
CSE 234: Data Systems for Machine Learning

Winter 2025

1

https://hao-ai-lab.github.io/cse234-w25/

MLSys Basics

Optimizations and Parallelization

LLMSys



MCQ Time



What is the arithmetic intensity for the following function:

# A, B are 2-D matrices of shape [2,2]
func(matrix A, matrix B):

Load A  

Load B
C = matmul(A,B)

A. 0.334

B. 2
C. 1
D. 1.334

Important Notes

FLOPs of matmul: A x B

• A: (m, n)

• B: (n, p)

• Result: (m, p)

• Flops: 2mnp



Which of the following Tensor manipulations cannot benefit from 

strided representation

A. Broadcast_to

B. Slice

C. Reshape

D. Permute dimensions

E. Transpose

F. contiguous

G. indexing like t[:, 1:5]



If we have tensor of shape [2,9,1] stored contiguous in memory 

following row Major, what is its strides?

A. (9,1,1)

B. (2,9,1)

C. (1,9,2)

D. (9,9,9)



Which of the following is True for Cache Tiling in Matmul

A. It saves memory allocated in Cache

B. It reduce the memory movement between Cache to Register

C. It reuses memory movement between Dram and Cache

D. It increases arithmetic intensity because it makes the computation 

faster



Today: GPU and CUDA

• Basic concepts in GPUs

• Execution Model

• Memory

• Programming abstraction

• Case study: Matmul

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory



GPU Overview



Kernel, Threads, Blocks, Grids

• Threads: smallest units to 

process a chunk of data

• Blocks: A group of threads that 

share memory

• Grid: A collection of blocks that 

execute the same kernel

• Kernel: CUDA program 

executed by many CUDA 

cores in parallel



Threads

GPU/CUDA thread vs. OS thread?



Thread Block

• A collection of many threads mapped to a streaming 

multiprocessor (SM/SMP)



Grid

• A collection of blocks (SMs) that execute the same kernel

More power GPU generally

means:

• More SMs

• More core/SM

• More powerful cores



Nvidia ML GPU Trajectory



SMs/Threads on Nvidia’s GPUs and AWS on-demand Price

• V100 (2018 - Now): 80 SMs, 2048 threads/SM, 

• ~$3/hour/GPU

• A100 (2020 - Now): 108 SMs, 2048 threads/SM, 

• ~$4/hour/GPU

• H100 (2022 - Now): 144 SMs, 2048 threads/SM

• ~$12/hour/GPU

• B100 and B200 (2025 - ): go surveying the number



CUDA

• Introduced in 2007 with NVIDIA Tesla architecture

• C-like languages for programming GPUs

• CUDA’s design matches the grid/block/thread concepts in GPUs



CUDA Programs contain A Hierarchy of Threads



How Many threads/Blocks it runs on?



Grid, Block, and Thread

• GridDim: The dimensions of the grid

• blockIdx: The block index within the grid

• blockDim: The dimensions of a block 

• threadIdx: The thread index within a block

• What About GridId?

• What about threadDim?



An Example CUDA Program: Matrix Add

• “launch a grid of CUDA thread

• blocks” Call returns when all threads 
have terminated

• __global__ denotes a CUDA kernel 

function runs on GPU
• Each thread indexes its data using 

blockIdx, blockDim, threadIdx and 
execute the compute



Separation CPU and GPU Execution

• Host code: serial execution on CPU

• Device code: SIMD parallel execution 

on GPUs



Question

What happens post launching the 

kernel?
• Will the CPU program continue

• What if the function has return values?



#Threads is Explicit and Static in Programs

Developers to:

• To provide CPU/GPU code 
separation

• Statically declare blockDim, shapes.
• Map data to blocks/threads

On potential factor many compiler

(torch.compile) to require static shapes

Hence it is Important to:
• Check boundary conditions



SIMD Constraints: how to handle control flow?

SIMD requires all ALUs/Core Must proceed in the same pace

• Why?

