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Logistics

• PA3 is posted.

• Two programming assignments

• One MoE

• One LLM inference

• One theoretical assignment (light programming)

• Scaling law

• You can collaborate on the above three

• One essay

• You shall finish independently



Where We Are

● Motivation

● History

● Parallelism Overview

● Data parallelism

● Model parallelism
○ Inter-op parallelism

○ Intra-op parallelism

● Auto-parallelization



Alpa Compiler: Hierarchical Optimization

Computational 

Graph

Device 

Cluster

Inter-op Pass

Intra-op Pass

Cost Estimation

Dynamic Programming

Integer Linear Programming
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Inter-op Pass

matmul matmulx

w1 w2

relu softmaxavgpoolconv convrelu add

k1 k2

M

Solved together by

Dynamic Programming

Stage 1
Stage 2

Stage 3
Stage 4

N
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Stage 4

Time

Stage 3

Stage 2

Stage 1

b

a b c d

a b c

a b c

a

d

d

dct3

t4t2

t1

(B - 1) ⋅ t3

warmup phase stable phase

𝑇 = 

𝑖

𝑆

𝑡𝑖 + 𝐵 − 1 ⋅ max
1≤𝑗≤𝑆

{𝑡𝑗}

Pipeline Execution Latency
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Time = 0 Time = 1 Time = 2 Time = 3 Time = 4 …

Inter-op Pass



Optimization objective: Find the optimal (stage, mesh) pairs that minimize 𝑇.

Solution:

Enumerate all possible max
1≤𝑗≤𝑆

{𝑡𝑗} (stable phase) and convert the first term σ𝑖
𝑆 𝑡𝑖

(warmup phase) into a 2-dimensional knapsack problem.

Inter-op Pass: Dynamic Programming

𝑡𝑖 = 𝑡intra
∗ (stage𝑖, mesh𝑖)

warmup phase stable phase

𝑇 = 

𝑖

𝑆

𝑡𝑖 + 𝐵 − 1 ⋅ max
1≤𝑗≤𝑆

{𝑡𝑗}

the optimal latency of executing 
stage 𝑖 on its assigned mesh 𝑖 :
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Intra-op Pass

matmul matmul

w1 w2

relu

Stage
Submesh

stage 
input

w2Solved by

Integer Linear 

Programming

Stage with intra-operator 

parallelization

matmul matmul

w1

relu
stage 
input
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Intra-op Pass: Computation
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x matmul

w1

[i,k]

[k,j]

[i,j]

matmul[i, j] = Σk x[i, k] × w1[k, j]

Algo#1: ×=

Algo#2: ×=

Cost

Cost1

Cost2

Cost3Algo#3: ×=

Algo#4: …

Device 1

Device 2
Row-partitioned Column-partitioned Replicated

loop i

loop j

loop k

Intra-op Pass



Intra-op Pass: Communication
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Layout Conversion Cost

matmul1x matmul1 matmul2

w1 w2

Algo#1 Algo#1

0

all-gathermatmul1x matmul1 matmul2

w1 w2

Algo#1 Algo#2

x matmul matmul2

w1 w2

Algo#3 Algo#2

all-reducematmul1
matmul
matmul1

Device 1

Device 2
Row-partitioned Column-partitioned Replicated

Algo#1: ×=

Algo#2: ×=

Algo#3: ×=

Intra-op Pass



Intra-op Pass: Layout Conversion
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all-gather

slice

slice

all-gather

all-to-all

all-to-all

Device 1

Device 2
Row-partitioned Column-partitioned Replicated

Intra-op Pass



Intra-op Pass: ILP Formulation
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For every node (op), enumerate all 
possible parallel algorithms

For every edge, infer the cost 
due to layout conversion

Minimize node-cost 

Goal: Within each stage, “color” every node in the stage, so the execution 

latency of this stage on its assigned mesh is minimized. 

+  edge-cost

s.t. peak memory usage < memory budget  

Intra-op Pass



Evaluation: Comparing with Previous Works

Weak scaling results where the model size grow with #GPUs.

Evaluated on 8 AWS EC2 p3.16xlarge nodes with 8 16GB V100s each (64 GPUs in total). 

Match specialized 

manual systems.

