
CSE 234: Data Systems for Machine Learning

Winter 2025

1

https://hao-ai-lab.github.io/cse234-w25/

MLSys Basics

Optimizations and Parallelization

LLMSys

Enrollment Updates

• We have sent out two batches of enrollment invitations (on Wed

and Thursday)

• To ~100 waitlisted students in total

• With a 24h expiration

• If there are still rooms (which is highly likely)

• We will send the next batch Friday morning

Today’s Learning Goals

• How to make operators fast in general?

• Vectorize

• Data layout

• Parallelization (at the operator level)

• Matmul-specific optimization

• GPUs and accelerators

• High-level Idea

• The accelerator market

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

Recap: Strides

Why we bother saving “strides” when saving tensors

• Strides can separate the underlying storage and the view of the

tensor

• Enable zero-copy of some very frequently used operators

Operator: Slice

• Change the offset by +1

• Reduce the shape to [3, 2]

• Note: zero copy

Operator: Transpose

• How to do Transpose?

• Note 1: zero copy

• Note 2: underlying storage is unchanged

Broadcast

• Question: how to do broadcast?

• b.strides=[1], b.shape=[1,3], b.data=[1, 2, 3]

• After broadcast: b.shape=[4,3], b.data=[1, 2, 3], b.strides=?

• Recall the def of strides: A[i, j] = A.data[offset + i*A.strides[0] + j *

A.strides[1]]

Home Exercise: Swapping tiles

Problems of Strides

• Memory Access may become not continuous

• Many vectorized ops requires continuous storage

• What’s the underlying storage after slice?

Parallelization (Elementise)

• How to parallelize the loop?

vectorized Vectorized &
parallelized

We’ll com
back to this

later

Summary

• Vectorization

• Leverage platform-specific vectorized functions

• reduce seek time

• Data layout

• Stride format

• Zero copy

• Enable fast array-manipulation: slice, transpose, broadcast, etc.

• Parallelization on CPUs

Next

• How to make operators fast in general?

• Vectorize

• Data layout

• Parallelization (at the operator level)

• Matmul-specific optimization

• GPUs and accelerators

• High-level Idea

• The accelerator market

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

What is Matmul in Code?

• What is the time complexity
of 2D matmul?

• O(n^3)

• What is the best complexity

we can achieve?

• O(n^2.371552)

Matmul Complexity Not a good area
to do research☺

How to Make Matmul Fast

max AI = #ops / #bytes

Recall: Memory Hierarchy

• Ideally: we want everything to be local to processors (In registers)

• But registers are expensive and small, hence memory hierarhcy

Simplify It a bit

CPU ALU

Registers

DRAM

compute units

1st layer:

2nd layer:

19

Recall How to Estimate AI: count loads

float* A, *B, *C, *D, *E, *tmp1, *tmp2;

// assume arrays are allocated here

// compute E = D + ((A + B) * C)

add(n, A, B, tmp1);

mul(n, tmp1, C, tmp2);

add(n, tmp2, D, E);

void fused(int n, float* A, float* B, float* C, float* D,

 float* E) {

for (int i=0; i<n; i++)

E[i] = D[i] + (A[i] + B[i]) * C[i];

}

// compute E = D + (A + B) * C

fused(n, A, B, C, D, E);

Overall arithmetic intensity = 1/3

Four loads, one store per 3 math ops

arithmetic intensity = 3/5

Review Matmul loop

Read a

Read b

Write c

n^3

n^3
n^2

#reigsters needed:
1 + 1 + 1 =3

Read cost:
2 * n^3 * speed(dram -> register)

Register Tiled Matrix Multiplication

Register Tiled Matrix Multiplication

Read a

Read b

Write c

N^3 / v_2

N^3 / v_1

N^2

#reigsters needed:
v1*v3 + v2*v3 + v1*v2

Read cost:
(n^3/v2 + n^3 / v1) * speed(dram -> register)

Register Tiled Matrix Multiplication

• Q: is the load cost related to v3?

• Q: How to set v1 / v2?

• What are the constraints?

• Q: Why essentially can tiling reduce

read cost?

Read a

Read b

N^3 / v_2

N^3 / v_1

#reigsters needed:
v1*v3 + v2*v3 + v1*v2

Make it more complicated: Consider L1 cache

CPU ALU

Registers

DRAM

L1 Cache

compute units

2nd layer:

1st layer:

3nd layer:

Cache-aware tiling • We can further tile the array [b1][n] or [b2][n]

using at the L1-> register level

• What’s the required condition?

Cache-aware tiling

Data movement path:

1.Dram

2.Dram -> l1cache (cache tiling)

3.L1cache -> register (reg tiling)

Later we apply

register tiling

here..

