

CSE 234: Data Systems for Machine Learning Winter 2025

https://hao-ai-lab.github.io/cse234-w25/

LLMSys

Optimizations and Parallelization

MLSys Basics

Enrollment Updates

- and Thursday)
 - To ~100 waitlisted students in total
 - With a 24h expiration
- If there are still rooms (which is highly likely)
 - We will send the next batch Friday morning

We have sent out two batches of enrollment invitations (on Wed

Today's Learning Goals

- How to make operators fast in general?
 - Vectorize
 - Pata layout
 - Parallelization (at the operator level)
- Matmul-specific optimization
- GPUs and accelerators
 - High-level Idea
 - The accelerator market

Dataflow Graph

Autodiff

Operator

Recap: Strides

✓ Python

A[i0][i1][i2] = A_internal
stride_offset
+ i0 * A.strides[0]
+ i1 * A.strides[1]
+ i2 * A.strides[2]
+
<pre>+ in-1 * A.strides[n-1]</pre>
]

Why we bother saving "strides" when saving tensors

tensor

torch.Tensor.view

Tensor.view(*shape) \rightarrow Tensor

Enable zero-copy of some very frequently used operators

Strides can separate the underlying storage and the view of the

```
>>> x = torch.randn(4, 4)
>>> x.size()
torch.Size([4, 4])
>>> y = x.view(16)
>>> y.size()
torch.Size([16])
>>> z = x.view(-1, 8) #
>>> z.size()
torch.Size([2, 8])
```

Operator: Slice

- Change the offset by +1
- Reduce the shape to [3, 2]

Note: zero copy

0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19

Operator: Transpose

• How to do Transpose?

```
✓ Python
```

```
1 print(t.stride())
 2 # (24, 12, 4, 1)
 3
 4 print(t.permute((1, 2, 3, 0)).is_contiguous())
 5 # True
 6
 7 print(t.permute((1, 2, 3, 0)).stride())
 8 # (12, 4, 1, 24)
 9
10 print_internal(t.permute((1, 2, 3, 0)))
11 # tensor([0, 1, 2, 3,
12 #
      4, 5, 6, 7,
       8, 9, 10, 11,
13 #
       12, 13, 14, 15,
14 #
       16, 17, 18, 19,
15 #
       20, 21, 22, 23])
16 #
```

• Note 1: zero copy

Note 2: underlying storage is unchanged

Transposed Matrix A^T

Broadcast

Question: how to do broadcast?

- b.strides=[1], b.shape=[1,3], b.data=[1, 2, 3]
- A.strides[1]]

• After broadcast: b.shape=[4,3], b.data=[1, 2, 3], b.strides=?

• Recall the def of strides: A[i, j] = A.data[offset + i*A.strides[0] + j*]

Home Exercise: Swapping tiles

<pre>>>> a = np.arange(16).reshape(4,</pre>	4)
>>> a	
array([[0, 1, 2, 3],	
[4, 5, 6, 7],	
[8, 9, 10, 11],	
[12, 13, 14, 15]])	
<pre>>>> np.vstack((np.hstack((a[0:2,</pre>	0:2], a[2
array([[0, 1, 8, 9],	
[4, 5, 12, 13],	
[2, 3, 10, 11],	
[6, 7, 14, 15]])	

Problems of Strides

- Memory Access may become not continuous
 - Many vectorized ops requires continuous storage
 - What's the underlying storage after slice?

0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19

ne not continuous vires continuous storage rage after slice?

TORCH.TENSOR.CONTIGUOUS

Tensor.contiguous(memory_format=torch.contiguous_format) → Tensor

Returns a contiguous in memory tensor containing the same data as self tensor. If self tensor is already in the specified memory format, this function returns the self tensor.

Parameters

memory_format (torch.memory_format, optional) - the desired memory format of returned Tensor. Default: torch.contiguous_format.