GPT (up to 39B) GShard MoE (up to 70B) Wide-ResNet (up to 13B)

Outperform the manual 

baseline by up to 8x.

Generalize to models 

without manual plans.
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Inter-op Parallelism
(w/ pipeline)

Intra-op Parallelism
(w/ operator-level)

Automatic

Summary Megatron-LM

Mesh-Tensorflow

GShard

Megatron-LM 

V2

GPipe
PipeDream

Dapple

Alpa
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ZeRO

Tofu

FlexFlow

ColocRL



Summary: How to Choose Parallelism

1. Use automatic compiler if not transformer

2. Manual parallelism search for transformers:

● Factors to consider

○ #GPUs you have

○ Model size

○ JCT (Job completion time)

○ Communication bandwidth

○ etc.

14



Hao’s Ultimate Guide

if your model training

can fit into a single gpu
Yes

scale with data

parallelism until JCT ok

No
Check mem opt

and can fit?

JCT ok? Yes

JCT ok?

No

Yes

No

Yes

No
+intra/inter-op

parallelism (turn off
memopt)

GPUs are

connected all with

nvlink (<=8)

GPUs are connected

w/o nvlink
Yes

WTV but typically

Megatron-style TP

Scale beyond 8 GPUs

with 3D parallelism
still

cannot fit

High-bandwidth connect
(>=100gbps/gpu), e.g.

infiniband

medium-to-low-bandwidth

connect (<100gbps/gpu)

inter-op parallelism

tune #mb and mbs

turn on memopt

cannot fitzero-2 zero-3cannot fit
turn on memopt cannot fit

You are deepseek,

what you do?



Big Picture

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator optimization/compilation

Runtime: schedule / memory

x matmul

w1



Next: Connecting the Dots

MLSys Basics

Optimizations and Parallelization

LLMSys



Large Language Models

• Transformers, Attentions

• Scaling Law

• MoE

• Connecting the dots: Training Optimizations

• Flash attention

• Serving and inference optimization

• Continuous batching and Paged attention

• Speculative decoding (Guest Lecture)

• Connecting the dots: Review Deepseek-v3

• Hot topics



Next Token Prediction

P 𝑛𝑒𝑥𝑡𝑤𝑜𝑟𝑑 𝑝𝑟𝑒𝑓𝑖𝑥)

SanDiegohasverynice_

SanFrancisco isacityof _

surfing
weather

snow

0.4

0.5
0.01

innovation
homeless

0.6

0.3



Next Token Prediction

Probability(”SanDiegohasveryniceweather”)
=P(“SanDiego”) P(“has”|”SanDiego”)P(“very”|”SanDiego

has”)P(“city”|…)…P(“weather”|…)

Max𝑃𝑟𝑜b 𝑥1:𝑇 =ෑ

𝑡=1

𝑇

𝑃(𝑥𝑡+1|𝑥1…𝑡)

MLEonobserveddata𝑥1:𝑇, Thisisnexttokenprediction.

Predicting using seq2seqNNs.



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Take a set of input sequence, predict the output sequence 

Predict each output based on history

There are many ways to build up the predictive model

Sequence Prediction
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𝑥1 𝑥2 𝑥3 𝑥4

model

𝑦1 𝑦2 𝑦3 𝑦4

….

𝑦𝑡 = 𝑓𝜃 (𝑥1:𝑡)

ෑ

𝑡=1

𝑇

𝑃(𝑥𝑡+1|𝑥1…𝑡)



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

“Attention” Mechanism

Generally refers to the approach that weighted combine individual states

22

ℎ1 ℎ2 ℎ3 ℎ4

𝑥1 𝑥2 𝑥3 𝑥4Hidden states from 
previous layer

Attention output

ℎ𝑡 = σ𝑖=1
𝑡 𝑠𝑖𝑥𝑡

Intuitively 𝑠𝑖 is “attention score” that computes how relevant the position 𝑖’s input is 
to this current hidden output

There are different methods to decide how attention score is being computed



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Self-Attention Operation

Self attention refers to a particular form of attention mechanism.