• Let’s look at a control flow example



Handling Control Flow



Handling Control Flow



Handling Control Flow: Masking



Handling Control Flow



Coherent vs. Divergent

• Coherent execution:

• Same instructions apply to all data

• Divergence Execution:

• On the contrary of coherent

• Should be minimized in CUDA programs

• A notable case

• Language model masking, sliding window attention



GPU and CUDA

• Basic concepts in GPUs

• Execution Model

•Memory

• Programming abstraction

• Case study: Matmul



CUDA Memory Model



CUDA Memory Model

Concepts:

• Host memory: RAM
• Device memory: GPU memory

Recap:
• How is host memory managed in OS?

Distinct host and device address spaces:

• CPU code cannot access device 
memory

• GPU code cannot access host memory



cudaMemcpy



More concepts: Pinned memory

• A part of host memory

• Optimized for data transfer between CPU/GPU

• Not pagable by OS, a.k.a. locked

• Certain APIs only work on Pinned memory



Memory from a kernel’s perspective

Per thread private memory

(r/w by that thread) 

Per block shared memory:

(r/w by all threads of the block) 

Global device memory

(r/w by all threads)

Why make it so complex:

• Balance between speed and shared-

memory parallelism



Example Program: Window Average

for i in range(len(input) - 2):

output[i] = (input[i] + input[i+1] + input[i+2]) / 3.0

Q: what is the parallelizable part?



Window Average: GPU v1

• Pattern: every 3 adjacent input elements are reduced as an 

output.

• Parallelization: Every 3-element tuple reduction is independent 

• Idea: map each reduction computation to a CUDA core



GPU v1

• How many threads In total?

• How many blocks?



GPU v1

Identify a Problem of the above 

implementation?



High-level Idea to Improve

Input

Outpu

t



GPU v2

Parallel read by 

all threads

Read from the allocated 

array `support` 

barrier

Q: how many reads we save per block?

Previous: 3 * 128

Now: 130



Synchronization Primitives

• __syncthreads(): wait for all threads in a block to arrive at this point

• cudasycnhronize(): sync between host and device

What happens post launching the 

kernel?
• Will the CPU program continue

• What if the function has return values?



CUDA kernel code needs to be compiled (like C/CPP)



Problem: different GPUs have different SMs

• The user asks for a static (large) number of blocks

• GPUs has varying (limited) number of blocks



Scheduling on CUDA

• Core assumption: threadblocks can be 

executed in any order (no dependencies 

between threadblocks)

• GPUs maps threadblocks to cores using a 

dynamic scheduling policy threat respects 

resource requirements



Deep Dive into CUDA scheduling

• Conv1d spec on 1024 x 1024

• 128 CUDA threads / threadblock

• 1024 blocks

• Each threadblock asks for 130 * 4 = 520 bytes of shared memory

• Given: a GPU with two SMs, specs below

• How is the scheduling looking like?



Deep Dive into CUDA scheduling

• Step 1: host sends CUDA kernel instructions to GPU device



Deep Dive into CUDA scheduling

• Step 2: scheduler maps block 0 to SM 0 (reserves execution 

contexts for 128 threads and 520 bytes of shared memory)



Deep Dive into CUDA scheduling

• Step 3: scheduler continues to map blocks to execution contexts



Deep Dive into CUDA scheduling

• Step 3: scheduler continues to map blocks to execution contexts



Deep Dive into CUDA scheduling

• Step 3: scheduler continues to map blocks to execution contexts



Deep Dive into CUDA scheduling

• Step 3: scheduler continues to map blocks to execution contexts

• But: cannot schedule the 4th block on SM 0 or SM 1. Why?



Deep Dive into CUDA scheduling

• Step 4: thread block 0 completes on SM 0



Deep Dive into CUDA scheduling

• Step 5: thread block 4 is scheduled on SM 0 (mapped to 

execution contexts 0-127)



Deep Dive into CUDA scheduling

• Step 5: thread block 4 is scheduled on SM 0 (mapped to 

execution contexts 0-127)



Recall: An SM on a NVIDIA GTX 980 (2014) 

• SM resource:

• 96KB of shared memory

• 16 SMs

• 2048 threads / SM

• 128 CUDA cores / SM

• # CUDA cores != # threads, why?



