Logistics

® PA3 is posted.

®* Two programming assignments
® One MoE
®* One LLM inference

®* One theoretical assignment (light programming)
¢ Scaling law

®* You can collaborate on the above three

®* One essay
® You shall finish independently



Where We Are

Motivation

History

Parallelism Overview
Data parallelism

Model parallelism

o Inter-op parallelism
o Intra-op parallelism

Auto-parallelization



Alpa Compiler: Hierarchical Optimization

Computational Device Eﬁﬁ
Graph [}_%_(% Cluster T

v

Dynamic Programming Inter-op Pass

@ Cost Estimation

Integer Linear Programming Intra-op Pass




Inter-op Pass

_____________________________________________

Solved together by
Dynamic Programming




Pipeline Execution Latency TR T

Time=0 Time=1 Time=2 Time=3 Time=4

v Z v v

=

Stage 1 [a|b|c|d
Stage 2 [t la|b |c|d
Stage 3 t,] a b c d |t

ﬂ: L Stage 4 % lal [b] || |d

\ 2K 205 Zu
vV VvV

v

stable phase

T = + (B-1- max {t;}



Inter-op Pass: Dynamic Programming

Optimization objective: Find the optimal (stage, mesh) pairs that minimize T.

stable phase

T = + (B-1- fg]agg{tj}
f

the optimal latency of executing

—_— * ) .
stage i on its assigned mesh i : ti = tintra(Stage;, mesh;)

Solution:

Enumerate all possible 1maXS{tj} (stable phase) and convert the first term
<j<

into a 2-dimensional knapsack problem.



Intra-op Pass

____________________________________

____________________________________

Solved by |
Integer Linear stage i
programming  |_inace oSt} {Fela} et

Stage with intra-operator
parallelization




Intra'op PaSS: Computation Intra-op Pass

Device 1

Row-partitioned Column-partitioned Replicated
Device 2

matmul[i, j] = 2, x[i, k] X wl[k, 7] Cost
Algo#1: = X

(o ot |

[i,k]  [i,7] Algo#2: = X

Algo#3: 1oop k = X Cost3

Algo#4. ..



Intra-op Pass: Communication

Device 1

Device 2

Row-partitioned

Algo#1: = X
Algo#2: = X
Algo#3: = X

wl

v

X —» matmull

Algo#1

wl

v

Algo#3

wl

v

X —» matmull

Algo#1

Column-partitioned

—p
matmull

Replicated

w2

v

matmul2

Algo#1

w2

v

matmul2

Algo#2

w2

v

matmul2

Algo#2

Intra-op Pass

Layout Conversion Cost
------- >
matmull ------ 0
e all-reduce
matmull - aII-g ather
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Intra-op Pass: Layout Conversion

Device 1

Device 2

Row-partitioned

Column-partitioned

all-gather

slice allto-all

slice

all-gather

Replicated

all-to-all

Intra-op Pass

10




Intra-op Pass

Intra-op Pass: ILP Formulation

Goal: Within each stage, “color” every node in the stage, so the execution
latency of this stage on its assigned mesh is minimized.

For every edge, infer the cost

For every node (op), enumerate all
due to layout conversion

possible parallel algorithms
\ ¥ /

R —

Minimize node-cost + edge-cost

s.t. peak memory usage < memory budget

11



Evaluation: Comparing with Previous Works

GPT (up to 39B)

i
o

B Best Manual System
{1 M Alpa

w
o

=
o

Throughput (PFLOPS)
P
L]

=
o

1 4 8 16 32 64
#GPUs

Match specialized
manual systems.

GShard MoE (up to 70B)

)
w
o

™ Best Manual System
™ Alpa

N
o

=
o

Throughput (PFLOPS

o
(=)

1 4 8 16 32
#GPUs

Outperform the manual

X
64

baseline by up to 8x.