Parallelization (Elementise)

How to parallelize the loop?

for (int i = 0; i < 64; ++i) {
 float4 a = load_float4(A + i*4);
 float4 b = load_float4(B + i*4);
 float4 c = add_float4(a, b);
 store_float4(C + i* 4, c);</pre>

We'll com back to this later

```
#pragma omp parallel for
for (int i = 0; i < 64; ++i) {
    float4 a = load_float4(A + i*4);
    float4 b = load_float4(B + i*4);
    float4 c = add_float4(a, b);
    store_float4(C * 4, c);
```

```
Vectorized & parallelized
```

Summary

Vectorization

- Leverage platform-specific vectorized functions
- reduce seek time
- Data layout
 - Stride format
 - Zero copy
- Parallelization on CPUs

Enable fast array-manipulation: slice, transpose, broadcast, etc.

Next

- How to make operators fast in general?
 - Vectorize
 - Data layout
 - Parallelization (at the operator level)
- ?Matmul-specific optimization
- GPUs and accelerators
 - High-level Idea
 - The accelerator market

Dataflow Graph

Autodiff

Operator

What is Matmul in Code?

Compute C = dot(A, B.T)

float A[n][n], B[n][n], C[n][n];

for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j) {</pre> C[i][j] = 0;for (int k = 0; k < n; ++k) { C[i][j] += A[i][k] * B[j][k];

- What is the time complexity of 2D matmul?
- O(n^3)

- What is the best complexity we can achieve?
- O(n^2.371552)

Matmul Complexity

Not a good area to do research ③

How to Make Matmul Fast

max AI = #ops / #bytes

Recall: Memory Hierarchy

Ideally: we want everything to be local to processors (In registers) But registers are expensive and small, hence memory hierarhcy

Source: Latency numbers every programmer should know

7ns 14x L1 cache

200ns 20x L2 cache, 200x L1 cache

Simplify It a bit

Recall How to Estimate AI: count loads

float* A, *B, *C, *D, *E, *tmp1, *tmp2; assume arrays are allocated here compute E = D + ((A + B) * C)add(n, A, B, tmp1); mul(n, tmp1, C, tmp2); add(n, tmp2, D,E);

```
void fused(int n, float* A, float* B, float* C, float* D,
  float* E) {
  for (int i=0; i < n; i++)
     E[i] = D[i] + (A[i] + B[i]) * C[i];
    compute E = D + (A + B) * C
fused(n, A, B,C, D,E);
```

Overall arithmetic intensity = 1/3

Four loads, one store per 3 math ops arithmetic intensity = 3/5

Review Matmul loop

dram float A[n][n], B[n][n], C[n][n];
for (int i = 0; i < n; ++i) {
 for (int j = 0; j < n; ++j) {
 register float c = 0;
 for (int k = 0; k < n; ++k) {
 register float a = A[i][k];
 register float b = B[j][k];
 c += a * b;
 }
 C[i][j] = c;
}</pre>

Read cost: 2 * n^3 * speed(dram -> register)

#reigsters needed: 1 + 1 + 1 = 3

Read an^3Read bn^3Write cn^2

Register Tiled Matrix Multiplication

```
dram float A[n/v1][n/v3][v1][v3];
dram float B[n/v2][n/v3][v2][v3];
dram float C[n/v1][n/v2][v1][v2];
```

```
for (int i = 0; i < n/v1; ++i) {
    for (int j = 0; j < n/v2; ++j) {
        register float c[v1][v2] = 0;
        for (int k = 0; k < n/v3; ++k) {
            register float a[v1][v3] = A[i][k];
            register float b[v2][v3] = B[j][k];
            c += dot(a, b.T);
        }
        C[i][j] = c;
    }
}</pre>
```


Register Tiled Matrix Multiplication

dram float A[n/v1][n/v3][v1][v3];
dram float B[n/v2][n/v3][v2][v3];
dram float C[n/v1][n/v2][v1][v2];

Read a N^3 / v_2 Read b N^3 / v_1 Write c N^2

[k]	;
[k]	;

#reigsters needed: v1*v3 + v2*v3 + v1*v2

Read cost: $(n^3/v^2 + n^3/v^1)$ * speed(dram -> register)

Register Tiled Matrix Multiplication

• Q: is the load cost related to v3?

