

CSE 234: Data Systems for Machine Learning Winter 2025

https://hao-ai-lab.github.io/cse234-w25/

LLMSys

Optimizations and Parallelization

MLSys Basics

MCQ Time

What is the arithmetic intensity for the following function:

A, B are 2-D matrices of shape [2,2]
func(matrix A, matrix B):
 Load A
 Load B
 C = matmul(A,B)

A. 0.334 B. 2 C. 1 D. 1.334 Important Notes FLOPs of matmul: A x B

- A: (m, n)
- B: (n, p)
- Result: (m, p)
- Flops: 2mnp

Which of the following Tensor manipulations cannot benefit from strided representation

- A. Broadcast_to
- B. Slice
- C. Reshape
- D. Permute dimensions
- E. Transpose
- F. contiguous
- G. indexing like t[:, 1:5]

following row Major, what is its strides?

A. (9,1,1) B. (2,9,1) C. (1, 9, 2)D. (9,9,9)

If we have tensor of shape [2,9,1] stored contiguous in memory

Which of the following is True for Cache Tiling in Matmul

- A. It saves memory allocated in Cache
- B. It reduce the memory movement between Cache to Register
- C. It reuses memory movement between Dram and Cache
- D. It increases arithmetic intensity because it makes the computation faster

Today: GPU and CUDA

- Basic concepts in GPUs
 - Execution Model
 - Memory
- Programming abstraction
- Case study: Matmul

Dataflow Graph

Autodiff

Graph Optimi

Parallelizat

untime: sche memory

Operator

GPU Overview

Kernel, Threads, Blocks, Grids

- Threads: smallest units to process a chunk of data
- Blocks: A group of threads that share memory
- Grid: A collection of blocks that execute the same kernel
- Kernel: CUDA program executed by many CUDA cores in parallel

Threads

GPU/CUDA thread vs. OS thread?

CUDA CORE

Thread Block

• A collection of many threads mapped to a streaming multiprocessor (SM/SMP)

Grid

A collection of blocks (SMs) that execute the same kernel

More power GPU generally means:

- More SMs
- More core/SM
- More powerful cores

Nvidia ML GPU Trajectory

SMs/Threads on Nvidia's GPUs and AWS on-demand Price

- V100 (2018 Now): 80 SMs, 2048 threads/SM,
 - \sim \$3/hour/GPU
- A100 (2020 Now): 108 SMs, 2048 threads/SM,
 - ~\$4/hour/GPU
- H100 (2022 Now): 144 SMs, 2048 threads/SM
 - ~\$12/hour/GPU
- B100 and B200 (2025): go surveying the number

CUDA

Introduced in 2007 with NVIDIA Tesla architecture

C-like languages for programming GPUs

CUDA's design matches the grid/block/thread concepts in GPUs

CUDA Programs contain A Hierarchy of Threads

const int Nx = 12;const int Ny = 6;

dim3 threadsPerBlock(4, 3, 1); dim3 numBlocks(Nx/threadsPerBlock.x, Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will trigger execution of 72 CUDA threads: // 6 thread blocks of 12 threads each matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

Run on CPU

How Many threads/Blocks it runs on?

const int Nx = 12; const int Ny = 6;

// assume A, B, C are allocated Nx x Ny float arrays

// this call will trigger execution of 72 CUDA threads:
// 6 thread blocks of 12 threads each
matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

CUDA thread

CUDA core

Grid, Block, and Thread

- GridDim: The dimensions of the grid
- blockldx: The block index within the grid
- blockDim: The dimensions of a block
- threadIdx: The thread index within a block
- What About GridId?
- What about threadDim?

An Example CUDA Program: Matrix Add

```
const int Nx = 12;
const int Ny = 6;
dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x,
               Ny/threadsPerBlock.y, 1);
// assume A, B, C are allocated Nx x Ny float arrays
// this call will cause execution of 72 threads
// 6 blocks of 12 threads each
matrixAddDoubleB<<<<numBlocks, threadsPerBlock>>>(A, B, C);
```

```
__device__ float doubleValue(float x)
   return 2 * x;
// kernel definition
__global__ void matrixAddDoubleB(float A[Ny][Nx],
                                 float B[Ny][Nx],
                                 float C[Ny][Nx])
   int i = blockIdx.x * blockDim.x + threadIdx.x;
   int j = blockIdx.y * blockDim.y + threadIdx.y;
   C[j][i] = A[j][i] + doubleValue(B[j][i]);
}
```


- _global__ denotes a CUDA kernel function runs on GPU
- Each thread indexes its data using blockldx, blockDim, threadldx and execute the compute