Wide-ResNet (up to 13B)

-~ 0.6
m Another Auto System

™ Alpa

=
e

o
(¥

Throughput (PFLOPS

o
o

1 4 8 16 32 64
#GPUs

Generalize to models
without manual plans.

Weak scaling results where the model size grow with #GPUSs.
Evaluated on 8 AWS EC2 p3.16xlarge nodes with 8 16GB V100s each (64 GPUs in total).
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Intra-op Parallelism
(w/ operator-level)

Summary Megatron-LM

Mesh-Tensorflow
GShard

Megatron-L
V2

PipeDream
Dapple

ColocRL

Automatic

13



Summary: How to Choose Parallelism

1. Use automatic compiler if not transformer
2. Manual parallelism search for transformers:
e [Factors to consider

o #GPUs you have

o Model size

o JCT (Job completion time)

o Communication bandwidth

o etc.

14



Hao's Ultimate Guide

if your model training

. . Yes =——> JCT 0k? =———> Yes —>
can fit into a single gpu

scale with data

—p
No parallelism until JCT ok

Check mem opt

n
No —_ and can fit? —1-—' Yes =—> JCT ok~ —1—> Yes —

+intra/inter-op

= parallelism (turn off <= No
memopt)
|
. }
WTV but typically GPUs are GPUs are connected medium-to-low-bandwidth
<+ Yes < connected all with > i —
Megatron-style TP nvlink (<=8) w/o nvlink connect (<100gbps/gpu)
i ¥
5 : inter-op parallelism
il Scale beyond 8 GPUs ngb bandwidth connect ‘
L — h el —_— (>=100gbps/gpu), e.g.
cannot fit with 3D pflra elism finiband fune #mbland mbs
1 zero-2 =% cannotfit =% zero-3 =P cannotfit =————) c.-..\

turn on memopt == cannot fit ! l 4

& You are deepseek,
what you do?

turn on memopt =



Big Picture

Dataflow Graph
Autodiff

Graph Optimization # #
Parallelization

Runtime: schedule / memory

Operator optimization /compilation



Next: Connecting the Dots

LLMSys

Optimizations and Parallelization

MLSys Basics




Large Language Models

® Transformers, Attentions

® Scaling Law
* MoE

® Connecting the dots: Training Optimizations
* Flash attention

® Serving and inference optimization
® Confinuous batching and Paged attention
* Speculative decoding (Guest Lecture)

® Connecting the dofts: Review Deepseek-v3

* Hot topics



Next Token Prediction

P(nextword | prefix)

San Diego has very nice _

San Frandsco is a city of _

surfing
weather
snow

iInnovation
homeless

04
0.5
0.01
0.6
0.3



Next Token Prediction

Probalbility("Scin Diego has very nice wecather”)
— P(“Scn Diegou) P(“hCIS” | ”Sdn DiegO")P(“Very" | "Sdn Diego
has")P(“dty”|...).. .P(“weather’|...)

T
Max Prob(x.) = HP (el 1)
t=1

/ \

MLE on observed data x; 1, This is next token prediction.
Predicting using seg2seq NNs.



Sequence Prediction

Take a set of input sequence, predict the output sequence

V1 Y2 Y3 Va

T
model 1_[ P(xpiqlx1. )
t=1

X1 Xy X3 X4

Predict each output based on history  y: = fo (x1.0)

There are many ways to build up the predictive model

21



“Attention” Mechanism

Generally refers to the approach that weighted combine individual states

Attention output

Hidden states from
previous layer

h

ha

hs

hy

ot
he = Di—1SiX¢

Intuitively s; is “attention score” that computes how relevant the position i’s input is

to this current hidden output

There are different methods to decide how attention score is being computed

22



Self-Attention Operation

Self attention refers to a particular form of attention mechanism.

