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MLSys Basics

Optimizations and Parallelization

LLMSys



Logistics Update

• Enrollment:

• We have ~60 vacancies now, CSE will process enrollments soon

• On Thursday, we will enroll the next batch depending on

availability.



Last week

• We summarized our workload

• Matmul + softmax + …

• Computational graphs

• Nodes, edges

• Programming

• Imperative vs. symbolic

• Static vs. dynamic

• JIT and its bottleneck



MCQ Time

You are a machine learning engineer at a company that is providing LLM 

endpoints to users. Your goal is running efficient inference for these LLMs. 

You are given a framework which has both symbolic and imperative APIs.  

While designing your system, would you:

A. Use symbolic mode for both testing and deployment of your system.

B. Use imperative mode for development and symbolic mode for 

deployment.

C. Use symbolic mode for development and imperative mode for 

deployment.

D. Use imperative mode for both testing and deployment of your system. 



MCQ Time

Which of the following is not true about dataflow graphs?

A. Static dataflow graphs are defined once and executed many 

times

B. No extra effort is required for batching optimization of static 

dataflow graphs

C. Dynamic dataflow graphs are easy to debug

D. Define-and-run is a possible way to handle dynamic dataflow 

graphs



Today

A repr that expresses the
computation using primitives

A repr that expresses the
forward computation using

primitives

A repr that expresses the
backward computation using

primitives



Today’s learning goals

• Autodiff

• MLSys architecture overview

• Optimization opportunities

• Operator optimization: kick-starter



Recap: how to take derivative?

Given 𝑓 𝜃 , what is 
𝜕𝑓

𝜕𝜃
？

Problem:
slow: evaluate f twice to get 
one gradient

Error: approximal and 
floating point has errors

𝜕𝑓

𝜕𝜃
= lim

𝜖→0

𝑓 𝜃 + 𝜖 − 𝑓(𝜃)

𝜖

≈
𝑓 𝜃 + 𝜖 − 𝑓 𝜃 − 𝜖

2𝜖
+ 𝑜(𝜖2)



Instead, Symbolic Differentiation

Write down the formula, derive the gradient following PD rules

𝜕(𝑓 𝜃 +𝑔 𝜃 )

𝜕𝜃
=
𝜕𝑓 𝜃

𝜕𝜃
+
𝜕𝑔 𝜃

𝜕𝜃

𝜕(𝑓 𝜃 𝑔 𝜃 )

𝜕𝜃
= 𝑔 𝜃

𝜕𝑓 𝜃

𝜕𝜃
+𝑓 𝜃

𝜕𝑔 𝜃

𝜕𝜃

𝜕(𝑓(𝑔 𝜃 )

𝜕𝜃
=
𝜕𝑓 𝑔(𝜃)

𝜕𝑔(𝜃)

𝜕𝑔 𝜃

𝜕𝜃



Map autodiff rules to computational graph

• Q: Calculate the value of 
𝜕𝑦

𝜕𝑥1

• A: use PD and chain rules

• There are two ways of applying chain 

rules

• Forward: from left (inside) to right

(outside)

• Backward: from right (outside) to left

(inside)

• Which one fits with deep learning?



Forward Mode AD

• Define ሶ𝑣𝑖 =
𝜕v𝑖

𝜕𝑥1

• We then compute each ሶ𝑣𝑖 following 

the forward order of the graph 

• Finally: 
𝜕𝑦

𝜕𝑥1
= ሶ𝑣7 = 5.5



Summary: Forward Mode Autodiff

• Start from the input nodes

• Derive gradient all the way to the output nodes

• Pros and Cons of FM Autodiff?

• For 𝑓: 𝑅𝑛 → 𝑅𝑘, we need 𝑛 forward passes to get the grad w.r.t.

each input

• However, in ML: 𝑘 = 1 mostly, and 𝑛 is very large 



Reverse Mode AD

• Define adjoint ഥ𝑣𝑖 =
𝜕𝑦

𝜕𝑣𝑖

• We then compute each ҧ𝑣𝑖 in the 

reverse topological order of the graph

• Finally: 
𝜕𝑦

𝜕𝑥1
= ҧ𝑣1 = 5.5



Case Study

How to derive the gradient of 𝑣1

For a 𝑣𝑖 used by multiple consumers:

, where 



Summary: Backward Mode Autodiff

• Start from the output nodes

• Derive gradient all the way back to the input nodes

• Discussion: Pros and Cons of FM Autodiff?

