

CSE 234: Data Systems for Machine Learning Winter 2025

https://hao-ai-lab.github.io/cse234-w25/

LLMSys

Optimizations and Parallelization

MLSys Basics

Which of the following is not one of the main sources of memory consumption?

- A. Intermediate activation values
- B. Model weights
- c. Optimizer states
- D. Training code

Which of the following statements is false about gradient checkpointing?

- Applying gradient checkpointing during model training could save Α. GPU memory
- Gradient checkpointing applies to both model weights and activations Β. The location of gradient checkpointing affects how much re-C.
- computation and memory are needed
- It is possible to discard some of the activation from memory since they D. are only needed during backward pass

the transformer layer boundary)?

- 7031.25GB Α.
- 201.34GB Β.
- 152.59GB C.
- 305.18GB D.

Model Name

- GPT-3 Small GPT-3 Medium GPT-3 Large GPT-3 XL GPT-3 2.7B GPT-3 6.7B GPT-3 13B
- GPT-3 175B or "GPT

Given this table of model configurations, what is the activation size of GPT-3 2.7B (using fp16 for all activitations and checkpointing at

	$n_{\rm params}$	n_{layers}	$d_{\rm model}$	$n_{\rm heads}$	$d_{\rm head}$	Batch Size	Learning Ra
	125M	12	768	12	64	0.5M	$6.0 imes10^{-4}$
	350M	24	1024	16	64	0.5M	$3.0 imes10^{-4}$
	760M	24	1536	16	96	0.5M	$2.5 imes 10^{-4}$
	1.3B	24	2048	24	128	1M	$2.0 imes10^{-4}$
	2.7B	32	2560	32	80	1M	$1.6 imes10^{-4}$
	6.7B	32	4096	32	128	2M	1.2×10^{-4}
	13.0B	40	5140	40	128	2M	$1.0 imes 10^{-4}$
[-3"	175.0B	96	12288	96	128	3.2M	$0.6 imes10^{-4}$

How to Choose/Tune Memory Optimization

Quantization

- Digital representation of data
- Basics of quantization
- Quantization in ML
 - Post-training quantization
- Mixed precision

Dataflow Graph

Autodiff

Graph Optimization

Runtime

Operator

Floating-point Representation

Sign 8 bit Exponent

(significant / mantissa)

23 bit Fraction

 $(-1)^{sign} \times (1 + Fraction) \times 2^{Exponent-127} \leftarrow Exponent Bias = 127 = 2^{8-1}-1$

$0.265625 = 1.0625 \times 2^{-2} = (1 + 0.0625) \times 2^{125-127}$

0.0625

Q: How to represent 0?

Floating-point Number: normal vs. subnormal

 $0.265625 = 1.0625 \times 2^{-2} = (1 + 0.0625) \times 2^{125-127}$

 $0 = 0 \times 2^{-126}$

Q: What is them minimum positive value?

0

What is the minimum positive value?

Sign 8 bit Exponent

 $(-1)^{sign} \times (1 + Fraction) \times 2^{Exponent-127}$

(Normal Numbers, Exponent≠0)

23 bit Fraction

(-1)^{sign} × Fraction × 2¹⁻¹²⁷

(Subnormal Numbers, Exponent=0)

 $2^{-149} = 2^{-23} \times 2^{-126}$

Some Special Values

Sign 8 bit Exponent

 $(-1)^{sign} \times (1 + Fraction) \times 2^{Exponent-127}$

(Normal Numbers, Exponent≠0)

23 bit Fraction

(-1)^{sign} × Fraction × 2¹⁻¹²⁷

(Subnormal Numbers, Exponent=0)

much waste. Revisit in fp8.

Summary of fp32

Sign 8 bit Exponent

23 bit Fraction

n≠0	Equation
mal	(-1) ^{sign} × Fraction × 2 ¹⁻¹²⁷
	(-1) ^{sign} × (1 + Fraction) × 2 ^{Exponent-127}
l	

FP32 vs. FP16 vs. BF16

Exponent width -> Range; Fraction width -> precision

Exponent (bits)	Fraction (bits)	Total (bits)
8	23	32
5	10	16
8	7	16

- Sign: -
- Exponent
 - Bias: $2^4 1 = 15_{10}$
 - $10001_2 15_{10} = 17_{10} 15_{10} = 2_{10}$
- Fraction
 - $110000000_2 = 0.75_{10}$
- Answer: $-(1 + 0.75) \times 2^2 = -7.10_{10}$

Sign 5 bit Exponent 10 bit Fraction

Exercise

What is Decimal 2.5 in BF16?