L1 L 1]

Given three inputs Q, K,V € RT*¢ (“queries”, “keys”, “values”)

Define the self-attention as:

. QK"
SelfAttention(Q, K, V) = softmax 1172 14

23



A Closer Look at Self-Attention

Use gy, k¢, v, to refers to row t of the K matrix

h| |ha| |hs| |h| Ask the following question:

How to compute the output h;, based on g, K,V
k| k2| |ks| |k, one timestep t

vi| | V2| |v3| |vs To keep presentation simple, we will drop suffix t
and just use q to refer to g, in next few slide

24



A Closer Look at Self-Attention

Use gy, k¢, v, to refers to row t of the K matrix

hl hZ h3 h4,
k1 kz k3 k4_
vl UZ 173 U4

q

Conceptually, we compute the output in the following two
steps:
Pre-softmax “attention score”

1
S = \/_EqkiT
Weighed average via softmax

. ., = 2ieXP(s)Y;
h = Y}; softmax(s);v; %.j exp(s;)

Intuition: s; computes the relevance of k; to the query g,
then we do weighted sum of values proportional to their relevance

25



Comparing the Matrix Form and the Decomposed Form

Use gy, k¢, v, to refers to row t of the K matrix

. QKT
SelfAttention(Q, K, V) = softmax 1172 14

hl hZ h3 h4, q

Pre-softmax “attention score”

1
kq k2 k| | kg Sti = \/_eqk;r
(2 v, 12 Uy Weighed average via softmax

hy = Z softmax(St‘:)ivi = softmax(St,:)V

i

Intuition: s; computes the relevance of k; to the query g,
then we do weighted sum of values proportional to their relevance

26



Multi-Head Attention

Have multiple “attention heads” ¢, k®,v®  denotes j-th attention head

- Apply self-attention in each attention head

. QK"
SelfAttention(Q, K, V) = softmax 1172 14

Concatenate all output heads together as output

Each head can correspond to different kind of information.
Sometimes we can share the heads: GQA(group query attention) all heads
share K, V but have different Q

27



How to get Q K V?

Obtain Q, K,V from previous layer’s hidden state X by linear projection

Q = XW,
K = XWy
V=XW,
1]1(1) vz(]) vg) vi})
[
| + Can compute all heads and Q, K, V together then
Linear projection split/reshape out into individual @, K, V with multiple heads

28



Transformer Block

A typical transformer block

Z = SelfAttention(X Wy, XW, XWy)
Z = LayerNorm(X + Z)
H = LayerNorm(ReLU(ZW,)W, + Z)

(multi-head) self-attention, followed by a linear layer and
ReLU and some additional residual connections and
normalization

normalize
Feed forward

normalize

29



Masked Self-Attention

In the matrix form, we are computing weighted average over all inputs

In auto regressive models, usually it is good to maintain casual
qs ha relation, and only attend to some of the inputs (e.g. skip the red

/_%T\ dashed edge on the left). We can add “attention mask”

KT
MaskedSelfAttention(Q, K, V) = softmax (31/2 — M) 14

My = {O,jSi 0

Only attend to previous inputs. Depending on input structure and model, attention mask can change.

We can also simply skip the computation that are masked out if there is a special implementation to do so
30



Qutput

Probabilities
Transformers
* Transformer decoders [ (radatiom)
* Many of them ool
° . . . | .
Really just: attentions + layernorm + MLPs (e rom dual
. Nx
* Word embeddings Masked
oy . Attenti
® Position embeddings Leﬂ 'O;
\—
®* Rotary embedding Positional
cncoding LD
® |Loss function: cross entropy loss over a seque Input
Embedding

Inputs



Transformers

Output
Probabilities

N
Add & Norm

Feed
Forward

Add & Norm

Masked
Multi-Head
Attention

A
\.\—_}

Positional 3
Encoding e
Input
Embedding

T

Inputs

Nx




Output
Probabilities
A

Feedforward Layers S
( Linear )
A
FFEN(z; Wi, by, Wa, by) = f(xW1 + b1)Ws + by 4 dd&:No
s Feed )
- - Forward
Non-linearity SERGE
Linear1/ \Linear2 W g =it
Masked
Multi-Head
S f() — Alitelntizi
< < A
:4 :‘ k;L—J J
crcodng P9
Input
Embedding

T

Inputs



Computing Components in LLMs?