Cache-aware tiling

A’s dram -> l1 cost:

n / b1 * n * b1 = n^2
B’s dram -> l1 time cost:

n / b1 * n / b2 * b2 * n = n^3 / b1

Vs. previous untiled version?

s.t.

• b1 * n + b2 * n < L1 cache size

Putting Things Together

Outside: cache tiling

Inside: register tiling

• Cache tiling using b1 and b2

• DRAM→ L1 cache reads here

• Register tiling using v1 and v2

• L1→ register cache reads here

We set v3 = 1 (we know it does not

matter)

Putting Things Together

Outside: cache tiling

Inside: register tiling

Cost: dram -> l1
• n/b1*b1/v1*n*v1 = n^2
• n/b1*n/b2*b2/v2*n*v2=n^2/

b1

Cost: l1 -> register:
• n / b1 * n / b2 * b1 / v1 * b2

/ v2 * n * v1 = n^3 / v2
• n^3 / v1

In practice

• On CPUs: We have disk -> dram -> L2 -> L1 -> Register

• How to choose v1, v2, b1, b2, c1, c2?

• While we are reading from dram -> L2, can we concurrently read:

• L2 -> L1

• L1 -> register

• S.t. sizes of L2, L1, registers

Why tiling works: reuse loading

Access of A is independent of

the dimension of j

Tile the j dimension by v1
enables resue of A for v1 times

Homework Candidate?

• Q: How to tile?

for n in range(0, N):

for co in range(0, CO):

for h in range(0, H):

for w in range(0, W):

for ci in range(0, CI):

for kh in range(0, KH):

for kw in range(0, KW):

C[n,co,h,w] += A[n,co,h+kh,w+kw] x B[kh,kw,co,ci]

Simple spatial loops.

Reduction loop.

Stencil computation loops.

Reduction loops. But usually too small (<=
5) for parallelization.

Where we are

• How to make operators fast in general?

• Vectorize

• Data layout

• Parallelization (at the operator level)

• Matmul-specific optimization

• GPUs and accelerators

• High-level Idea

• The accelerator market

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

Recap CPU parallelization

• We can parallelize this loop using CPU threads

• == using many concurrent cores

Vectorized &
parallelized

35

Single-Instruction Multiple-Data

Chip Design Trajectory: SIMD

Control

Caches

ALU ALU

ALU ALU
Control

Caches

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

If we’re able to reduce size of ALU
(transistors) while keeping its power

Chip Industry: 70nm -> 60nm -> 50nm -> … ->?

• Problem: this is not substantiable; there are also power/heat issues

when you put more ALUs in a limited area (s.t. physics limitations)

Chip Industry: Moore’s Law Comes to an End

Option 1: Go to the

quantum world

Option 2: Specialized

hardware

Idea: How about we use a lot of weak/specialized cores

40

Hardware Accelerators: GPUs

• Graphics Processing Unit (GPU): Tailored for matrix/tensor ops

• Basic idea: Use tons of ALUs (but weak and more specialized); massive

data parallelism (SIMD on steroids);

• Popularized by NVIDIA in early 2000s for video games, graphics, and

multimedia; now ubiquitous in DL

• CUDA released in 2007; later wrapper APIs on top: CuDNN, CuSparse,

CuDF (RapidsAI), NCCL, etc.

41

Other Hardware Accelerators
Other Hardware Accelerators

• E.g.

• Tensor Processing Unit (TPU)

• An “application-specific integrated circuit” (ASIC) created by

Google in mid 2010s; used for AlphaGo

• E.g.

• B200 (projected release 2025): fp4 / fp8 Tensorcore

• E.g.

• M3 max: mixing tensorcore and normal core

What Does It Mean by “Specialized” In accelerator world

In General:

• Functionality-specialized:

• Can only compute certain computations: matmul, w/ sparsity

• Mixing specialized cores with versatile cores

• Reduce precision

• Floating point operations: fp32, fp16, fp8, int8, int4, …

• Tune the distribution of different components for specific

workloads

• SRAM, cache, registers, etc.

Case Study 1: Nvidia GPU Specification

Case Study 1: Nvidia GPU Specification

Case Study 1: Nvidia GPU Specification

Question: why this could work in

ML programs?

Case Study 2: Apple Silicon

Case Study 2: Apple Silicon Revealed

Case Study 3: Leading Chip Startups

Case Study 3: Groq

More specialized

hardware

Nvidia GPUs

Question: How did Groq achieve that?

Case Study 3: Groq

Case Study 3: Groq

• Recall

Take-home Exercise

• Study B100 specification and compare it to H100

• How nvidia claims another 2x from H100 -> B100?

• How about B200?

Economic Question

Question: What is Nvidia’s Moat?

Next: GPU and CUDA

• Basic concepts and Architecture

• Programming abstraction

• Case study: Matmul

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

GPU Overview

Threads, Blocks, Grids

• Threads: smallest units to

process a chunk of data

• Blocks: A group of threads that

share memory

• Grid: A collection of blocks that

execute the same kernel

How many SMs/Threads we have?

