheng, et al., 2022]

ColocRL (a.k.a. Device Placement Optimization)

ColocRL: Model

Figure from [Mirhoseini et al., ICML 2017]

ColocRL: Training

$$\mathbb{E}_{\mathcal{P} \sim \pi(\mathcal{P} \mid \mathcal{G}; \, heta)}[R(\mathcal{P}) || \, \mathcal{G}]$$

$${\cal G}$$
: computational graph ${\cal R}({\cal P})$: Real runtime of a placement $\pi(\cdot)$: output distributed of the RNN

ColocRL: Other Improvement

Mirhoseini, et al. "A Hierarchical Model for Device Placement." ICLR 2018.

Results Discussion

Tasks	Single-CPU	Single-GPU	#GPUs	Scotch	MinCut	Expert	RL-based	Speedup
RNNLM (batch 64)	6.89	1.57	2 4	13.43 11.52	11.94 10.44	3.81 4.46	1.57 1.57	0.0% 0.0%
NMT (batch 64)	10.72	OOM	2 4	14.19 11.23	11.54 11.78	4.99 4.73	4.04 3.92	23.5% 20.6%
Inception-V3 (batch 32)	26.21	4.60	2 4	25.24 23.41	22.88 24.52	11.22 10.65	4.60 3.85	0.0% 19.0%

Figure and table from [Mirhoseini et al., ICML 2017]

Automatic Parallelization Methods

Search-based methods

- MCMC:
 - → [Jia et al., 2018]
 - → [Jia et al., 2019]
- Heuristics
 - → [Fan et al., 2021]

The complete list of references is available on the tutorial website

Learning-based methods

- Reinforcement Learning:
 - → [Mirhoseini et al., 2017]
 - → [Mirhoseini et al., 2018]
 - → [Addanki, et al., 2019]
- ML-based cost model:
 - → [Chen et al., 2018]
 - → [Zhou et al., 2020],
 - → [Zhang, 2020]
- Bayesian optimization:
 - → [Sergeev et al., 2018]
 - → [Peng et al., 2019]

Optimization-based methods

- Dynamic programming
 - → [Wang, et al., 2018]
 - → [Narayanan, et al., 2019]
- → [Li, et al., 2021]
- → [Narayanan, et al., 2012]
- → [Tarnawski, et al., 2020]
- → [Tarnawski, et al., 2021]
- Integer linear programming
 - → [Tarnawski, et al., 2020]
- Hierarchical optimization
 - → Alpa [Zheng, et al., 2022]

Optimization-based Method: Alpa

Inter-op parallelism

Intra-op parallelism

Trade-off

	Inter-operator Parallelism	Intra-operator Parallelism
Communication	Less	More
Device Idle Time	More	Less

Alpa Rationale Alpa w1 ω2 Device 1 Device 2 matmul relu ▶ matmul → MSE Х Inter-op parallelism Fast connections Slow connections w2 w1 node node matmul relu ▶ matmul ► MSE Х GPU GPU GPU GPU GPU GPU GPU GPU Intra-op parallelism node node GPU GPU GPU GPU GPU GPU GPU w2 w1 mat<mark>mul</mark> relu ▶ matmul ► MSE Х

Computational Graph Search Space В Α **Alpa Hierarchical Space** Whole Search Space Inter-op Parallelism В В Intra-op Parallelism В В В В В В

Alpa Compiler: Hierarchical Optimization

or

. . .

Partitioned Computational Graph

Cluster (2D Device Mesh)

Pipeline Execution Latency

Inter-op Pass: Dynamic Programming

Optimization objective: Find the optimal (stage, mesh) pairs that minimize *T*.

Solution:

Enumerate all possible $\max_{1 \le j \le S} \{t_j\}$ (stable phase) and convert the first term $\sum_{i=1}^{S} t_i$ (warmup phase) into a 2-dimensional knapsack problem.

Stage with intra-operator parallelization

Intra-op Pass: Computation

Intra-op Pass: Communication

Intra-op Pass: Layout Conversion

Intra-op Pass: ILP Formulation

Goal: Within each stage, "color" every node in the stage, so the <u>execution</u> <u>latency</u> of this stage on its assigned mesh is minimized.

For every node (op), enumerate all possible parallel algorithms

For every edge, infer the cost due to layout conversion

Intra-op Pass

Minimize node-cost + edge-cost

s.t. peak memory usage < memory budget

Integer Linear Programming Formulation

Minimize Computation cost + Communication cost

Evaluation: Comparing with Previous Works

GPT (up to 39B)

Match specialized manual systems.

GShard MoE (up to 70B)

Outperform the manual baseline by up to 8x.

Wide-ResNet (up to 13B)

Generalize to models without manual plans.

Weak scaling results where the model size grow with #GPUs. Evaluated on 8 AWS EC2 p3.16xlarge nodes with 8 16GB V100s each (64 GPUs in total).

Automatic Parallelization Methods

Search-based methods

- Easy to extend the search space
- No training cost
- 🗙 High inference cost
- X Not explainable
- XNo optimality guarantee

Learning-based methods

- Easy to extend the search space
- 🗙 High training cost
- Low inference cost
- X Not explainable
- X No optimality guarantee

Optimization-based methods

- X Non-trivial to extend the search space
- No training cost
- Medium inference cost
- 🗹 Explainable
- Some optimality guarantee

Summary: How to Choose Parallelism

- 1. Use automatic compiler if not transformer
- 2. Manual parallelism search for transformers:
- Factors to consider
 - #GPUs you have
 - Model size
 - JCT (Job completion time)
 - Communication bandwidth
 - \circ etc.

Hao's Ultimate Guide