- $2.5 = 1.25 \times 2^{1}$
- Sign: +
- Exponent: bias is $2^7 1 = 127$
 - $x 127 = 1; x = 128_{10} = 1000000_2$
- Fraction: 7-bit fraction
 - $0.25 = 0100000_2$

 $(-1)^{sign} \times (1 + Fraction) \times 2^{Exponent-127}$

Google Brain Float (BF16)

Latest FP8

Exponent width -> Range; Fraction width -> precision

IEEE 754 Single Precision 32-bit Float (IEEE FP32)

IEEE 754 Half Precision 16-bit Float (IEEE FP16)

Nvidia FP8 (E4M3)

* FP8 E4M3 does not have INF, and S.1111.1 * Largest FP8 E4M3 normal value is S.1111.1

Nvidia FP8 (E5M2) for gradient in the backward

* FP8 E5M2 have INF (S.11111.00₂) and NaN * Largest FP8 E5M2 normal value is S.11110.

	Exponent (bits)	Fraction (bits)	Tota (bits
	8	23	32
	5	10	16
11 ₂ is used for NaN. 10 ₂ =448.	4	3	8
(S.11111.XX ₂). 11 ₂ =57344.	5	2	8

INT4 and FP8

INT4

FP4 (E1M2)

-0,-0.5,-1,-1.5,-2,-2.5,-3,-3.5	
0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5	0
=0.25×2 ¹⁻⁰ =0.5	
$=(1+0.75)\times 2^{1-0}=3.5$	

FP4 (E2M1)

-0,-0.5,-1,-1.5,-2,-3,-4,-6 =0.5×2¹⁻¹=0.5

=(1+0.5)×2³⁻¹=1

FP4 (E3M0)

-0,-0.25,-0.5,-1,-2,-4,-8,-16 =(1+0)×2¹⁻³=0.25 =(1+0)×2⁷⁻³=16 no inf, no NaN

Quantization

- Digital representation of data
- Basics of quantization
- Quantization in ML
 - Post-training quantization
 - Quantization aware training
- Mixed precision training

What is Quantization

Quantization is the process of constraining an input from a continuous or otherwise large set of values to a discrete set.

time

Original Image

16-Color Image

Images are in the public domain. "Palettization"

Quantization Basics

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

Storage

Floating point weights

Compute

Floating point arithmetic

3	0	2	1	3:	2.00
1	1	0	3	2:	1.50
0	з	1	0	1:	0.00
3	1	2	2	0:	-1.00

K-Means-based Quantization

Linear Quantization

K-means Quantization

weights (32-bit float)					
2.09	-0.98	1.48	0.09		
0.05	-0.14	-1.08	2.12		
-0.91	1.92	0	-1.03		
1.87	0	1.53	1.49		

quantization error:

2.09, 2.12, 1.92, 1.87

2.0

0.09, 0.12, -0.08, -0.13

K-means Quantization: Clustering

storage

3.2x reduction

reconstructed weights (32-bit float)

	· · /					
2.00	-1.00	1.50	0.00			
0.00	0.00	-1.00	2.00			
-1.00	2.00	0.00	-1.00			
2.00	0.00	1.50	1.50			

quantization error

0.09	0.02	-0.02	0.09
0.05	-0.14	-0.08	0.12
0.09	-0.08	0	-0.03
-0.13	0	0.03	-0.01

16 = 32bit 32 bit x 4 = 128bit = 16 bytes 4 bytes

K-means Quantization: Clustering

Assume: N-bit quantization, and #entries = $M >> 2^N$

32bits x M = 32M bit N bit x M = NM bit

storage

32M / NM = 32/N x reduction

reconstructed weights (32-bit float)

	-		
2.00	-1.00	1.50	0.00
0.00	0.00	-1.00	2.00
-1.00	2.00	0.00	-1.00
2.00	0.00	1.50	1.50

quantization error

0.09	0.02	-0.02	0.09
0.05	-0.14	-0.08	0.12
0.09	-0.08	0	-0.03
-0.13	0	0.03	-0.01

K-means Quantization: Backward

cluster

weights (32-bit float)			
2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

gradient

-0.03	-0.01	0.03	0.02
-0.01	0.01	-0.02	0.12
-0.01	0.02	0.04	0.01
-0.07	-0.02	0.01	-0.02

K-means Quantization: Backward

K-means Quantization:

Accuracy vs. compression rate for AlexNet on ImageNet dataset

Model Size Ratio after Compression

Quantization Only

Before Quantization: Continuous Weights

After Quantization: Discrete Weights

After Quantization: Weights Shift after training

How Many Bits do We Need?

K-Means Quantization: Runtime

- Storage: quantized
- Compute: still float-point arithmetic

Weights are decompressed using a lookup table (*i.e.*, codebook) at runtime. inference.