* Transformer decoders (many of them)
* self-aftentions (slow)
® layernorm, residual (fast)
® MLPs (slow)
®* Nonlinear (fast)
* Word embeddings (fast)
® Position embeddings (fast)
* Absolute embedding vs. relative embedding

® |Loss function: cross entropy loss over a sequence of words



LLMs

(. 2

Transformer Decoder

Transformer Decoder

~
J

N\ ([

Transformer Decoder

J L

Transformer Decoder

(o) ([
—_/ U

Transformer Decoder

(2l -3

-

%

T 11

robotics

96



Original Transformer vs. LLM today

Vaswani et al.

Norm Position Post Pre
Norm Type LayerNorm RMSNorm

Non-linearity RelL U SiLU

Positional
Encoding

Sinusoidal RoPE



Training LLMs Cate

T

are the beet <eoe>

® Sequences are known a priori l Transformer layer N

T

® For each position, look at [1, 2, ..., t-1] words ( Transformer layer N-1

to predict word t, and calculate the loss af t

* Parallelize the computation across all token | Transformer layer 2

A

positions, and then apply masking [ Transformer layer 1
y

A
I | |
<coe> Cats are the best

[ f




Connecting the Dots: Compute/Comm characteristic of
LLMs

Output
Probabilities
Key characteristics: compute, memory, communication
* calculafe the number of parameters of an LLM®¢ - ~
® i i Feed
memory, communication
® calculate the flops needed to train an LLM? f'
Nx
* compute Multead
Attention
® calculate the memory needed to train an LLM@¢ Y
* memory, communication i QU

Input
Embedding

T

Inputs




Connecting the Dots: Compute/Comm characteristic of
LLMs

Output
Probabilities

Key characteristics: compute, memory, communication

® calculate the number of parameters of an LLM? N

Feed
Forward

Add & Norm

Nx r
Masked

Multi-Head
Attention

==

Positional

Encoding %
Input

Embedding

T

Inputs

® calculate the flops needed to train an LLM?

® calculate the memory needed to train an LLM?

J/




Input vocab

Math Equations

Data
W X =W besdiling g GHEhﬂt(Xmudﬂ
Embedding Layer
Layer Normalization __ & _ |y,
l- oA a,= RMS{M,,,.MIENRMS{H}—JHZH.
i = X, K= .X, = ¢ -“\'
Self-Attention || €7 e “
Transformer | | softmar( ==V
Decoder | _ L .
Layer Layer Normalization ™
{RHS"I.'IB"I'I} T .RMS{ }qu whn'reRMS{a}-J—Ed
~,
Feed Forward T FEN(Y,) = W - SWiGLU(W X, W _X.)
¥ .
Layer Normalization N e )
(RMS Norm) | = Rats(ay®: Where RMS(a) = F.E.;ﬂ:
Linear =W_X,.+b,where N
Tm:fﬂ;mm Yis the ouipwi of Linear Transformation

( softmax

)




Feed Forward SwiGLU

The general formula for SwiGLU is:
SWlGLU(Rﬁ) — SWiSh(ﬁW] + bl) ® (QEWQ + bg)
Swish is the activation function applied to one branch, defined as:

Swish(z) = z-o(2)

- SwiGLU helps the model capture more complex
patterns by selectively gating information

- Swish is smoother than traditional activations RelLU



Summary

Parameter Shapes

vocab_size(V) » hidden_dimension{H) w

hidden_dimension{H) W
4 = hidden_dimension(H) =
hidden_dimension{H}
hidden_dimension{H} w
3= hidden_dimension(H) =
intarrmediate_sizell)
hidden_dimension{H) w

vicab_size(V) x hidden_dirmension{H) W




Scaling Up: Where is the Potential Bottleneck?