Given three inputs 𝑄,𝐾, 𝑉 ∈ ℝ𝑇×𝑑 (“queries”, “keys”, “values”)

Define the self-attention as:
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SelfAttention 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑1/2
𝑉



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

A Closer Look at Self-Attention

Use 𝑞𝑡, 𝑘𝑡, 𝑣𝑡 to refers to row 𝑡 of the 𝐾 matrix
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ℎ1 ℎ2 ℎ3 ℎ4

𝑘1 𝑘2 𝑘3 𝑘4

𝑣1 𝑣2 𝑣3 𝑣4

𝑞𝑡
Ask the following question:

How to compute the output ℎ𝑡, based on 𝑞𝑡, 𝐾, 𝑉
one timestep 𝑡

To keep presentation simple, we will drop suffix 𝑡
and just use 𝑞 to refer to 𝑞𝑡 in next few slide



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

A Closer Look at Self-Attention
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ℎ1 ℎ2 ℎ3 ℎ4

𝑘1 𝑘2 𝑘3 𝑘4

𝑣1 𝑣2 𝑣3 𝑣4

𝑞

Pre-softmax “attention score”

Weighed average via softmax 

Use 𝑞𝑡, 𝑘𝑡, 𝑣𝑡 to refers to row 𝑡 of the 𝐾 matrix

Conceptually, we compute the output in the following two 
steps: 

𝑠𝑖 =
1

𝑑
𝑞𝑘𝑖

𝑇

ℎ = σ𝑖 softmax 𝑠 𝑖𝑣𝑖 =
σ𝑖 exp 𝑠𝑖 𝑣𝑖

σ𝑗 exp 𝑠𝑗

Intuition: 𝑠𝑖 computes the relevance of 𝑘𝑖 to the query 𝑞, 
then we do weighted sum of values proportional to their relevance



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Comparing the Matrix Form and the Decomposed Form
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SelfAttention 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑1/2
𝑉

ℎ1 ℎ2 ℎ3 ℎ4

𝑘1 𝑘2 𝑘3 𝑘4

𝑣1 𝑣2 𝑣3 𝑣4

𝑞

Pre-softmax “attention score”

Weighed average via softmax 

ℎ𝑡 =

𝑖

softmax 𝑆𝑡,: 𝑖
𝑣𝑖 = softmax 𝑆𝑡,: 𝑉

𝑆𝑡𝑖 =
1

𝑑
𝑞𝑡𝑘𝑖

𝑇

Intuition: 𝑠𝑖 computes the relevance of 𝑘𝑖 to the query 𝑞, 
then we do weighted sum of values proportional to their relevance

Use 𝑞𝑡, 𝑘𝑡, 𝑣𝑡 to refers to row 𝑡 of the 𝐾 matrix



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Multi-Head Attention

Have multiple “attention heads”                       denotes 𝑗-th attention head                  
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ℎ1
(𝑗) ℎ2

(𝑗)
ℎ3
(𝑗)

ℎ4
(𝑗)

𝑘1
(𝑗) 𝑘2

(𝑗)
𝑘3
(𝑗)

𝑘4
(𝑗)

𝑣1
(𝑗) 𝑣2

(𝑗)
𝑣3
(𝑗)

𝑣4
(𝑗)

𝑞(𝑗)

SelfAttention 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑1/2
𝑉

𝑄 𝑗 , 𝐾(𝑗), 𝑉(𝑗)

Apply self-attention in each attention head

Concatenate all output heads together as output

Each head can correspond to different kind of information.

Sometimes we can share the heads: GQA(group query attention) all heads 

share K, V but have different Q 



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

How to get Q K V?

Obtain 𝑄,𝐾, 𝑉 from previous layer’s hidden state 𝑋 by linear projection

28

ℎ1
(𝑗) ℎ2

(𝑗)
ℎ3
(𝑗)

ℎ4
(𝑗)

𝑘1
(𝑗) 𝑘2

(𝑗)
𝑘3
(𝑗)

𝑘4
(𝑗)

𝑣1
(𝑗) 𝑣2

(𝑗)
𝑣3
(𝑗)

𝑣4
(𝑗)

𝑞(𝑗)

𝑄 = 𝑋𝑊𝑞

𝐾 = 𝑋𝑊𝐾

𝑉 = 𝑋𝑊𝑉

Can compute all heads and 𝑄,𝐾, 𝑉 together then 
split/reshape out into individual 𝑄,𝐾, 𝑉 with multiple heads

