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LLMSys



Enrollment Updates

• We have sent out two batches of enrollment invitations (on Wed

and Thursday)

• To ~100 waitlisted students in total

• With a 24h expiration

• If there are still rooms (which is highly likely)

• We will send the next batch Friday morning



Today’s Learning Goals

• How to make operators fast in general?

• Vectorize

• Data layout

• Parallelization (at the operator level)

• Matmul-specific optimization

• GPUs and accelerators

• High-level Idea

• The accelerator market

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory



Recap: Strides



Why we bother saving “strides” when saving tensors

• Strides can separate the underlying storage and the view of the 

tensor

• Enable zero-copy of some very frequently used operators



Operator: Slice

• Change the offset by +1

• Reduce the shape to [3, 2]

• Note: zero copy



Operator: Transpose

• How to do Transpose? 

• Note 1: zero copy

• Note 2: underlying storage is unchanged



Broadcast

• Question: how to do broadcast?

• b.strides=[1], b.shape=[1,3], b.data=[1, 2, 3]

• After broadcast: b.shape=[4,3], b.data=[1, 2, 3], b.strides=?

• Recall the def of strides: A[i, j] = A.data[offset + i*A.strides[0] + j * 

A.strides[1]]



Home Exercise: Swapping tiles



Problems of Strides

• Memory Access may become not continuous

• Many vectorized ops requires continuous storage 

• What’s the underlying storage after slice?



Parallelization (Elementise)

• How to parallelize the loop?

vectorized Vectorized & 
parallelized

We’ll com
back to this

later



Summary

• Vectorization

• Leverage platform-specific vectorized functions

• reduce seek time

• Data layout

• Stride format

• Zero copy

• Enable fast array-manipulation: slice, transpose, broadcast, etc.

• Parallelization on CPUs



Next

• How to make operators fast in general?

• Vectorize

• Data layout

• Parallelization (at the operator level)

• Matmul-specific optimization

• GPUs and accelerators

• High-level Idea

• The accelerator market

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory



What is Matmul in Code?

• What is the time complexity 
of 2D matmul?

• O(n^3)

• What is the best complexity 

we can achieve? 

• O(n^2.371552)



Matmul Complexity Not a good area
to do research☺



How to Make Matmul Fast

max AI = #ops / #bytes



Recall: Memory Hierarchy

• Ideally: we want everything to be local to processors (In registers)

• But registers are expensive and small, hence memory hierarhcy



Simplify It a bit

CPU ALU

Registers

DRAM

compute units

1st layer:

2nd layer:



19

Recall How to Estimate AI: count loads

float* A, *B, *C, *D, *E, *tmp1, *tmp2; 

// assume arrays are allocated here 

// compute E = D + ((A + B) * C) 

add(n, A, B, tmp1); 

mul(n, tmp1, C, tmp2); 

add(n, tmp2, D, E);

void fused(int n, float* A, float* B, float* C, float* D,

 float* E) { 

for (int i=0; i<n; i++) 

E[i] = D[i] + (A[i] + B[i]) * C[i]; 

} 

// compute E = D + (A + B) * C 

fused(n, A,  B, C, D, E);

Overall arithmetic intensity = 1/3

Four loads, one store per 3 math ops 

arithmetic intensity = 3/5



Review Matmul loop

Read a 

Read b

Write c

n^3

n^3
n^2

#reigsters needed:
1 + 1 + 1 =3 

Read cost:
2 * n^3 * speed(dram -> register) 



Register Tiled Matrix Multiplication



Register Tiled Matrix Multiplication

Read a 

Read b

Write c

N^3 / v_2

N^3 / v_1

N^2

#reigsters needed:
v1*v3 + v2*v3 + v1*v2

Read cost:
(n^3/v2 + n^3 / v1) * speed(dram -> register) 



Register Tiled Matrix Multiplication

• Q: is the load cost related to v3?

• Q: How to set v1 / v2?

• What are the constraints?

• Q: Why essentially can tiling reduce 

read cost?

Read a 

Read b

N^3 / v_2

N^3 / v_1

#reigsters needed:
v1*v3 + v2*v3 + v1*v2



Make it more complicated: Consider L1 cache

CPU ALU

Registers

DRAM

L1 Cache

compute units

2nd layer:

1st layer:

3nd layer:



Cache-aware tiling • We can further tile the array [b1][n] or [b2][n] 

using at the L1-> register level

• What’s the required condition?



Cache-aware tiling

Data movement path:

1.Dram

2.Dram -> l1cache (cache tiling)

3.L1cache -> register  (reg tiling)

Later we apply

register tiling

here..



Cache-aware tiling

A’s dram -> l1 cost:

n / b1 * n * b1 = n^2
B’s dram -> l1 time cost: 

n / b1 * n / b2 * b2 * n = n^3 / b1

Vs. previous untiled version?

s.t.

• b1 * n + b2 * n < L1 cache size



Putting Things Together

Outside: cache tiling

Inside: register tiling

• Cache tiling using b1 and b2

• DRAM→ L1 cache reads here

• Register tiling using v1 and v2

• L1→ register cache reads here

We set v3 = 1 (we know it does not

matter)



Putting Things Together

Outside: cache tiling

Inside: register tiling

Cost: dram -> l1
• n/b1*b1/v1*n*v1 = n^2 
• n/b1*n/b2*b2/v2*n*v2=n^2/

b1

Cost: l1 -> register:
• n / b1 * n / b2 * b1 / v1 * b2 

/ v2 * n * v1 = n^3 / v2
• n^3 / v1



In practice 

• On CPUs: We have disk -> dram -> L2 -> L1 -> Register

• How to choose v1, v2, b1, b2, c1, c2?

