
CSE 234: Data Systems for Machine Learning

Winter 2025

1

https://hao-ai-lab.github.io/cse234-w25/

MLSys Basics

Optimizations and Parallelization

LLMSys

Logistics Update

• Enrollment:

• We have ~60 vacancies now, CSE will process enrollments soon

• On Thursday, we will enroll the next batch depending on

availability.

Last week

• We summarized our workload

• Matmul + softmax + …

• Computational graphs

• Nodes, edges

• Programming

• Imperative vs. symbolic

• Static vs. dynamic

• JIT and its bottleneck

MCQ Time

You are a machine learning engineer at a company that is providing LLM

endpoints to users. Your goal is running efficient inference for these LLMs.

You are given a framework which has both symbolic and imperative APIs.

While designing your system, would you:

A. Use symbolic mode for both testing and deployment of your system.

B. Use imperative mode for development and symbolic mode for

deployment.

C. Use symbolic mode for development and imperative mode for

deployment.

D. Use imperative mode for both testing and deployment of your system.

MCQ Time

Which of the following is not true about dataflow graphs?

A. Static dataflow graphs are defined once and executed many

times

B. No extra effort is required for batching optimization of static

dataflow graphs

C. Dynamic dataflow graphs are easy to debug

D. Define-and-run is a possible way to handle dynamic dataflow

graphs

Today

A repr that expresses the
computation using primitives

A repr that expresses the
forward computation using

primitives

A repr that expresses the
backward computation using

primitives

Today’s learning goals

• Autodiff

• MLSys architecture overview

• Optimization opportunities

• Operator optimization: kick-starter

Recap: how to take derivative?

Given 𝑓 𝜃 , what is
𝜕𝑓

𝜕𝜃
？

Problem:
slow: evaluate f twice to get
one gradient

Error: approximal and
floating point has errors

𝜕𝑓

𝜕𝜃
= lim

𝜖→0

𝑓 𝜃 + 𝜖 − 𝑓(𝜃)

𝜖

≈
𝑓 𝜃 + 𝜖 − 𝑓 𝜃 − 𝜖

2𝜖
+ 𝑜(𝜖2)

Instead, Symbolic Differentiation

Write down the formula, derive the gradient following PD rules

𝜕(𝑓 𝜃 +𝑔 𝜃)

𝜕𝜃
=
𝜕𝑓 𝜃

𝜕𝜃
+
𝜕𝑔 𝜃

𝜕𝜃

𝜕(𝑓 𝜃 𝑔 𝜃)

𝜕𝜃
= 𝑔 𝜃

𝜕𝑓 𝜃

𝜕𝜃
+𝑓 𝜃

𝜕𝑔 𝜃

𝜕𝜃

𝜕(𝑓(𝑔 𝜃)

𝜕𝜃
=
𝜕𝑓 𝑔(𝜃)

𝜕𝑔(𝜃)

𝜕𝑔 𝜃

𝜕𝜃

Map autodiff rules to computational graph

• Q: Calculate the value of
𝜕𝑦

𝜕𝑥1

• A: use PD and chain rules

• There are two ways of applying chain

rules

• Forward: from left (inside) to right

(outside)

• Backward: from right (outside) to left

(inside)

• Which one fits with deep learning?

Forward Mode AD

• Define ሶ𝑣𝑖 =
𝜕v𝑖

𝜕𝑥1

• We then compute each ሶ𝑣𝑖 following

the forward order of the graph

• Finally:
𝜕𝑦

𝜕𝑥1
= ሶ𝑣7 = 5.5

Summary: Forward Mode Autodiff

• Start from the input nodes

• Derive gradient all the way to the output nodes

• Pros and Cons of FM Autodiff?