- Q: How to set v1 / v2?
 - What are the constraints?

• Q: Why essentially can tiling reduce read cost?

Read a Read b N^3 / v_2 N^{3} / v_{1}

#reigsters needed: v1*v3 + v2*v3 + v1*v2

Make it more complicated: Consider L1 cache

We can further tile the array [b1][n] or [b2][n] using at the L1-> register level
What's the required condition?

Cache-aware tiling

```
dram float A[n/b1][b1][n];
dram float B[n/b2][b2][n];
dram float C[n/b1][n/b2][b1][b2];
for (int i = 0; i < n/b1; ++i) {</pre>
   l1cache float a[b1][n] = A[i];
   for (int j = 0; j < n/b2; ++j) {</pre>
      l1cache b[b2][n] = B[j];
      C[i][j] = dot(a, b.T);
              Later we apply
              register tiling
              hora
```

- Data movement path:
- 1.Dram
- 2.Dram -> 11cache (cache tiling) 3.L1cache -> register (reg tiling)

Cache-aware tiling

dram float A[n/b1][b1][n]; dram float B[n/b2][b2][n]; dram float C[n/b1][n/b2][b1][b2]; for (int i = 0; i < n/b1; ++i) { l1cache float a[b1][n] = A[i]; for (int j = 0; j < n/b2; ++j) { l1cache b[b2][n] = B[j]; C[i][j] = dot(a, b.T); } }

• b1 * n + b2 * n < L1 cache size

Vs. previous untiled version?

S.†.

A's dram -> 11 cost: n / b1 * n * b1 = n^2 B's dram -> 11 time cost: n / b1 * n / b2 * b2 * n = n^3 / b1

Putting Things Together

dram float A[n/b1][b1/v1][n][v1]; dram float B[n/b2][b2/v2][n][v2];

We set v3 = 1 (we know it does not matter)

Outside: cache tiling Inside: register tiling

DRAM \rightarrow L1 cache reads here

Putting Things Together

dram float A[n/b1][b1/v1][n][v1]; dram float B[n/b2][b2/v2][n][v2];

Outside: cache tiling Inside: register tiling

Cost: dram -> 11

- $n/b_{1*b_{1/v_{1*n*v_{1}}} = n^2$
- $n/b1*n/b2*b2/v2*n*v2=n^2/$ b
- Cost: 11 -> register:
- n/b1*n/b2*b1/v1*b2 $/v2*n*v1 = n^3/v2$
- n^3 / v1

In practice

- On CPUs: We have disk -> dram -> L2 -> L1 -> Register
- How to choose v1, v2, b1, b2, c1, c2?
- - L2 -> L1
 - L1 -> register
- S.t. sizes of L2, L1, registers

• While we are reading from dram \rightarrow L2, can we concurrently read:

Why tiling works: reuse loading

float A[n][n]; float B[n][n]; float C[n][n];

C[i][j] = sum(A[i][k] * B[j][k], axis=k)

Access of A is independent of the dimension of j

Tile the j dimension by v1enables resue of A for v1 times

Homework Candidate?

• Q: How to tile?

for n in range(0, N): Stencil computation loops. for coin range(0, CO): for h in range(0, H): Reduction loop. for w in range(0, W): for ci in range(0, CI): for kh in range(0, KH): 5) for parallelization. for kw in range(0, KW): $C[n,co,h,w] += A[n,co,h+kh,w+kw] \times B[kh,kw,co,ci]$

Simple spatial loops.