• V100 (2018 - Now): 80 SMs, 2048 threads/SM

• A100 (2020 - Now): 108 SMs, 2048 threads/SM

• H100 (2022 - Now): 144 SMs, 2048 threads/SM

• B100 (2025 -): go surveying the numbers

CUDA

• Introduced in 2007 with NVIDIA Tesla architecture

• C-like languages for programming GPUs

• CUDA’s design matches the grid/block/thread concepts in GPUs

CUDA Programs contain A Hierarchy of Threads

How Many threads/Blocks it runs on?

Grid, Block, and Thread

• GridDim: The dimensions of the grid

• blockIdx: The block index within the grid

• blockDim: The dimensions of a block

• threadIdx: The thread index within a block

• What About GridId?

• What about threadDim?

An Example CUDA Program

• “launch a grid of CUDA thread

• blocks” Call returns when all threads
have terminated

• __global__ denotes a CUDA kernel

function runs on GPU
• Each thread indexes its data using

blockIdx, blockDim, threadIdx and
execute the compute

Separation CPU and GPU Execution

• Host code: serial execution on CPU

• Device code: SIMD parallel execution

on GPUs

#Threads is Explicit and Static in Programs

Developers to:

• To provide CPU/GPU code
separation

• Statically declare blockDim, shapes.
• Map data to blocks/threads
• Check boundary conditions

SIMD Constraints: how to handle control flow?

SIMD requires all ALUs/Core Must proceed in the same pace

	Slide 1: CSE 234: Data Systems for Machine Learning Winter 2025
	Slide 2: Enrollment Updates
	Slide 3: Today’s Learning Goals
	Slide 4: Recap: Strides
	Slide 5: Why we bother saving “strides” when saving tensors
	Slide 6: Operator: Slice
	Slide 7: Operator: Transpose
	Slide 8: Broadcast
	Slide 9: Home Exercise: Swapping tiles
	Slide 10: Problems of Strides
	Slide 11: Parallelization (Elementise)
	Slide 12: Summary
	Slide 13: Next
	Slide 14: What is Matmul in Code?
	Slide 15: Matmul Complexity
	Slide 16: How to Make Matmul Fast
	Slide 17: Recall: Memory Hierarchy
	Slide 18: Simplify It a bit
	Slide 19: Recall How to Estimate AI: count loads
	Slide 20: Review Matmul loop
	Slide 21: Register Tiled Matrix Multiplication
	Slide 22: Register Tiled Matrix Multiplication
	Slide 23: Register Tiled Matrix Multiplication
	Slide 24: Make it more complicated: Consider L1 cache
	Slide 25: Cache-aware tiling
	Slide 26: Cache-aware tiling
	Slide 27: Cache-aware tiling
	Slide 28: Putting Things Together
	Slide 29: Putting Things Together
	Slide 30: In practice
	Slide 31: Why tiling works: reuse loading
	Slide 32: Homework Candidate?
	Slide 33: Where we are
	Slide 34: Recap CPU parallelization
	Slide 35: Single-Instruction Multiple-Data
	Slide 36: Chip Design Trajectory: SIMD
	Slide 37: Chip Industry: 70nm -> 60nm -> 50nm -> … ->?
	Slide 38: Chip Industry: Moore’s Law Comes to an End
	Slide 39: Idea: How about we use a lot of weak/specialized cores
	Slide 40: Hardware Accelerators: GPUs
	Slide 41: Other Hardware Accelerators
	Slide 42: What Does It Mean by “Specialized” In accelerator world
	Slide 43: Case Study 1: Nvidia GPU Specification
	Slide 44: Case Study 1: Nvidia GPU Specification
	Slide 45: Case Study 1: Nvidia GPU Specification
	Slide 46: Case Study 2: Apple Silicon
	Slide 47: Case Study 2: Apple Silicon Revealed
	Slide 48: Case Study 3: Leading Chip Startups
	Slide 49: Case Study 3: Groq
	Slide 50: Case Study 3: Groq
	Slide 51: Case Study 3: Groq
	Slide 52: Take-home Exercise
	Slide 53: Economic Question
	Slide 54: Next: GPU and CUDA
	Slide 55: GPU Overview
	Slide 56: Threads, Blocks, Grids
	Slide 57: How many SMs/Threads we have?
	Slide 58: CUDA
	Slide 59: CUDA Programs contain A Hierarchy of Threads
	Slide 60: How Many threads/Blocks it runs on?
	Slide 61: Grid, Block, and Thread
	Slide 62: An Example CUDA Program
	Slide 63: Separation CPU and GPU Execution
	Slide 64: #Threads is Explicit and Static in Programs
	Slide 65: SIMD Constraints: how to handle control flow?