• For 𝑓: 𝑅𝑛 → 𝑅𝑘, we need 𝑛 forward passes to get the grad w.r.t.

each input

• However, in ML: 𝑘 = 1 mostly, and 𝑛 is very large

Reverse Mode AD

• Define adjoint ഥ𝑣𝑖 =
𝜕𝑦

𝜕𝑣𝑖

• We then compute each ҧ𝑣𝑖 in the

reverse topological order of the graph

• Finally:
𝜕𝑦

𝜕𝑥1
= ҧ𝑣1 = 5.5

Case Study

How to derive the gradient of 𝑣1

For a 𝑣𝑖 used by multiple consumers:

, where

Summary: Backward Mode Autodiff

• Start from the output nodes

• Derive gradient all the way back to the input nodes

• Discussion: Pros and Cons of FM Autodiff?

• For 𝑓: 𝑅𝑛 → 𝑅𝑘, we need 𝑘 backward passes to get the grad

w.r.t. each input

• in ML: 𝑘 = 1 and 𝑛 is very large

• How about other areas?

Back to Our Question

A repr that expresses the
computation using primitives

A repr that expresses the
forward computation using

primitives

A repr that expresses the
backward computation using

primitives

Back to our question: Construct the Backward Graph

• How can we construct a computational graph that calculates the adjoint value?

f: (exp 𝑣1 +1)exp(𝑣1)

How to implement reverse Autodiff (aka. BP)

Record all partial adjoints of a
node

Sum up all partial adjoints to
get the gradient

Compute and propagates
partial adjoints to its inputs.

Start from 𝑣4 i = 4: 𝑣4 = 𝑠𝑢𝑚 1 = 1

𝑣4: Inspect (𝑣2, 𝑣4) and (𝑣3, 𝑣4)

i=4: ഥ𝑣4 = 𝑠𝑢𝑚 1 = 1

k=2: 𝑣2→4 = ഥ𝑣4
𝜕𝑣4

𝜕𝑣2
= ഥ𝑣4𝑣3

k=3: 𝑣3→4 = ഥ𝑣4
𝜕𝑣4

𝜕𝑣3
= ഥ𝑣4𝑣2, 𝑣3→4 = ഥ𝑣3

Inspect 𝑣3

i=3: ഥ𝑣3 done!

k=2: 𝑣2→3 = ഥ𝑣3
𝜕𝑣3

𝜕𝑣2
= ഥ𝑣3

Inspect 𝑣2

i=2: ഥ𝑣2 = 𝑣2→3 + 𝑣2→4

Inspect (𝑣1, 𝑣2)

i=2: ഥ𝑣2 = 𝑣2→3 + 𝑣2→4

k=1: 𝑣1→2 = ഥ𝑣2
𝜕𝑣2

𝜕𝑣1
= ഥ𝑣2exp(v1),

ഥ𝑣1 = 𝑣1→2

Summary: Backward AD

• Construct backward graph in a symbolic way (instead of concrete

values)

• This graph can be reused by different input values

• Used by TensorFlow, PyTorch

Backpropagation vs. Reverse-mode AD

• Run backward through the forward graph

• Caffe/cuda-convnet

• Construct backward graph

• Used by TensorFlow, PyTorch

VS.

Incomplete yet?

• What is the missing from the following graph for ML training?

27

Forward Backward Weight update

Recall Our Master Equation

28

Put in Practice

Operator / its output tensor Data flowing direction

Forward

x MSE

y

relu matmul

w2

matmul

w1

+Backward

x MSE

y

relu matmul

w2

matmul

w1

matmul

matmul

MSE’

matmul

relu’

+Weight update

x MSE

y

relu matmul

w2

matmul

w1

matmul

matmul

MSE’

matmul

relu’

sub sub

Homework: How to derive gradients for

• Softmax cross entropy:

𝐿 = −∑𝑡𝑖 log 𝑦𝑖 , 𝑦𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝒙 𝑖 =
𝑒𝑥𝑖

∑𝑒𝑥𝑑

Today

• Autodiff

• Architecture Overview

31

MLSys’ Grand problem

• Our system goals:

• Fast

• Scale

• Memory-efficient

• Run on diverse hardware

• Energy-efficient

• Easy to program/debug/deploy

ML System Overview

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator optimization/compilation

Runtime: schedule / memory

Graph Optimization

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

• Goal:

• Rewrite the original Graph G to G’

• G’ runs faster than G

Motivating Example: ResNet

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

Motivating Example: ResNet

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

• Why the fusion of conv2d & batchnorm is faster?