Reduction loops. But usually too small (<=

Where we are

- How to make operators fast in general?
 - Vectorize
 - Data layout
 - Parallelization (at the operator level)
- Matmul-specific optimization
- **?** GPUs and accelerators
 - High-level Idea
 - The accelerator market

Dataflow Graph

Autodiff

Operator

Recap CPU parallelization

- We can parallelize this loop using CPU threads
- == using many concurrent cores

```
#pragma omp parallel for
```

for (int i = 0; i < 64; ++i) { float4 a = load_float4(A + i*4); float4 b = load_float4(B + i*4); float4 c = add_float4(a, b); store float4(C * 4, c);

Vectorized & parallelized

Single-Instruction Multiple-Data

Intel[®] Architecture currently has SIMD operations of vector length 4, 8, 16

Chip Design Trajectory: SIMD

Control	ALU	ALU		
	ALU	ALU		
Caches				

If we're able to reduce size of ALU (transistors) while keeping its power

Chip Industry: 70nm -> 60nm -> 50nm -> ... ->?

 Problem: this is not substantiable; there are also power/heat issues when you put more ALUs in a limited area (s.t. physics limitations)

Chip Industry: Moore's Law Comes to an End

Idea: How about we use a lot of weak/specialized cores

Core L1 Cache	Con trol	Core L1 Cache	Cor tro
Core	Con trol	Core	Coi tro
L1 Cache		L1 Cache	
L2 Cache		L2 Cache	
L3 Cache			
	DR/	AM	
CPU			

Hardware Accelerators: GPUs

- Graphics Processing Unit (GPU): Tailored for matrix/tensor ops
- Basic idea: Use tons of ALUs (but weak and more specialized); massive data parallelism (SIMD on steroids);
- Popularized by NVIDIA in early 2000s for video games, graphics, and multimedia; now ubiquitous in DL
- CUDA released in 2007; later wrapper APIs on top: CuDNN, CuSparse, CuDF (RapidsAI), NCCL, etc.

Other Hardware Accelerators 99999 00000 • E.g. 00000 00000

- - Tensor Processing Unit (TPU)
 - An "application-specific integrated circuit" (ASIC) created by Google in mid 2010s; used for AlphaGo
- E.g.
 - B200 (projected release 2025): fp4 / fp8 Tensorcore
- E.g.
 - M3 max: mixing tensorcore and normal core

What Does It Mean by "Specialized" In accelerator world

In General:

- Functionality-specialized:

 - Mixing specialized cores with versatile cores
- Reduce precision
 - Floating point operations: fp32, fp16, fp8, int8, int4, ...
- Tune the distribution of different components for specific workloads
 - SRAM, cache, registers, etc.

Can only compute certain computations: matmul, w/ sparsity

Case Study 1: Nvidia GPU Specification

FP64 Tensor Core
FP32
TF32 Tensor Core [*]
BFLOAT16 Tensor Core [*]
FP16 Tensor Core [*]
FP8 Tensor Core [*]
INT8 Tensor Core [*]
GPU Memory
GPU Memory Bandwidth
Decoders
Max Thermal Design Power (TDP)
Multi-Instance GPUs
Form Factor
Interconnect
Server Options

NVIDIA AI Enterprise

* With sparsity

67 teraFLOPS
67 teraFLOPS
989 teraFLOPS
1,979 teraFLOPS
1,979 teraFLOPS
3,958 teraFLOPS
3,958 TOPS
80GB
3.35TB/s
7 NVDEC 7 JPEG
Up to 700W (configurable)
Up to 7 MIGS @ 10GB each
SXM
NVIDIA NVLink™: 900GB/s PCIe Gen5: 128GB/s

NVIDIA HGX H100 Partner and NVIDIA-Certified Systems[™] with 4 or 8 GPUs NVIDIA DGX H100 with 8 GPUs