Input vocab
Data

< i Emb.ddhguyl::; —

—
T

Layer Normalization

Parameter Shapes

—r

vocab size{\V) ® hidden_dimension{H)

\

(RMS Morm)
.

Self-Attention

hidden dimension{H)

Transionmer
o

o <
Layer Normalization

4 % higdden_dimension(H) =
hidden_dimansion{H}

(RMS Morm)
F 3

Feed Forward

hidden_dimeansion{H)

3 x hidden dimension(H) =
intarrmediate_sizell)

hidden_dimeansion{H)

vocab_size(V) x hidden_dimension{H)

I R ) 4 B




In PA3, you will implement this function©@



Connecting the Dots: Compute/Comm characteristic of
LLMs

Output
Probabilities

Key characteristics: compute, memory, communication

~N
Add & Norm
Feed
Forward

Add & Norm

Nx r
Masked

Multi-Head
Attention

==

Positional

Encoding %
Input

Embedding

T

Inputs

® calculate the flops needed to train an LLM?

® calculate the memory needed to train an LLM?

J/




Estimate the Compute: FLOPs

The FLOPs for multiplying two matrices of dimensions mxn and nxh can be calculated
as follows:

FLOPs=mxhx(2n-1)

So the total number of FLOPs is roughly FLOPs = 2m x n x h

Qoluwms

-

!




LLama 2 7B Flops Forward Calculation (Training)

Hyperparameters:

Batch size: b

Sequence length: s

The number of attention heads: n
Hidden state size of one head: d
Hidden state size: h (h =n * d)
SwiGLU proj dim: i

Vocab size: v



Input:

X

Self Attention:

XWoq, XW, XWy
RoPE

P = Softmax(QKT/vd)
PV

AWq

Residual Connection:;

Output Shape:
(b, s, h)

(b, s, h)
(b, n, s, d)
(b, n,s,s)
(b, n, s, d)
(b, s, h)

(b, s, h)

FLOPs

3 * 2bsh?
3bsnd

2bs?nd + 3bs?n
2bs?nd

2bsh?

bsh

Batch size: b

Sequence length: s

# of attention heads: n
Hidden state dim of one
head: d

Hidden state dim: h

Input Sequencelvocab) ]
*

Embedding

¥
Layer Normalization
(RMS Norm}

@ 0

=)




Output from Self Attn:

X

Feed-Forward SwiGLU:

XWaater XW o
Swish Activation
Element-wise *
XW down

RMS Norm:

SwiGLU(z) = Swish(zW; + b;) ® (zWs + by)

Output Shape:

(b, s, h)

(b, s, i)
(b, s, i)
(b, s, i)
(b, s, h)

(b, s, h)

FLOPs

2 * 2bshi
4psi

bsi

2bshi

4bsh + 2bs

Batch size: b
Sequence length: s
Hidden state dim: h
SwiGLU proj dim: i

@ (9 O

[ Multihead Self-Attention ]

—

-

e

(RMS Norm)

1. Calculate Root Mean Square:

+ RMS(z) =/} 37, a?

2. Normalize:

« RMSNorm(z) = .m_m’{:ﬂﬂ. -y



Input Sequencelvocab) J

LLama 2 7B Flops Forward (Training) ..

L J
|r Layer Normalization
(RMS Morm)

Total Flops = #num_layers * (Attention block + SwiGLU block)
+ Prediction head é}d {5),, ®
= #num_layers * (6bsh? + 4bs?h + 3bs?n +2bsh?)