• For 𝑓: 𝑅𝑛 → 𝑅𝑘, we need 𝑘 backward passes to get the grad 

w.r.t. each input

• in ML: 𝑘 = 1 and 𝑛 is very large 

• How about other areas?



Back to Our Question

A repr that expresses the
computation using primitives

A repr that expresses the
forward computation using

primitives

A repr that expresses the
backward computation using

primitives



Back to our question: Construct the Backward Graph

• How can we construct a computational graph that calculates the adjoint value? 

f: (exp 𝑣1 +1)exp(𝑣1)



How to implement reverse Autodiff (aka. BP)

Record all partial adjoints of a
node

Sum up all partial adjoints to
get the gradient

Compute and propagates
partial adjoints to its inputs.



Start from 𝑣4 i = 4: 𝑣4 = 𝑠𝑢𝑚 1 = 1



𝑣4: Inspect (𝑣2, 𝑣4) and (𝑣3, 𝑣4) 

i=4: ഥ𝑣4 = 𝑠𝑢𝑚 1 = 1

k=2: 𝑣2→4 = ഥ𝑣4
𝜕𝑣4

𝜕𝑣2
= ഥ𝑣4𝑣3

k=3: 𝑣3→4 = ഥ𝑣4
𝜕𝑣4

𝜕𝑣3
= ഥ𝑣4𝑣2, 𝑣3→4 = ഥ𝑣3



Inspect 𝑣3

i=3: ഥ𝑣3 done!

k=2: 𝑣2→3 = ഥ𝑣3
𝜕𝑣3

𝜕𝑣2
= ഥ𝑣3



Inspect 𝑣2

i=2: ഥ𝑣2 = 𝑣2→3 + 𝑣2→4



Inspect (𝑣1, 𝑣2) 

i=2: ഥ𝑣2 = 𝑣2→3 + 𝑣2→4

k=1: 𝑣1→2 = ഥ𝑣2
𝜕𝑣2

𝜕𝑣1
= ഥ𝑣2exp(v1),

ഥ𝑣1 = 𝑣1→2



Summary: Backward AD

• Construct backward graph in a symbolic way (instead of concrete

values)

• This graph can be reused by different input values

• Used by TensorFlow, PyTorch



Backpropagation vs. Reverse-mode AD

• Run backward through the forward graph

• Caffe/cuda-convnet

• Construct backward graph

• Used by TensorFlow, PyTorch

VS.



Incomplete yet? 

• What is the missing from the following graph for ML training?
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Forward Backward Weight update

Recall Our Master Equation
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Put in Practice

Operator / its output tensor Data flowing direction

Forward

x MSE

y

relu matmul

w2

matmul

w1

+Backward

x MSE

y

relu matmul

w2

matmul

w1

matmul

matmul

MSE’

matmul

relu’

+Weight update

x MSE

y

relu matmul

w2

matmul

w1

matmul

matmul

MSE’

matmul

relu’

sub sub



Homework: How to derive gradients for

• Softmax cross entropy:

𝐿 = −∑𝑡𝑖 log 𝑦𝑖 , 𝑦𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝒙 𝑖 =
𝑒𝑥𝑖

∑𝑒𝑥𝑑



Today

• Autodiff

• Architecture Overview
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MLSys’ Grand problem

• Our system goals:

• Fast

• Scale

• Memory-efficient

• Run on diverse hardware

• Energy-efficient

• Easy to program/debug/deploy



ML System Overview

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator optimization/compilation

Runtime: schedule / memory



Graph Optimization

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory

• Goal:

• Rewrite the original Graph G to G’

• G’ runs faster than G



Motivating Example: ResNet

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory



Motivating Example: ResNet

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory

• Why the fusion of conv2d & batchnorm is faster?



Motivating Example: we can go further

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory

• Does each step become faster than previous step?
• How does it perf on different hardware?



Motivating Example 2: Attention

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory

• Why merged QKV is faster?



Arithmetic Intensity

AI = #ops / #bytes
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Arithmetic intensity

void add(int n, float* A, float* B, float* C) { 

for (int i=0; i<n; i++) 

C[i] = A[i] + B[i]; 

} 

Two loads, one store per math op 

(arithmetic intensity = 1/3)

1. Read A[i] 

2. Read B[i]

3. Add A[i]+B[i]

4. Store C[i]
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Which program performs better? Program 1

void add(int n, float* A, float* B, float* C) { 

for (int i=0; i<n; i++) 

C[i] = A[i] + B[i]; 

} 

void mul(int n, float* A, float* B, float* C) { 

for (int i=0; i<n; i++) 

C[i] = A[i] * B[i]; 