Motivating Example: we can go further

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

• Does each step become faster than previous step?
• How does it perf on different hardware?

Motivating Example 2: Attention

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

• Why merged QKV is faster?

Arithmetic Intensity

AI = #ops / #bytes

39

Arithmetic intensity

void add(int n, float* A, float* B, float* C) {

for (int i=0; i<n; i++)

C[i] = A[i] + B[i];

}

Two loads, one store per math op

(arithmetic intensity = 1/3)

1. Read A[i]

2. Read B[i]

3. Add A[i]+B[i]

4. Store C[i]

40

Which program performs better? Program 1

void add(int n, float* A, float* B, float* C) {

for (int i=0; i<n; i++)

C[i] = A[i] + B[i];

}

void mul(int n, float* A, float* B, float* C) {

for (int i=0; i<n; i++)

C[i] = A[i] * B[i];

}

float* A, *B, *C, *D, *E, *tmp1, *tmp2;

// assume arrays are allocated here

// compute E = D + ((A + B) * C)

add(n, A, B, tmp1);

mul(n, tmp1, C, tmp2);

add(n, tmp2, D, E);

Two loads, one store per math op

(arithmetic intensity = 1/3)

Two loads, one store per math op

(arithmetic intensity = 1/3)

Overall arithmetic intensity = 1/3

41

Which program performs better? Program 2

float* A, *B, *C, *D, *E, *tmp1, *tmp2;

// assume arrays are allocated here

// compute E = D + ((A + B) * C)

add(n, A, B, tmp1);

mul(n, tmp1, C, tmp2);

add(n, tmp2, D, E);

void fused(int n, float* A, float* B, float* C, float* D,

 float* E) {

for (int i=0; i<n; i++)

E[i] = D[i] + (A[i] + B[i]) * C[i];

}

// compute E = D + (A + B) * C

fused(n, A, B, C, D, E);

Overall arithmetic intensity = 1/3

Four loads, one store per 3 math ops

arithmetic intensity = 3/5

How to perform graph optimization?

• Writing rules / template

• Auto discovery

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

Parallelization

• Goal: parallelize the graph compute over multiple devices

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

node node

node node

Fast connections

Slow connections

How to partition the computational graph
on the device cluster?

x MSE

y

relu matmul

w2

matmul

w1

subsub

matmul

matmul

MSE’

matmul

relu’

Parallelization Problems

• How to partition

• How to communicate

• How to schedule

• Consistency

• How to auto-parallelize?

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

Runtime and Scheduling

• Goal: schedule the compute/communication/memory in a way

that

• As fast as possible

• Overlap communication with compute

• Subject to memory constraints

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

Operator Implementation

• Goal: get the fastest possible implementation of

• Matmul

• Conv2d?

• For different hardware: V100, A100, H100, phone, TPU

• For different precision: fp32, fp16, fp8, fp4

• For different shape: conv2d_3x3, conv2d_5x5, matmul2D, 3D,

attention

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

High-level Picture

Data Model Compute

𝑥𝑖
𝑛
𝑖=1

Math primitives

(mostly matmul)

A repr that expresses the
computation using primitives

Make them run on (clusters
of) different kinds of

hardware

Next: How to make operators run (fast) on devices?

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator optimization/compilation

Runtime: schedule / memory

x matmul

w1

Our Goal in This Layer: Maximize Arithmetic Intensity

max AI = #ops / #bytes

Next

• How we can make operator fast in general

• Case study: Matmul

• GPU architecture and programming

How we can make operators fast in general

• Vectorization

• Data layout

• Parallelization

Using vectorized operations: array add

Float A[256], B[256], C[256]

For (int i = 0; i < 256; ++i) {

C[i] = A[i] + B[i]

}

Why vectorized is faster than
unvectorized?

unvectorized vectorized

Data Layout: make read/write faster

• How to store a matrix in memory

• Data in memory are stored sequentially (no tensor awareness)