«f;.:
+ #num_layers ( 6bshi) ,

Layer Normalization
{RMS5 Norm)

+ 2 bshv

[ Layer Normalization J

(RMS Norm)
+

| Linear Transformation ]
| Suﬁ:nu ]




LLama 2 7B Flops Forward Calculation (Training)

Hyperparameters: Total Flops = N * (6bsh? + 4bs2h + 3bs2n +2bsh?)
Batch size: b=1 + N (6bshi)
Sequence length: s=4096

_ + 2 bshv
The number of attention heads:; n=32

Hidden state size of one head: d=128 =63 TFLOPs
Hidden state size: h =4096

SwiGLU proj dim: i=11008

Vocab size: v=32000

The number of layers: N=32



Flops Distribution

Training Computational Costs Breakdown:

e Total Training TeraFLOPs: 192.17 TFLOPs
e FLOP Distribution by Layer:

©)

O O O O O

Embedding Layer: 1.676%
Normalization: 0.007%

Residual: 0.003%

Attention: 41.276%

MLP (Multi-Layer Perceptron): 55.361%
Linear: 1.676%



Scaling Up: Where is the Potential Bottleneck?

Ay Doooder Layes forward + backward

moar V{(Uncar -
2k 2k’

simplify { s x (8h°+4sh) ]

x N

+
Network
N

Progection from kow dinension 10 high dimemion
Ay x hrxi =45 % h x4k = 16sk°
from high dim '

Asxixh=dsxdhxh = 16sh’

ioa 1o o &

=N

N The murber of lyan i the Tramsformar modd, Slmphfy
8 Soquenie longth, tep resens ing The sumber of tokiens i 1he:
TPt vaquaRs

e e " of the

Sty el et B G [N(s(8h’+4sh)+32.sh’)+2hv}
m aize, seproventiog the b of powidle tokims
veosalary.

0 e Lngaage mwntels A
& Imtormediace by or dimenaion (by pically et as 45)




Connecting the Dots: Compute/Comm characteristic of
LLMs

Output
Probabilities

Key characteristics: compute, memory, communication

® calculate the number of parameters of an LLM? N

Feed
Forward

Nx r
Masked

Multi-Head
Attention

==

Positional

Encoding %
Input

Embedding

T

Inputs

® calculate the flops needed to train an LLM<

® calculate the memory needed to train an LLM?

J/




Composition of Memory Usage (Training)

Model Weights

Intermidiate Action Value




Llama2-7b Mix Precision(16bit-32bit)

[ Xinput 1
(b,s.v)

b: Batch size

5: Max sequence Length

h: Hidden Dimension

i: Intermdediate Size

n: Number of heads

d: Head Dimension (n * d = h)
v: Vocabulary Size




Llama2-7b Mix Precision(16bit-32bit)

(v h)
_»
!
Xinput H Embedding
(b, s, v) (b, s, h)

b: Batch size

5: Max sequence Length

h: Hidden Dimension

i: Intermdediate Size

n: Number of heads

d: Head Dimension (n * d = h)
v: Vocabulary Size




Llama2-7b Mix Precision(16bit-32bit)

(v.h)
W,
, !
| X input l—- Embedding
(b,s,v) (b, s, h)

(b, 5. h)

b: Batch size

s: Max sequence Length

h: Hidden Dimension

i: Intermdediate Size

n: Number of heads

d: Head Dimension (n x d=h)
v Vocabulary Size




Llama2-7b Mix Precision(16bit-32bit)

(v.h)
W,
, !
| X input ]—- Embedding
(b,s,v) (b, s, h)

(b, 5. h)

b: Batch size

s: Max sequence Length

h: Hidden Dimension

i: Intermdediate Size

n: Number of heads

d: Head Dimension (n x d=h)
v Vocabulary Size




Llama2-7b Mix Precision(16bit-32bit)

(v.h)
W,
!
| X input ]—- Embedding
(b, s, v) (b, s, h)

b: Batch size

s: Max sequence Length

h: Hidden Dimension

i: Intermdediate Size

n: Number of heads

d: Head Dimension (n x d= h)
v Vocabulary Size

(b, 5. h)

) (h, )

W s Wier |
1 ]
ez Tmmfohn::aﬁm

{b,s, h) (b, s, v)



Llama2-7b Mix Precision(16bit-32bit)