Quantization Basics

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

Storage

Floating point weights

Compute

Floating point arithmetic

3	0	2	1	3:	2.00
1	1	0	3	2:	1.50
0	З	1	0	1:	0.00
3	1	2	2	0:	-1.00

K-Means-based Quantization

Linear Quantization

integer weights; floating-point codebook

Floating point arithmetic

Linear Quantization

weights (32-bit float)			
2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

Linear Quantization

• A linear mapping of integers to real numbers

weights (32-bit float)

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

Binany	Decimal
01	1
00	0
11	-1
10	-2

reconstructed weights (32-bit float)

2.14	-1.07	1.07	0
0	0	-1.07	2.1
-1.07	2.14	0	-1.(
2.14	0	1.07	1.0

quantization error

-0.05	0.09	0.41	0.09
0.05	-0.14	-0.01	-0.02
0.16	-0.22	0	0.04
-0.27	0	0.46	0.42

Linear Quantization

- Critical parameters to determine:
 - Zero point: Z
 - Scale: S

zero p	point	
(2-bit sig	ned	int)

scale (32-bit float)

Linear Quantization: r = S(q - Z)

weights (32-bit float)

	0.09	1.48	-0.98	2.09
_	2.12	-1.08	-0.14	0.05
	-1.03	0	1.92	-0.91
	1.49	1.53	0	1.87

r

Floating-point

quantized weights (2-bit signed int)

-2	0	-1
-1	-2	1
1	-1	-2
-1	0	0

zero point (2-bit signed int)

scale (32-bit float)

— -1) × 1.07

 $-Z \rightarrow S$

integer

q

Integer (zero point)

- quantization parameters
- allow real number r = \bullet 0 be represented by a quantized integer Z

floating point

quantization parameters ullet

r = S(q - Z): Geometric Interpretation

Q: How to determine S and Z?

Bit Width	q min	qm
2	-2	1
3	-4	3
4	-8	7
N	-2 ^{N-1}	2 ^{N-}

r = S(q - Z): Determine S and Z

r = S(q - Z): Determine S of

C	n	C	Ζ
U		U	L

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

$$S = \frac{r_{\text{max}} - r_{\text{min}}}{q_{\text{max}} - q_{\text{min}}}$$
$$S = \frac{2.12 - (-1.08)}{1 - (-2)} = 1.07$$

r = S(q - Z): Determine S and Z

r = S(q - Z): Determine S and Z

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

Floating-point Scale

$$Z = \operatorname{round}(q_{min} - \frac{r_{min}}{s})$$
$$= \operatorname{round}\left(-2 - \frac{-1.08}{1.07}\right) =$$

Apply Linear Quantization into Matmul

 $q_{Y} = \frac{S_{W}S_{X}}{S_{V}}(q_{W} - Z_{W})(q_{X} - Z_{X}) + Z_{Y}$

 $q_{Y} = \frac{S_{W}S_{X}}{S_{V}}(q_{W}q_{X} - Z_{W}q_{X} - Z_{X}q_{W} + Z_{W}Z_{X}) + Z_{Y}$

Y = WX

 $S_V(q_V - Z_V) = S_W(q_W - Z_W)S_V(q_V - Z_V)$

Apply Linear Quantization into Matmul

$$q_Y = \frac{S_W S_X}{S_Y} (q_W q_X -$$

• Empirically, $\frac{S_W S_X}{S_V} \in (0, 1)$

• $\frac{S_W S_X}{S_Y} = 2^{-n} M_0, M_0 \in [0.5, 1)$ using fixed point multiplication and bit shift

 $Z_W q_X - Z_X q_W + Z_W Z_X + Z_Y$

- precomputed;
- N-bit integer multiplication
- 32-bit integer addition/subtraction

Apply Linear Quantization into Matmul

$$q_Y = \frac{S_W S_X}{S_Y} \left(q_W q_X - Z_W q_X - Z_X q_W + Z_W Z_X \right) + Z_Y$$

- precomputed;
- N-bit integer multiplication
- 32-bit integer addition/subtraction

Empirically: $Z_W = 0$

 $q_Y = \frac{S_W S_X}{S_Y} \left(q_W q_X - Z_X q_W \right) + Z_Y$

- Heavy lifting part
- integer multiplication

INT8 Linear Quantization Performance

Neural Network	ResNet-50	Inception-V
Floating-point Accuracy	76.4%	78.4%
8-bit Integer- quantized Acurracy	74.9%	75.4%

Latency-vs-accuracy tradeoff of float vs. integer-only MobileNets on ImageNet using Snapdragon 835 big cores.

Quantization Basics

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

Storage

Floating point weights

Compute

Floating point arithmetic

3	0	2	1	3:	2.00
1	1	0	3	2:	1.50
0	З	1	0	1:	0.00
3	1	2	2	0:	-1.00

K-Means-based Quantization

Linear Quantization

integer weights; floating-point codebook

Floating point arithmetic integer weights;

Integer arithmetic

Next Lecture

- Post-training quantization
- Mixed precision
- Parallelization

Dataflow Graph

Autodiff

Graph Optimization

Parallelizat

Runtime

Operator