Separation CPU and GPU Execution

```
const int Nx = 12;
const int Ny = 6;
dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x,
               Ny/threadsPerBlock.y, 1);
// assume A, B, C are allocated Nx x Ny float arrays
// this call will cause execution of 72 threads
// 6 blocks of 12 threads each
matrixAddDoubleB<<<<numBlocks, threadsPerBlock>>>(A, B, C);
```

```
__device__ float doubleValue(float x)
   return 2 * x;
// kernel definition
__global__ void matrixAddDoubleB(float A[Ny][Nx],
                                 float B[Ny][Nx],
                                 float C[Ny][Nx])
   int i = blockIdx.x * blockDim.x + threadIdx.x;
   int j = blockIdx.y * blockDim.y + threadIdx.y;
   C[j][i] = A[j][i] + doubleValue(B[j][i]);
}
```


Question

```
const int Nx = 12;
const int Ny = 6;
dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x,
               Ny/threadsPerBlock.y, 1);
// assume A, B, C are allocated Nx x Ny float arrays
// this call will cause execution of 72 threads
// 6 blocks of 12 threads each
matrixAddDoubleB<<<<numBlocks, threadsPerBlock>>>(A, B, C);
```

```
__device__ float doubleValue(float x)
   return 2 * x;
// kernel definition
__global__ void matrixAddDoubleB(float A[Ny][Nx],
                                 float B[Ny][Nx],
                                 float C[Ny][Nx])
{
   int i = blockIdx.x * blockDim.x + threadIdx.x;
   int j = blockIdx.y * blockDim.y + threadIdx.y;
   C[j][i] = A[j][i] + doubleValue(B[j][i]);
}
```

What happens post launching the kernel?

- Will the CPU program continue
- What if the function has return values? lacksquare

#Threads is Explicit and Static in Programs

const int Nx = 11; // not a multiple of threadsPerBlk.x
const int Ny = 5; // not a multiple of threadsPerBlk.y
dim3 threadsPerBlk(4, 3, 1);
dim3 numBlocks(3, 2, 1);
// assume A, B, C are allocated Nx x Ny float arrays
// this call will trigger execution of 72 CUDA threads:
// 6 thread blocks of 12 threads each
matrixAdd<<<<numBlocks, threadsPerBlk>>>(A, B, C);

Developers to:

- To provide CPU/GPU code separation
- Statically declare blockDim, shapes.
- Map data to blocks/threads

On potential factor many compiler (torch.compile) to require static shapes

Hence it is Important to:

Check boundary conditions

SIMD Constraints: how to handle control flow?

- Why?
- Let's look at a control flow example

SIMD requires all ALUs/Core Must proceed in the same pace

oat A[N])

x * blockDim.x + threadIdx.x;

)f);

Handling Control Flow


```
// kernel definition
__global__ void f(float A[N])
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    float x = A[i];
    if (x > 0) {
        x = 2.0f * x;
    } else {
            x = exp(x, 5.0f);
        }
        A[i] = x;
}
```

Handling Control Flow


```
// kernel definition
__global__ void f(float A[N])
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    float x = A[i];
    if (x > 0) {
        x = 2.0f * x;
    } else {
        x = exp(x, 5.0f);
    }
    A[i] = x;
}
```

Handling Control Flow: Masking


```
// kernel definition
__global__ void f(float A[N])
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    float x = A[i];
    if (x > 0) {
        x = 2.0f * x;
    } else {
        x = exp(x, 5.0f);
    }
    A[i] = x;
}
```

Handling Control Flow


```
// kernel definition
__global___ void f(float A[N])
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    float x = A[i];
    if (x > 0) {
        x = 2.0f * x;
    } else {
        x = exp(x, 5.0f);
    }
    A[i] = x;
}
```

Coherent vs. Divergent

- Coherent execution:
 - Same instructions apply to all data
- Divergence Execution:
 - On the contrary of coherent
 - Should be minimized in CUDA programs
- A notable case
 - Language model masking, sliding window attention

GPU and CUDA

- Basic concepts in GPUs
 - Execution Model

• Memory

- Programming abstraction
- Case study: Matmul

CUDA Memory Model

CUDA Memory Model

Host (serial execution on CPU)

Host memory address space

CUDA Device (SIMD execution on GPU)

Device memory address space

- GPU code cannot access host memory
- CPU code cannot access device memory

Distinct host and device address spaces:

- Recap:How is host memory managed in OS?
- Device memory: GPU memory
- Host memory: RAM

Concepts:

cudaMemcpy

Host (serial execution on CPU)

Host memory address space

CUDA Device (SIMD execution on GPU)