(v.h)
W,
!
| X input ]—- Embedding
(b, s, v) (b, s, h)

b: Batch size

s: Max sequence Length

h: Hidden Dimension

i: Intermdediate Size

n: Number of heads

d: Head Dimension (n x d= h)
v Vocabulary Size

(b, 5. h)

(h.) (h, v)
W s Wier |
! ;
RSEom ’ Tmmfoun::aﬁm
{b,s, h) (b, s, v)
N
(b, s,v)



Llama2-7b Mix Precision(16bit-32bit)

| X input ]—l

(b, 5. v)

(b, 5. h)

b: Batch size

s: Max sequence Length

h: Hidden Dimension

i: Intermdediate Size

n: Number of heads

d: Head Dimension (n x d= h)
v Vocabulary Size

(h,) (h, v)
W s Wier |
l ]
RMS Norm + 'I‘l:amfoun:;aﬁun
(b,s, h) (b5, V)
==
(b, s,v)




Llama2-7b Attention Block (Self-Attention)

b: Batch size

s: Max sequence Length

h: Hidden Dimension

i Intermdediate Size

n: Number of heads

d: Head Dimension (n = d = h)
v: Vocabulary Size




Llama2-7b Attention Block (Self-Attention)

(h,)
| W |

[ RMS Norm 1

(b, s, h)

b: Batch size

s: Max sequence Length

h: Hidden Dimension

i Intermdediate Size

n: Number of heads

d: Head Dimension (n = d = h)
v: Vocabulary Size




(h,)

p—

WR M5

RMS Norm

(b, s, h)

Llama2-7b Attention Block (Self-Attention)

b: Batch size

s: Max sequence Length

h: Hidden Dimension

i Intermdediate Size

n: Number of heads

d: Head Dimension (n = d = h)
v: Vocabulary Size




(h,)

— %

WR MS 1

RMS Norm

(b, s, h)

Llama2-7b Attention Block (Self-Attention)

b: Batch size

s: Max sequence Length

h: Hidden Dimension

i Intermdediate Size

n: Number of heads

d: Head Dimension (n = d = h)
v: Vocabulary Size




(h,)

— %

WR MS 1

RMS Norm

(b, s,

h)

Llama2-7b Attention Block (Self-Attention)

(b, s, n, d)
I

(b,s,n, d)(b,s,n, d)
Le x|
: |
KT
v SOftmax( 0 ) —s
Ji
(b, n, s, )
'b: Batch size
s: Max sequence Length
h: Hidden Dimension
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Llama2-7b Attention Block (FeedForward)
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Optimizer States: 16M

Mixed-Precision

Float to Half Forward

Backward-Activation

Backward-Weight

FP32




Large Language Models

Transformers, Attentions

Scaling Law
* Mok
Connecting the dots: Training Optimizations

® Flash attention
® Long context, parallelism

Serving and inference optimization
® Continuous batching and Paged attention
* Speculative decoding (Guest Lecture)

Connecting the dots: Deepseek-v3

Hot topics



Some Observations

® compute is a function of: h, i, b

® #parameteris a function of: h, i

®* Hence: compute correlates with #parameters
® more parameters, more compute
®* more data, more compute (of course)

®* Problem: we have limited compute ($)

* how should we allocate our limited resources:
® Train models longer vs train bigger modelse

® Collect more data vs get more GPUs¢



Motivation of Scaling Laws

* We want to know:
®* how large a model should we train...
* How many data should we use...
®* To achieve a given performance...

® Subject to a compute budget ($)?



How do we do that in fraditional ML: data scaling law

Input: x; ..x, ~N(u,c?)

Task: estimate the average as i = _Zilxi

What’s the error? By standard arguments..

E[(2 - 1)*] = Z

This is a scaling law!!
log(Error) = —logn + 2logo

More generally, any polynomial rate 1/n% is a scaling law

® Can we do this for
transformers LLMs?¢
® Unfortunately NO



Think in this way

Mathematics vs.