𝑋

Linear projection



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Transformer Block

29

𝑉𝐾𝑄

normalize

normalize

Feed forward

matmul

softmax

matmul

output

input

Self-attention

𝑍 = SelfAttention 𝑋𝑊𝐾, 𝑋𝑊𝑄, 𝑋𝑊𝑉

𝑍 = LayerNorm 𝑋 + 𝑍
𝐻 = LayerNorm(ReLU 𝑍𝑊1 𝑊2 + 𝑍)

A typical transformer block

(multi-head) self-attention, followed by a linear layer and
ReLU and some additional residual connections and 

normalization 



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Masked Self-Attention
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MaskedSelfAttention 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑1/2
−𝑀 𝑉

ℎ1 ℎ2 ℎ3 ℎ4

𝑘1 𝑘2 𝑘3 𝑘4

𝑣1 𝑣2 𝑣3 𝑣4

𝑞3

In the matrix form, we are computing weighted average over all inputs  

In auto regressive models, usually it is good to maintain casual
relation, and only attend to some of the inputs (e.g. skip the red 
dashed edge on the left). We can add “attention mask”

𝑀𝑖𝑗 = ቊ
∞, 𝑗 > 𝑖
0, 𝑗 ≤ 𝑖

Only attend to previous inputs. Depending on input structure and model, attention mask can change.

We can also simply skip the computation that are masked out if there is a special implementation to do so

∞

0



Transformers

• Transformer decoders 

• Many of them

• Really just: attentions  + layernorm + MLPs + nonlinear + residual

• Word embeddings

• Position embeddings

• Rotary embedding

• Loss function: cross entropy loss over a sequence of words



Transformers



Feedforward Layers



Computing Components in LLMs?

• Transformer decoders (many of them)

• self-attentions (slow)

• layernorm, residual (fast)

• MLPs (slow)

• Nonlinear (fast)

• Word embeddings (fast)

• Position embeddings (fast)

• Absolute embedding vs. relative embedding

• Loss function: cross entropy loss over a sequence of words



LLMs



Original Transformer vs. LLM today



Training LLMs

• Sequences are known a priori

• For each position, look at [1, 2, …, t-1] words 

to predict word t, and calculate the loss at t

• Parallelize the computation across all token 

positions, and then apply masking



Connecting the Dots: Compute/Comm characteristic of 

LLMs

Key characteristics: compute, memory, communication

• calculate the number of parameters of an LLM?

• memory, communication

• calculate the flops needed to train an LLM?

• compute

• calculate the memory needed to train an LLM?

• memory, communication



Connecting the Dots: Compute/Comm characteristic of 

LLMs

Key characteristics: compute, memory, communication

• calculate the number of parameters of an LLM?

• calculate the flops needed to train an LLM?

• calculate the memory needed to train an LLM?





Feed Forward SwiGLU

- SwiGLU helps the model capture more complex 

patterns by selectively gating information

- Swish is smoother than traditional activations ReLU



Summary



Scaling Up: Where is the Potential Bottleneck?



In PA3, you will implement this function



Connecting the Dots: Compute/Comm characteristic of 

LLMs

Key characteristics: compute, memory, communication

• calculate the number of parameters of an LLM?

• calculate the flops needed to train an LLM?

• calculate the memory needed to train an LLM?



Estimate the Compute: FLOPs

The FLOPs for multiplying two matrices of dimensions m×n and n×h can be calculated 

as follows:

FLOPs = m × h × (2n − 1)

So the total number of FLOPs is roughly FLOPs ≈ 2m × n × h



LLama 2 7B Flops Forward Calculation (Training)

Hyperparameters:

Batch size: b

Sequence length: s

The number of attention heads: n

Hidden state size of one head: d

Hidden state size: h (h = n * d)

SwiGLU proj dim: i

Vocab size: v



Input:

X

Self Attention:

XWQ, XWK, XWV

RoPE

P = Softmax(QKT/√d)

PV

AWO

Residual Connection:

Batch size: b
Sequence length: s
# of attention heads: n
Hidden state dim of one 
head: d
Hidden state dim: h

Output Shape:

(b, s, h)