} 

float* A, *B, *C, *D, *E, *tmp1, *tmp2; 

// assume arrays are allocated here 

// compute E = D + ((A + B) * C) 

add(n, A, B, tmp1); 

mul(n, tmp1, C, tmp2); 

add(n, tmp2, D, E);

Two loads, one store per math op 

(arithmetic intensity = 1/3)

Two loads, one store per math op 

(arithmetic intensity = 1/3)

Overall arithmetic intensity = 1/3
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Which program performs better? Program 2

float* A, *B, *C, *D, *E, *tmp1, *tmp2; 

// assume arrays are allocated here 

// compute E = D + ((A + B) * C) 

add(n, A, B, tmp1); 

mul(n, tmp1, C, tmp2); 

add(n, tmp2, D, E);

void fused(int n, float* A, float* B, float* C, float* D,

 float* E) { 

for (int i=0; i<n; i++) 

E[i] = D[i] + (A[i] + B[i]) * C[i]; 

} 

// compute E = D + (A + B) * C 

fused(n, A,  B, C, D, E);

Overall arithmetic intensity = 1/3

Four loads, one store per 3 math ops 

arithmetic intensity = 3/5



How to perform graph optimization?

• Writing rules / template

• Auto discovery

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory



Parallelization

• Goal: parallelize the graph compute over multiple devices

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory

node node

node node

Fast connections

Slow connections

How to partition the computational graph 
on the device cluster?

x MSE

y

relu matmul

w2

matmul

w1

subsub

matmul

matmul

MSE’

matmul

relu’



Parallelization Problems

• How to partition

• How to communicate

• How to schedule

• Consistency

• How to auto-parallelize?

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory



Runtime and Scheduling

• Goal: schedule the compute/communication/memory in a way

that

• As fast as possible

• Overlap communication with compute

• Subject to memory constraints

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory



Operator Implementation

• Goal: get the fastest possible implementation of

• Matmul

• Conv2d?

• For different hardware: V100, A100, H100, phone, TPU

• For different precision: fp32, fp16, fp8, fp4

• For different shape: conv2d_3x3, conv2d_5x5, matmul2D, 3D,

attention

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory



High-level Picture

Data Model Compute

𝑥𝑖
𝑛
𝑖=1

Math primitives

(mostly matmul)

A repr that expresses the
computation using primitives

Make them run on (clusters
of ) different kinds of

hardware



Next: How to make operators run (fast) on devices?

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator optimization/compilation

Runtime: schedule / memory

x matmul

w1



Our Goal in This Layer: Maximize Arithmetic Intensity

max AI = #ops / #bytes



Next

• How we can make operator fast in general

• Case study: Matmul

• GPU architecture and programming



How we can make operators fast in general

• Vectorization

• Data layout

• Parallelization



Using vectorized operations: array add

Float A[256], B[256], C[256]

For (int i = 0; i < 256; ++i) {

C[i] = A[i] + B[i]

}

Why vectorized is faster than 
unvectorized?

unvectorized vectorized



Data Layout: make read/write faster

• How to store a matrix in memory

• Data in memory are stored sequentially (no tensor awareness)

• Row Major: A[i, j] = A.data[i*A.shape[1] + j]

• Column major: A[i, j] = A.data[j*A.shape[0] + i]



Be aware of your data layout

int sum_array_rows(int a[M][N])

{

    int i, j, sum = 0;

    for (j = 0; j < N; j++)

        for (i = 0; i < M; i++)

            sum += a[i][j];

    return sum;

}

Assuming row-major
array

• • •

a

[0]

[0]

a

[0]

[N-1]

• • •

a

[1]

[0]

a

[1]

[N-1]

• • •

a

[M-1]

[0]

a

[M-1]

[N-1]

• •  •

How to improve the above program?



MCQ Time

Data

𝑥𝑖
𝑛
𝑖=1

ML Systems Store Data in:

A. Row major

B. Col major

C. Strides format: A[i, j] = A.data[offset + 

i*A.strides[0] + j * A.strides[1]]



Strides in High-dimension

Offset: the offset of the tensor relative to the underlying storage 

Strides: strides[i] indicates how many “elements” need to be skipped in memory 

to move “one unit” in the i-th dimension of the tensor 



Strides format

• What we have when:

• A.strides[0] = 1,

• A.strides[1] = A.shape[0]?

• What we have when:

• A.strides[0] = A.shape[1]

• A.strides[1] = 1, 

• Strides offers more flexibility



Questions

• If a tensor of shape [1, 2, 3, 4] is stored contiguous in memory 

following row Major, write down its strides?
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