GTX 980 (2014) -> H100 (2022)

• SMs remain the same

• Threads per block: 2048 -> 2048

• CUDA cores: 128 -> 128

• Shared memory per SMM: 96 KB -> 168 KB (A100) -> 256 KB 

(H100)

• #SMs: 16 SMMs -> 132 SMMs

• Flops: 4.6 TFLOPs -> 1000 TFLOPs (mainly because of tensor core)

• Q: what is tensorcore – how does it work?



If you still remember Groq



After Class Survey

• How about B100?

• How does Tensorcore works?

• Why #cores != #active threads in an SM?



Today’s summary

• Basic concepts in GPUs

• Execution Model

• Launch kernel code to grids with many threadblocks

• Memory hierarchy

• Shared memory – SRAM

• Two example code: matrix-add and conv1d

• Next: matmul grinding

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory


	Slide 1: CSE 234: Data Systems for Machine Learning Winter 2025
	Slide 2: MCQ Time
	Slide 3: What is the arithmetic intensity for the following function:  
	Slide 4: Which of the following Tensor manipulations cannot benefit from strided representation
	Slide 5: If we have tensor of shape [2,9,1] stored contiguous in memory following row Major, what is its strides?
	Slide 6: Which of the following is True for Cache Tiling in Matmul
	Slide 7: Today: GPU and CUDA
	Slide 8: GPU Overview
	Slide 9: Kernel, Threads, Blocks, Grids
	Slide 10: Threads
	Slide 11: Thread Block
	Slide 12: Grid
	Slide 13: Nvidia ML GPU Trajectory
	Slide 14: SMs/Threads on Nvidia’s GPUs and AWS on-demand Price
	Slide 15: CUDA
	Slide 16: CUDA Programs contain A Hierarchy of Threads
	Slide 17: How Many threads/Blocks it runs on?
	Slide 18: Grid, Block, and Thread
	Slide 19: An Example CUDA Program: Matrix Add
	Slide 20: Separation CPU and GPU Execution
	Slide 21: Question
	Slide 22: #Threads is Explicit and Static in Programs
	Slide 23: SIMD Constraints: how to handle control flow?
	Slide 24: Handling Control Flow
	Slide 25: Handling Control Flow
	Slide 26: Handling Control Flow: Masking
	Slide 27: Handling Control Flow
	Slide 28: Coherent vs. Divergent
	Slide 29: GPU and CUDA
	Slide 30: CUDA Memory Model
	Slide 31: CUDA Memory Model
	Slide 32: cudaMemcpy
	Slide 33: More concepts: Pinned memory
	Slide 34: Memory from a kernel’s perspective
	Slide 35: Example Program: Window Average
	Slide 36: Window Average: GPU v1
	Slide 37: GPU v1
	Slide 38: GPU v1
	Slide 39: High-level Idea to Improve
	Slide 40: GPU v2
	Slide 41: Synchronization Primitives
	Slide 42: CUDA kernel code needs to be compiled (like C/CPP)
	Slide 43: Problem: different GPUs have different SMs
	Slide 44: Scheduling on CUDA
	Slide 45: Deep Dive into CUDA scheduling
	Slide 46: Deep Dive into CUDA scheduling
	Slide 47: Deep Dive into CUDA scheduling
	Slide 48: Deep Dive into CUDA scheduling
	Slide 49: Deep Dive into CUDA scheduling
	Slide 50: Deep Dive into CUDA scheduling
	Slide 51: Deep Dive into CUDA scheduling
	Slide 52: Deep Dive into CUDA scheduling
	Slide 53: Deep Dive into CUDA scheduling
	Slide 54: Deep Dive into CUDA scheduling
	Slide 55: Recall: An SM on a NVIDIA GTX 980 (2014) 
	Slide 56: GTX 980 (2014) -> H100 (2022)
	Slide 57: If you still remember Groq
	Slide 58: After Class Survey
	Slide 59: Today’s summary