Add-on

Case Study 1: Nvidia GPU Specification

Case Study 1: Nvidia GPU Specification

FP64 Tensor Core	67 teraFLOPS	
FP32	67 teraFLOPS	
TF32 Tensor Core [*]	989 teraFLOPS	Sign 1 bit
BFLOAT16 Tensor Core*	1,979 teraFLOPS	
FP16 Tensor Core [*]	1,979 teraFLOPS	FP32
FP8 Tensor Core [*]	3,958 teraFLOPS	
INT8 Tensor Core [*]	3,958 TOPS	
GPU Memory	80GB	BFloat16
GPU Memory Bandwidth	3.35TB/s	E
Decoders	7 NVDEC 7 JPEG	FP16
Max Thermal Design Power (TDP)	Up to 700W (configurable)	
Multi-Instance GPUs	Up to 7 MIGS @ 10GB each	
Form Factor	SXM	
Interconnect	NVIDIA NVLink™: 900GB/s PCIe Gen5: 128GB/s	Q
Server Options	NVIDIA HGX H100 Partner and NVIDIA- Certified Systems [™] with 4 or 8 GPUs NVIDIA DGX H100 with 8 GPUs	
NVIDIA AI Enterprise	Add-on	
en excitu		

uestion: why this could work in ML programs?

Case Study 2: Apple Silicon

Case Study 2: Apple Silicon Revealed

Up to 128GB of unified memory 92 billion transistors

16-core CPU

12 performance cores 4 efficiency cores Up to 80% faster than M1 Max Up to 50% faster than M2 Max

40-core GPU

Next-generation architecture Dynamic Caching Mesh shading Ray tracing Up to 50% faster than M1 Max Up to 20% faster than M2 Max

Case Study 3: Leading Chip Startups

Case Study 3: Groq

Question: How did Groq achieve that?

Llama 3.3 70B Output Speed (multiple 1k input prompts)

Output Tokens per Second; Higher is better

More specialized hardware

Nvidia GPUs

Case Study 3: Groq

GroqCard™

Card Specifications Form Factor

Dual width, full height, ¾ length PCI Ex adapter

Performance Up to 750 TOPs, 188 TFLOPs (INT8, FP1)

Memory 230 MB SRAM per chip Up to 80 IB/s on-die memory bandwid

Chip Scaling Up to 9 RealScale[™] chip-to-chip connection

Numerics INT8, INT16, INT32 & TruePoint[™] techno MXM: FP32 VXM: FP16, FP32

Power Max: 375W; TDP: 275 ; Typical: 240W

	Data Center GPU	NVIDIA Tesla V100	NVIDIA A100	NVIDIA H100
Express Gen4 x16	GPU Architecture	NVIDIA Volta	NVIDIA Ampere	NVIDIA Hopper
	Compute Capability	7.0	8.0	9.0
	Threads / Warp	32	32	32
6 @900 MHz)	Max Warps / SM	64	64	64
	Max Threads / SM	2048	2048	2048
	Max Thread Blocks (CTAs) / SM	32	32	32
lth	Max Thread Blocks / Thread Block Clusters	NA	NA	16
	Max 32-bit Registers / SM	65536	65536	65536
ctors	Max Registers / Thread Block (CTA)	65536	65536	65536
	Max Registers / Thread	255	255	255
nology	Max Thread Block Size (# of threads)	1024	1024	1024
	FP32 Cores / SM	64	64	128
	Ratio of SM Registers to FP32 Cores	1024	1024	512
	Shared Memory Size / SM	Configurable up to 96 KB	Configurable up to 164 KB	Configurable up to 228 KB

Case Study 3: Groq

Recall

```
dram float A[n][n], B[n][n], C[n][n];
for (int i = 0; i < n; ++i) {
   for (int j = 0; j < n; ++j) {
      register float c = 0;
      for (int k = 0; k < n; ++k) {
        register float a = A[i][k];
        register float b = B[j][k];
        c += a * b;
      }
      C[i][j] = c;
   }
}
```

Take-home Exercise

- Study B100 specification and compare it to H100
 - How nvidia claims another 2x from H100 -> B100?
- How about B200?

d compare it to H100 r 2x from H100 -> B100?

Economic Question

Question: What is Nvidia's Moat?