• Row Major: A[i, j] = A.data[i*A.shape[1] + j]

• Column major: A[i, j] = A.data[j*A.shape[0] + i]

Be aware of your data layout

int sum_array_rows(int a[M][N])

{

 int i, j, sum = 0;

 for (j = 0; j < N; j++)

 for (i = 0; i < M; i++)

 sum += a[i][j];

 return sum;

}

Assuming row-major
array

• • •

a

[0]

[0]

a

[0]

[N-1]

• • •

a

[1]

[0]

a

[1]

[N-1]

• • •

a

[M-1]

[0]

a

[M-1]

[N-1]

• • •

How to improve the above program?

MCQ Time

Data

𝑥𝑖
𝑛
𝑖=1

ML Systems Store Data in:

A. Row major

B. Col major

C. Strides format: A[i, j] = A.data[offset +

i*A.strides[0] + j * A.strides[1]]

Strides in High-dimension

Offset: the offset of the tensor relative to the underlying storage

Strides: strides[i] indicates how many “elements” need to be skipped in memory

to move “one unit” in the i-th dimension of the tensor

Strides format

• What we have when:

• A.strides[0] = 1,

• A.strides[1] = A.shape[0]?

• What we have when:

• A.strides[0] = A.shape[1]

• A.strides[1] = 1,

• Strides offers more flexibility

Questions

• If a tensor of shape [1, 2, 3, 4] is stored contiguous in memory

following row Major, write down its strides?

	Slide 1: CSE 234: Data Systems for Machine Learning Winter 2025
	Slide 2: Logistics Update
	Slide 3: Last week
	Slide 4: MCQ Time
	Slide 5: MCQ Time
	Slide 6: Today
	Slide 7: Today’s learning goals
	Slide 8: Recap: how to take derivative?
	Slide 9: Instead, Symbolic Differentiation
	Slide 10: Map autodiff rules to computational graph
	Slide 11: Forward Mode AD
	Slide 12: Summary: Forward Mode Autodiff
	Slide 13: Reverse Mode AD
	Slide 14: Case Study
	Slide 15: Summary: Backward Mode Autodiff
	Slide 16: Back to Our Question
	Slide 17: Back to our question: Construct the Backward Graph
	Slide 18: How to implement reverse Autodiff (aka. BP)
	Slide 19: Start from v 4
	Slide 20: v 4: Inspect (v 2, v 4) and (v 3, v 4)
	Slide 21: Inspect v 3
	Slide 22: Inspect v 2
	Slide 23: Inspect (v 1, v 2)
	Slide 24: Summary: Backward AD
	Slide 25: Backpropagation vs. Reverse-mode AD
	Slide 26: Incomplete yet?
	Slide 27: Recall Our Master Equation
	Slide 28: Put in Practice
	Slide 29: Homework: How to derive gradients for
	Slide 30: Today
	Slide 31: MLSys’ Grand problem
	Slide 32: ML System Overview
	Slide 33: Graph Optimization
	Slide 34: Motivating Example: ResNet
	Slide 35: Motivating Example: ResNet
	Slide 36: Motivating Example: we can go further
	Slide 37: Motivating Example 2: Attention
	Slide 38: Arithmetic Intensity
	Slide 39: Arithmetic intensity
	Slide 40: Which program performs better? Program 1
	Slide 41: Which program performs better? Program 2
	Slide 42: How to perform graph optimization?
	Slide 43: Parallelization
	Slide 44: Parallelization Problems
	Slide 45: Runtime and Scheduling
	Slide 46: Operator Implementation
	Slide 47: High-level Picture
	Slide 48: Next: How to make operators run (fast) on devices?
	Slide 49: Our Goal in This Layer: Maximize Arithmetic Intensity
	Slide 50: Next
	Slide 51: How we can make operators fast in general
	Slide 52: Using vectorized operations: array add
	Slide 53: Data Layout: make read/write faster
	Slide 54: Be aware of your data layout
	Slide 55: MCQ Time
	Slide 56: Strides in High-dimension
	Slide 57: Strides format
	Slide 58: Questions