Device memory address space

```
float* A = new float[N];
// populate host address space pointer A
for (int i=0 i<N; i++)</pre>
  A[i] = (float)i;
int bytes = sizeof(float) * N
                    // allocate buffer in
float* deviceA;
cudaMalloc(&deviceA, bytes); // device address space
// populate deviceA
cudaMemcpy(deviceA, A, bytes, cudaMemcpyHostToDevice);
// note: deviceA[i] is an invalid operation here (cannot
// manipulate contents of deviceA directly from host.
// Only from device code.)
```


More concepts: Pinned memory

- A part of host memory
- Optimized for data transfer between CPU/GPU
- Not pagable by OS, a.k.a. locked
- Certain APIs only work on Pinned memory

Memory from a kernel's perspective

Global device memory (r/w by all threads)

Why make it so complex:

 Balance between speed and sharedmemory parallelism

Example Program: Window Average

for i in range(len(input) - 2):

Q: what is the parallelizable part?

- output[i] = (input[i] + input[i+1] + input[i+2]) / 3.0

:[3]	output[4]	output[5]	output[6]	output[7]
------	-----------	-----------	-----------	-----------

4]	input[5]	input[6]	input[7]	input[8]	input[9]
----	----------	----------	----------	----------	----------

Window Average: GPU v1

- output.
- Idea: map each reduction computation to a CUDA core

Pattern: every 3 adjacent input elements are reduced as an

Parallelization: Every 3-element tuple reduction is independent

GPU v1

```
int N = 1024 * 1024
cudaMalloc(&devInput, sizeof(float) * (N+2) ); // allocate array in device memory
// property initialize contents of devInput here ...
convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);
#define THREADS_PER_BLK 128
__global__ void convolve(int N, float* input, float* output) {
   float result = 0.0f; // thread-local variable
   for (int i=0; i<3; i++)
     result += input[index + i];
   output[index] = result / 3.f;
}
```

- How many threads in total?
- How many blocks?

GPU v1

int N = 1024 * 1024cudaMalloc(&devInput, sizeof(float) * (N+2)); // allocate array in device memory // property initialize contents of devInput here ... convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);

#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input, float* output) {

float result = 0.0f; // thread-local variable for (int i=0; i<3; i++) result += input[index + i];

output[index] = result / 3.f;

}

Identify a Problem of the above implementation?

High-level Idea to Improve

GPU v2

int N = 1024 * 1024

// property initialize contents of devInput here ...

convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);

#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input, float* output) {

__shared__ float support[THREADS_PER_BLK+2]; support[threadIdx.x] = input[index]; if (threadIdx.x < 2) {

__syncthreads();

float result = 0.0f; // thread-local variable for (int i=0; i<3; i++)</pre> result += support[threadIdx.x + i]; output[index] = result / 3.f;

Q: how many reads we save per block? Previous: 3 * 128 Now: 130

Synchronization Primitives

cudasycnhronize(): sync between host and device

```
const int Nx = 12;
const int Ny = 6;
dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x,
               Ny/threadsPerBlock.y, 1);
// assume A, B, C are allocated Nx x Ny float arrays
// this call will cause execution of 72 threads
// 6 blocks of 12 threads each
matrixAddDoubleB<<<<numBlocks, threadsPerBlock>>>(A, B, C);
```

__syncthreads(): wait for all threads in a block to arrive at this point

What happens post launching the kernel? • Will the CPU program continue What if the function has return values? lacksquare


```
int N = 1024 * 1024
cudaMalloc(&devInput, sizeof(float) * (N+2) );
cudaMalloc(&devOutput, sizeof(float) * N);
```

// property initialize contents of devInput here ...

```
convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput); -
```

```
#define THREADS_PER_BLK 128
__global__ void convolve(int N, float* input, float* output) {
   int index = blockIdx.x * blockDim.x + threadIdx.x;
   __shared__ float support[THREADS_PER_BLK+2];
   support[threadIdx.x] = input[index];
   if (threadIdx.x < 2) {
      support[THREADS_PER_BLK + threadIdx.x] = input[index+THREADS_PER_BLK];
   __syncthreads();
   float result = 0.0f; // thread-local variable
   for (int i=0; i<3; i++)</pre>
     result += support[threadIdx.x + i];
   output[index] = result / 3.f;
```


Problem: different GPUs have different SMs

- The user asks for a static (large) number of blocks
- GPUs has varying (limited) number of blocks

Mid-range GPU (6 cores)

High-end GPU (16 cores)

Scheduling on CUDA

- Core assumption: threadblocks can be executed in any order (no dependencies between threadblocks)
- GPUs maps threadblocks to cores using a dynamic scheduling policy threat respects resource requirements

- Convld spec on 1024 x 1024
 - 128 CUDA threads / threadblock
 - 1024 blocks
 - Each threadblock asks for 130 * 4 = 520 bytes of shared memory
- Given: a GPU with two SMs, specs below
- How is the scheduling looking like?