(b, s, h)

(b, n, s, d)

(b, n, s, s)

(b, n, s, d)

(b, s, h)

(b, s, h)

FLOPs

0

3 * 2bsh2

3bsnd

2bs2nd + 3bs2n

2bs2nd

2bsh2

bsh



Output from Self Attn:

X

Feed-Forward SwiGLU:

XWgate, XWup

Swish Activation

Element-wise *

XWdown

RMS Norm:

Batch size: b
Sequence length: s
Hidden state dim: h
SwiGLU proj dim: i

Output Shape:

(b, s, h)

(b, s, i)

(b, s, i)

(b, s, i)

(b, s, h)

(b, s, h)

FLOPs

0

2 * 2bshi

4bsi

bsi

2bshi

4bsh + 2bs



LLama 2 7B Flops Forward (Training)

Total Flops ≈  #num_layers * (Attention block + SwiGLU block)

+ Prediction head

=   #num_layers * (6bsh2 + 4bs2h + 3bs2n +2bsh2)

+ #num_layers ( 6bshi)

+ 2 bshv 



LLama 2 7B Flops Forward Calculation (Training)

Hyperparameters:

Batch size: b=1

Sequence length: s=4096

The number of attention heads: n=32

Hidden state size of one head: d=128

Hidden state size: h =4096

SwiGLU proj dim: i=11008

Vocab size: v=32000

The number of layers: N=32

Total Flops ≈ N * (6bsh2 + 4bs2h + 3bs2n +2bsh2)

+ N (6bshi)

+ 2 bshv 

≈ 63 TFLOPs



Flops Distribution

Training Computational Costs Breakdown:

● Total Training TeraFLOPs: 192.17 TFLOPs
● FLOP Distribution by Layer:

○ Embedding Layer: 1.676%
○ Normalization: 0.007%
○ Residual: 0.003%
○ Attention: 41.276%
○ MLP (Multi-Layer Perceptron): 55.361%
○ Linear: 1.676%



Scaling Up: Where is the Potential Bottleneck?



Connecting the Dots: Compute/Comm characteristic of 

LLMs

Key characteristics: compute, memory, communication

• calculate the number of parameters of an LLM?

• calculate the flops needed to train an LLM?

• calculate the memory needed to train an LLM?









































Optimizer States: 16M



Large Language Models

• Transformers, Attentions

• Scaling Law

• MoE

• Connecting the dots: Training Optimizations

• Flash attention

• Long context, parallelism

• Serving and inference optimization

• Continuous batching and Paged attention

• Speculative decoding (Guest Lecture)

• Connecting the dots: Deepseek-v3

• Hot topics



Some Observations

• compute is a function of: h, i, b

• #parameter is a function of: h, i

• Hence: compute correlates with #parameters

• more parameters, more compute

• more data, more compute (of course)

• Problem: we have limited compute ($)

• how should we allocate our limited resources:

• Train models longer vs train bigger models?

• Collect more data vs get more GPUs?



Motivation of Scaling Laws

• We want to know: 

• how large a model should we train…

• How many data should we use…

• To achieve a given performance…

• Subject to a compute budget ($)?



How do we do that in traditional ML: data scaling law

• Can we do this for 

transformers LLMs?

• Unfortunately NO



Think in this way

Mathematics vs.

Physics



Transformers vs LSTMs

• Q: Are transformers better than LSTMs?

• Brute force way: spend tens of millions to train a LSTM GPT-3

• Scaling law way:



Number of Layers

• Does depth or width make a huge difference?

• 1 vs 2 layers makes a huge difference. 

• More layers have diminishing returns below 107 params



The Scaling law way: Physics Way

• Approach:

• Train a few smaller models

• Establish a scaling law (LSTM vs. transformers)

• Select optimal hyperparam based on the scaling law prediction.

• Rationale

• The effect of hyperparameters on big LMs can be predicted before training! 

• Optimizer choice

• Model Depth

• Arechitecture choice 



Back to our problem:

• how large a model should we train…

• How many data should we use…

• To achieve a given performance…

• Subject to a compute budget?

• Approach: estimate a law between model size data joint scaling



Model size data joint scaling

• Do we need more data or bigger models?