Physics



Transformers vs LSTMs

®* Q: Are transformers better than LSTMs?
® Brute force way: spend tens of millions to train a LSTM GPT-3

® Scaling law way:

Test Loss 5.4

4.8

4.2 LSTMs

o

3.6
1 Layer

2 Layers
4 Layers

e

3.0 Transformers

24

105 106 107 108 109
Parameters (non-embedding) [Kaplan+ 2021]



Number of Layers

®* Does depth or width make a huge difference?

® 1 vs 2 layers makes a huge difference.

®* More layers have diminishing returns below 107 params
7
6

5

w

72}

S4

2 —— 1 Layer e N

& | —— 2 Layers \\

3] —— 3 Layers .

6 Layers
> 6 Layers

103 10* 105 105 107 108  10¢
Parameters (non-embedding)



The Scaling law way: Physics Way

* Approach:
® Train a few smaller models
® Establish a scaling law (LSTM vs. transformers)
® Select optimal hyperparam based on the scaling law prediction.

® Rationale
* The effect of hyperparameters on big LMs can be predicted before fraining!
® Optimizer choice
* Model Depth
® Arechitecture choice



Back to our problem:

®* how large a model should we train...
* How many data should we use...
®* To achieve a given performance...

® Subject to a compute budgete



Loss vs Model and Dataset Size

Model size data joint scaling " S =

Loss
o

e =
3.0 g o

®* Do we need more data or bigger model

10 109 10 1010
Tokens in Dataset

® Clearly, lots of data is wasted on small models

® Joint data-model scaling laws describe ho the two relate

From Rosenfeld+ 2020,
Error=n"%4+m P +C

From Kaplan+ 2021
Error = [m™* +n"1]#

Provides surprisingly good fits to model-data joint error.



Compute Trade-offs

* Q: what about other resourcese Compute vs. performancee

® For a fixed compute budget...
® Big models that's undertrained vs small model that’'s well
trained?

® Solving the following optimization?

Nopt(c): Dopt(c) — argmin L(N, D).
N,D s.t. FLOPs(N,D)=C



Approach: empirical scaling law

6.0 -10B 1T 15T

5.5 101.2

5.0

4.5 -2.5B 100B g78 ”,/’
1))

0 v 101 ',!
4.0 5 . 5
- 2 108 = 7
235 [500M 2 Pl 9 P

£ Lo50M @ . °
B30 s
= o

5 v‘? 10t . ,,-/'
. 1.08 ) / ‘(f"
100M 4‘;/"/ 00

1017 1018 10%° 1020 1021 1022 107 101° 1021 1023 1025 1017 101° 102! 1023 1025
FLOPS FLOPs FLOPs

N
5

-

N
o

Figure 2 | Training curve envelope. On the left we show all of our different runs. We launched a
range of model sizes going from 70M to 10B, each for four different cosine cycle lengths. From these
curves, we extracted the envelope of minimal loss per FLOP, and we used these points to estimate the
optimal model size (center) for a given compute budget and the optimal number of training tokens
(right). In green, we show projections of optimal model size and training token count based on the
number of FLOPs used to train Gopher (5.76 x 10%2).



Today's SOoTA Law

406.4  410.7
N0.34 T DD.ZQ

L(N,D) = +1.69



Summary

® Scaling law: the physics of ML
¢ Scaling law marks a new era of ML research:
® Rigorous theoretical analysis -> empirical laws
® Exploration of different model architectures -> Scaling
transformers

® Due to scaling law: ML systems become essential



PA3: Q3

You already know:
®* How to estimate the number of parameters of an LLM?
®* How to estimate the flops needed to train an LLM?

®* How to estimate the memory needed to train a transformer?

* We will give you a scaling law and compute budget

® Task: design your optimal LLM



Next Lecture: What is MoE

® Superficially: experts

® Essentially: a model with a better scaling law.
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