Feto	h/Decode
Execution context storage for 384 CUDA threads (12 warps)	"Shared" mer storage (1.5

Step 1: host sends CUDA kernel instructions to GPU device

EXECUTE: convolve ARGS: N, input_array, output_array NUM_BLOCKS: 1000

EXECUTE: convolve ARGS: N, input_array, output_array NUM BLOCKS: 1000

Step 2: scheduler maps block 0 to SM 0 (reserves execution)

contexts for 128 threads and 520 bytes of shared memory)

EXECUTE: convolve ARGS: N, input_array, output_array NUM_BLOCKS: 1000

Step 3: scheduler continues to map blocks to execution contexts

EXECUTE: convolve ARGS: N, input_array, output_array NUM_BLOCKS: 1000

Step 3: scheduler continues to map blocks to execution contexts

EXECUTE: convolve ARGS: N, input_array, output_array NUM_BLOCKS: 1000

Step 3: scheduler continues to map blocks to execution contexts

- But: cannot schedule the 4th block on SM 0 or SM 1. Why?

EXECUTE: convolve ARGS: NUM_BLOCKS: 1000

Step 3: scheduler continues to map blocks to execution contexts

GPU Work Scheduler

N, input_array, output_array

• Step 4: thread block 0 completes on SM 0

EXECUTE: convolve ARGS: NUM_BLOCKS: 1000

GPU Work Scheduler

N, input_array, output_array

 Step 5: thread block 4 is scheduled on SM 0 (mapped to execution contexts 0-127)

EXECUTE: convolve ARGS: N, input_array, output_array NUM_BLOCKS: 1000

 Step 5: thread block 4 is scheduled on SM 0 (mapped to execution contexts 0-127)

EXECUTE: convolve ARGS: N, input_array, output_array NUM_BLOCKS: 1000

Recall: An SM on a NVIDIA GTX 980 (2014)

- SM resource:
 - 96KB of shared memory
 - 16 SMs
 - 2048 threads / SM
 - 128 CUDA cores / SM
 - # CUDA cores != # threads, why?

$GTX 980 (2014) \rightarrow H100 (2022)$

- SMs remain the same
 - Threads per block: 2048 -> 2048
 - CUDA cores: 128 -> 128
 - (H100)
- #SMs: 16 SMMs -> 132 SMMs
- - Q: what is tensorcore how does it work?

Shared memory per SMM: 96 KB -> 168 KB (A100) -> 256 KB

Flops: 4.6 TFLOPs -> 1000 TFLOPs (mainly because of tensor core)

If you still remember Groq

GroqCard™

Card Specifications Form Factor

Dual width, full height, ¾ length PCI Ex adapter

Performance Up to 750 TOPs, 188 TFLOPs (INT8, FP1)

Memory 230 MB SRAM per chip Up to 80 1B/s on-die memory bandwic

Chip Scaling Up to 9 RealScale[™] chip-to-chip conne

Numerics INT8, INT16, INT32 & TruePoint[™] techno MXM: FP32 VXM: FP16, FP32

Power Max: 375W; TDP: 275 ; Typical: 240W

	Data Center GPU	NVIDIA Tesla V100	NVIDIA A100	NVIDIA H100
cpress Gen4 x16	GPU Architecture	NVIDIA Volta	NVIDIA Ampere	NVIDIA Hopper
	Compute Capability	7.0	8.0	9.0
	Threads / Warp	32	32	32
5 @900 MHz)	Max Warps / SM	64	64	64
	Max Threads / SM	2048	2048	2048
	Max Thread Blocks (CTAs) / SM	32	32	32
th	Max Thread Blocks / Thread Block Clusters	NA	NA	16
	Max 32-bit Registers / SM	65536	65536	65536
tors	Max Registers / Thread Block (CTA)	65536	65536	65536
	Max Registers / Thread	255	255	255
loav	Max Thread Block Size (# of threads)	1024	1024	1024
logy	FP32 Cores / SM	64	64	128
	Ratio of SM Registers to FP32 Cores	1024	1024	512
	Shared Memory Size / SM	Configurable up to 96 KB	Configurable up to 164 KB	Configurable up to 228 KB

After Class Survey

- How about B100?
- How does Tensorcore works?
- Why #cores != #active threads in an SM?

Today's summary

- Basic concepts in GPUs
- Execution Model
 - Launch kernel code to grids with many threadblocks
- Memory hierarchy
 - Shared memory SRAM
- Two example code: matrix-add and conv1d
- Next: matmul grinding

Dataflow Graph

Autodiff

Operator