Market Summary > NVIDIA Corp

136.20 USD +136.16 (340,400.00%) **↑** all time

Closed: Jan 15, 7:59 PM EST • Disclaimer After hours 136.22 +0.020 (0.015%)

1D	5D 1M	6M	YTD
150			
100			
50			
0	2002	2006	
Open High Low	133.65 136.45 131.29		Mkt ca P/E ra Div vie

Next: GPU and CUDA

- Basic concepts and Architecture
- Programming abstraction
- Case study: Matmul

Dataflow Graph

Autodiff

Operator

GPU Overview

Threads, Blocks, Grids

- Threads: smallest units to process a chunk of data
- Blocks: A group of threads that share memory
- Grid: A collection of blocks that execute the same kernel

How many SMs/Threads we have?

- V100 (2018 Now): 80 SMs, 2048 threads/SM
- A100 (2020 Now): 108 SMs, 2048 threads/SM
- H100 (2022 Now): 144 SMs, 2048 threads/SM
- B100 (2025): go surveying the numbers

CUDA

Introduced in 2007 with NVIDIA Tesla architecture

C-like languages for programming GPUs

CUDA's design matches the grid/block/thread concepts in GPUs

CUDA Programs contain A Hierarchy of Threads

const int Nx = 12;const int Ny = 6;

dim3 threadsPerBlock(4, 3, 1); dim3 numBlocks(Nx/threadsPerBlock.x, Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will trigger execution of 72 CUDA threads: // 6 thread blocks of 12 threads each matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

Run on CPU

How Many threads/Blocks it runs on?

const int Nx = 12; const int Ny = 6;

// assume A, B, C are allocated Nx x Ny float arrays

// this call will trigger execution of 72 CUDA threads:
// 6 thread blocks of 12 threads each
matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

CUDA thread

CUDA core

Grid, Block, and Thread

- GridDim: The dimensions of the grid
- blockldx: The block index within the grid
- blockDim: The dimensions of a block
- threadIdx: The thread index within a block
- What About GridId?
- What about threadDim?

An Example CUDA Program

```
const int Nx = 12;
const int Ny = 6;
dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x,
               Ny/threadsPerBlock.y, 1);
// assume A, B, C are allocated Nx x Ny float arrays
// this call will cause execution of 72 threads
// 6 blocks of 12 threads each
matrixAddDoubleB<<<<numBlocks, threadsPerBlock>>>(A, B, C);
```

```
__device__ float doubleValue(float x)
   return 2 * x;
// kernel definition
__global__ void matrixAddDoubleB(float A[Ny][Nx],
                                 float B[Ny][Nx],
                                 float C[Ny][Nx])
   int i = blockIdx.x * blockDim.x + threadIdx.x;
   int j = blockIdx.y * blockDim.y + threadIdx.y;
   C[j][i] = A[j][i] + doubleValue(B[j][i]);
}
```


Separation CPU and GPU Execution

#Threads is Explicit and Static in Programs

const int Nx = 11; // not a multiple of threadsPerBlk.x const int Ny = 5; // not a multiple of threadsPerBlk.y dim3 threadsPerBlk(4, 3, 1); dim3 numBlocks(3, 2, 1); // assume A, B, C are allocated Nx x Ny float arrays // this call will trigger execution of 72 CUDA threads: // 6 thread blocks of 12 threads each matrixAdd<<<numBlocks, threadsPerBlk>>>(A, B, C);

```
// kernel definition
__global__ void matrixAdd(float A[Ny][Nx],
                          float B[Ny][Nx],
                          float C[Ny][Nx])
  int i = blockIdx.x * blockDim.x + threadIdx.x;
   int j = blockIdx.y * blockDim.y + threadIdx.y;
  // auard against out of bounds array access
  if (i < Nx && j < Ny)
      C[j][i] = A[j][i] + B[j][i];
```

Developers to:

- To provide CPU/GPU code separation
- Statically declare blockDim, shapes.
- Map data to blocks/threads
- Check boundary conditions

SIMD Constraints: how to handle control flow?

SIMD requires all ALUs/Core Must proceed in the same pace

oat A[N])

x * blockDim.x + threadIdx.x;

)f);