• While we are reading from dram -> L2, can we concurrently read:

• L2 -> L1

• L1 -> register

• S.t. sizes of L2, L1, registers



Why tiling works: reuse loading

Access of A is independent of 

the dimension of j

Tile the j dimension by v1 
enables resue of A for v1 times



Homework Candidate?

• Q: How to tile?

for n in range(0, N):

for co in range(0, CO):

for h in range(0, H):

for w in range(0, W):

for ci in range(0, CI):

for kh in range(0, KH):

for kw in range(0, KW):

C[n,co,h,w] += A[n,co,h+kh,w+kw] x B[kh,kw,co,ci]  

Simple spatial loops. 

Reduction loop. 

Stencil computation loops. 

Reduction loops. But usually too small (<= 
5) for parallelization.



Where we are

• How to make operators fast in general?

• Vectorize

• Data layout

• Parallelization (at the operator level)

• Matmul-specific optimization

• GPUs and accelerators

• High-level Idea

• The accelerator market

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory



Recap CPU parallelization

• We can parallelize this loop using CPU threads

• == using many concurrent cores

Vectorized & 
parallelized
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Single-Instruction Multiple-Data



Chip Design Trajectory: SIMD

Control

Caches

ALU ALU

ALU ALU
Control

Caches

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

If we’re able to reduce size of ALU
(transistors) while keeping its power



Chip Industry: 70nm -> 60nm -> 50nm -> … ->?

• Problem: this is not substantiable; there are also power/heat issues 

when you put more ALUs in a limited area (s.t. physics limitations)



Chip Industry: Moore’s Law Comes to an End

Option 1: Go to the

quantum world

Option 2: Specialized

hardware



Idea: How about we use a lot of weak/specialized cores
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Hardware Accelerators: GPUs

• Graphics Processing Unit (GPU): Tailored for matrix/tensor ops

• Basic idea: Use tons of ALUs (but weak and more specialized); massive 

data parallelism (SIMD on steroids); 

• Popularized by NVIDIA in early 2000s for video games, graphics, and 

multimedia; now ubiquitous in DL

• CUDA released in 2007; later wrapper APIs on top: CuDNN, CuSparse, 

CuDF (RapidsAI), NCCL, etc.
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Other Hardware Accelerators
Other Hardware Accelerators

• E.g.

• Tensor Processing Unit (TPU)

• An “application-specific integrated circuit” (ASIC) created by 

Google in mid 2010s; used for AlphaGo

• E.g.

• B200 (projected release 2025): fp4 / fp8 Tensorcore

• E.g.

• M3 max: mixing tensorcore and normal core



What Does It Mean by “Specialized” In accelerator world

In General:

• Functionality-specialized:

• Can only compute certain computations: matmul, w/ sparsity

• Mixing specialized cores with versatile cores

• Reduce precision

• Floating point operations: fp32, fp16, fp8, int8, int4, …

• Tune the distribution of different components for specific

workloads

• SRAM, cache, registers, etc.



Case Study 1: Nvidia GPU Specification



Case Study 1: Nvidia GPU Specification



Case Study 1: Nvidia GPU Specification

Question: why this could work in

ML programs?



Case Study 2: Apple Silicon



Case Study 2: Apple Silicon Revealed



Case Study 3: Leading Chip Startups



Case Study 3: Groq

More specialized

hardware

Nvidia GPUs

Question: How did Groq achieve that?



Case Study 3: Groq



Case Study 3: Groq

• Recall



Take-home Exercise

• Study B100 specification and compare it to H100

• How nvidia claims another 2x from H100 -> B100?

• How about B200?



Economic Question

Question: What is Nvidia’s Moat?



Next: GPU and CUDA

• Basic concepts and Architecture

• Programming abstraction

• Case study: Matmul

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory



GPU Overview



Threads, Blocks, Grids

• Threads: smallest units to 

process a chunk of data

• Blocks: A group of threads that 

share memory

• Grid: A collection of blocks that 

execute the same kernel



How many SMs/Threads we have?

• V100 (2018 - Now): 80 SMs, 2048 threads/SM

• A100 (2020 - Now): 108 SMs, 2048 threads/SM

• H100 (2022 - Now): 144 SMs, 2048 threads/SM

• B100 (2025 - ): go surveying the numbers



CUDA

• Introduced in 2007 with NVIDIA Tesla architecture

• C-like languages for programming GPUs

• CUDA’s design matches the grid/block/thread concepts in GPUs



CUDA Programs contain A Hierarchy of Threads



How Many threads/Blocks it runs on?



Grid, Block, and Thread

• GridDim: The dimensions of the grid

• blockIdx: The block index within the grid

• blockDim: The dimensions of a block 

• threadIdx: The thread index within a block

• What About GridId?

• What about threadDim?



An Example CUDA Program

• “launch a grid of CUDA thread

• blocks” Call returns when all threads 
have terminated

• __global__ denotes a CUDA kernel 

function runs on GPU
• Each thread indexes its data using 

blockIdx, blockDim, threadIdx and 
execute the compute



Separation CPU and GPU Execution

• Host code: serial execution on CPU

• Device code: SIMD parallel execution 

on GPUs



#Threads is Explicit and Static in Programs

Developers to:

• To provide CPU/GPU code 
separation

• Statically declare blockDim, shapes.
• Map data to blocks/threads
• Check boundary conditions



SIMD Constraints: how to handle control flow?

SIMD requires all ALUs/Core Must proceed in the same pace
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