• Clearly, lots of data is wasted on small models

• Joint data-model scaling laws describe ho the two relate



Compute Trade-offs

• Q: what about other resources? Compute vs. performance?

• For a fixed compute budget…

• Big models that’s undertrained vs small model that’s well 

trained?

• Solving the following optimization?



Approach: empirical scaling law 



Today’s SoTA Law



Summary

• Scaling law: the physics of ML

• Scaling law marks a new era of ML research:

• Rigorous theoretical analysis -> empirical laws

• Exploration of different model architectures -> Scaling 

transformers

• Due to scaling law: ML systems become essential



PA3: Q3

You already know:

• How to estimate the number of parameters of an LLM?

• How to estimate the flops needed to train an LLM?

• How to estimate the memory needed to train a transformer?

• We will give you a scaling law and compute budget

• Task: design your optimal LLM



Next Lecture: What is MoE

• Superficially: experts

• Essentially: a model with a better scaling law.


	Slide 1: Logistics
	Slide 2: Where We Are
	Slide 3: Alpa Compiler: Hierarchical Optimization
	Slide 4
	Slide 5: Pipeline Execution Latency
	Slide 6: Inter-op Pass: Dynamic Programming
	Slide 7
	Slide 8: Intra-op Pass: Computation
	Slide 9: Intra-op Pass: Communication
	Slide 10: Intra-op Pass: Layout Conversion
	Slide 11: Intra-op Pass: ILP Formulation
	Slide 12: Evaluation: Comparing with Previous Works
	Slide 13: Summary
	Slide 14: Summary: How to Choose Parallelism
	Slide 15: Hao’s Ultimate Guide
	Slide 16: Big Picture
	Slide 17: Next: Connecting the Dots
	Slide 18: Large Language Models
	Slide 19: Next Token Prediction
	Slide 20: Next Token Prediction
	Slide 21: Sequence Prediction
	Slide 22: “Attention” Mechanism
	Slide 23: Self-Attention Operation
	Slide 24: A Closer Look at Self-Attention
	Slide 25: A Closer Look at Self-Attention
	Slide 26: Comparing the Matrix Form and the Decomposed Form
	Slide 27: Multi-Head Attention
	Slide 28: How to get Q K V?
	Slide 29: Transformer Block
	Slide 30: Masked Self-Attention
	Slide 31: Transformers
	Slide 32: Transformers
	Slide 33: Feedforward Layers
	Slide 34: Computing Components in LLMs?
	Slide 35: LLMs
	Slide 36: Original Transformer vs. LLM today
	Slide 37: Training LLMs
	Slide 38: Connecting the Dots: Compute/Comm characteristic of LLMs 
	Slide 39: Connecting the Dots: Compute/Comm characteristic of LLMs 
	Slide 40
	Slide 41: Feed Forward SwiGLU
	Slide 42: Summary
	Slide 43: Scaling Up: Where is the Potential Bottleneck?
	Slide 44
	Slide 45: Connecting the Dots: Compute/Comm characteristic of LLMs 
	Slide 46: Estimate the Compute: FLOPs
	Slide 47: LLama 2 7B Flops Forward Calculation (Training)
	Slide 48
	Slide 49
	Slide 50: LLama 2 7B Flops Forward (Training)
	Slide 51: LLama 2 7B Flops Forward Calculation (Training)
	Slide 52: Flops Distribution
	Slide 53: Scaling Up: Where is the Potential Bottleneck? 
	Slide 54: Connecting the Dots: Compute/Comm characteristic of LLMs 
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74: Optimizer States: 16M 
	Slide 75: Large Language Models
	Slide 76: Some Observations
	Slide 77: Motivation of Scaling Laws
	Slide 78: How do we do that in traditional ML: data scaling law
	Slide 79: Think in this way
	Slide 80: Transformers vs LSTMs
	Slide 81: Number of Layers
	Slide 82: The Scaling law way: Physics Way
	Slide 83: Back to our problem:
	Slide 84: Model size data joint scaling
	Slide 85: Compute Trade-offs
	Slide 86: Approach: empirical scaling law 
	Slide 87: Today’s SoTA Law
	Slide 88: Summary
	Slide 89: PA3: Q3
	Slide 90: Next Lecture: What is MoE

