

CSE 234: Data Systems for Machine Learning Winter 2025

https://hao-ai-lab.github.io/cse234-w25/

LLMSys

Optimizations and Parallelization

MLSys Basics

Recap of Last Lecture

- GPU Execution Model: thread hierarchy
 - Bulk launch of many threads
 - Two-level hierarchy: threads are grouped into thread blocks
- Distributed address space
 - Built-in memcpy primitives to copy between host and device address spaces (cudamalloc, cudamemcpy, pinned memory)
- Three different types of device address spaces
 - Per thread, per block ("shared", SRAM), or per device ("global", HBM)
- Barrier synchronization primitive for threads in thread block and cpu <->gpu
- First GPU program: window average (== conv1d)

Today's Learning Goal

- Case study: Matmul on GPU
- Operator Compilation
- High-level DSL for CUDA: Triton
- Graph Optimization Starter

Dataflow Graph

Autodiff

Operator

Develop the Thought Process when CUDA-ing

- Convert your brain to be SIMD:
- 1. Identify work that can be performed in parallel
- 2. Partition work (and data associated with the work)
- 3. Manage data access, communication, and synchronization

And make sure

- 1. Oversubscription: create enough tasks to keep all execution units on a machine busy
- Mitigate straggler: Balance workload (because GPU cores does not know control flow)
- 3. Minimize "communication": reduce I/O across memory hierarchies

Case study: GPU Matmul v1

- $C = A \times B$
- Q: what's the work that can be parallelized
- **Q**Each thread computes one element!

```
int N = 1024;
dim3 threadsPerBlock(32, 32, 1);
dim3 numBlocks(N/32, N/32, 1);
```

matmul<<<numBlocks, threadsPerBlock>>>(A, B, C);

```
__global__ void mm(float A[N][N], float B[N][N], float C[N][N]) {
    int x = blockIdx.x * blockDim.x + threadIdx.x;
    int y = blockIdx.y * blockDim.y + threadIdx.y;
    result = 0;
    for (int k = 0; k < N; ++k) {
        result += A[x][k] * B[k][y];
    }
    C[x][y] = result;
}</pre>
```


- Global memory read per thread?
 - N + N = 2N
- # threads?
 - N^2
- Total global memory access?
 - N^2 * 2N = 2N^3
- Memory?
 - 1 float per thread

Recall Memory Hierarchy and Register tiling

Seach thread uses more thread-level registers to compute outputs to save I/o

GPU Matmul v1.5: Thread Tiling

Each thread computes a VxV submatrix

```
_global___void mm(float A[N][N], float B[N][N], float C[N][N]) {
int ybase = blockIdx.y * blockDim.y + threadIdx.y;
int xbase = blockIdx.x * blockDim.x + threadIdx.x;
float c[V][V] = {0};
float a[N], b[N];
for (int x = 0; x < V; ++x) {
  a[:] = A[xbase * V + x, :];
  for (int y = 0; y < V; ++y) {
    b[:] = B[:, ybase * V + y]
   for (int k = 0; k < N; ++k)
      c[x][y] += a[k] * b[k];
C[xbase * V: xbase*V + V, ybase * V: ybase*V + V] = c[:];
```


Ν

GPU Matmul v2: Can we do better?

- Each thread computes a VxV submatrix
- **Q** compute partial sum: $[X_1, X_2] \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} = X_1 Y_1 + X_2 Y_2$

```
__global__ void mm(float A[N][N], float B[N][N], float C[N][N]) {
 int ybase = blockIdx.y * blockDim.y + threadIdx.y;
 int xbase = blockIdx.x * blockDim.x + threadIdx.x;
 float c[V][V] = {0};
 float a[V], b[V];
 for (int k = 0; k < N; ++k) {
   a[:] = A[xbase*V : xbase*V + V, k];
   b[:] = B[k, ybase*V : ybase*V + V];
   for (int y = 0; y < V; ++y) {
     for (int x = 0; x < V; ++x) {
    c[x][y] += a[x] * b[y];</pre>
   ר
 C[xbase * V : xbase*V + V, ybase*V : ybase*V + V] = c[:];
```


Ν

- Global memory read per thread?
 - $N/V * N/V = N^2/V^2$
- Total global memory access?
 - $N^2 / V^2 * 2NV = 2N^3/V$
 - $V^2 + 2V$ float per thread

Recall Memory Hierarchy and Cache tiling

Pry to utilize block-level shared memory (SRAM)

GPU Matmul v3: SRAM Tiling (GPU)

- Use block shared mem
- A block computes a L x L submatrix
- Then a thread computes a V x V submatrix and reuses the matrices in shared block memory


```
_global___void mm(float A[N][N], float B[N][N], float C[N][N]) {
__shared__ float sA[S][L], sB[S][L];
float c[V][V] = \{0\};
float a[V], b[V];
int yblock = blockIdx.y;
int xblock = blockIdx.x;
for (int ko = 0; ko < N; ko += S) {
  _____syncthreads();
  // needs to be implemented by thread cooperative fetching
  sA[:, :] = A[ko : ko + S, yblock * L : yblock * L + L];
  sB[:, :] = B[ko : ko + S, xblock * L : xblock * L + L];
  _____syncthreads();
  for (int ki = 0; ki < S; ++ ki) {</pre>
    a[:] = sA[ki, threadIdx.y * V : threadIdx.y * V + V];
    b[:] = sA[ki, threadIdx.x * V : threadIdx.x * V + V];
    for (int y = 0; y < V; ++y) {
      for (int x = 0; x < V; ++x) {
        c[y][x] += a[y] * b[x];
int ybase = blockIdx.y * blockDim.y + threadIdx.y;
int xbase = blockIdx.x * blockDim.x + threadIdx.x;
C[ybase * V : ybase*V + V, xbase*V : xbase*V + V] = c[:];
```


Memory overhead?

- Global memory access per threadblock
 - 2LN
- Number of threadblocks:
 - N^2 / L^2
- Total global memory access:
 - 2N^3/L
- Shared memory access per thread:
 - 2VN
- Number of threads
 - N^2 / V^2
- Total shared memory access:
 - 2N^3/V

```
_global___void mm(float A[N][N], float B[N][N], float C[N][N]) {
__shared__ float sA[S][L], sB[S][L];
float c[V][V] = \{0\};
float a[V], b[V];
int yblock = blockIdx.y;
int xblock = blockIdx.x;
for (int ko = 0; ko < N; ko += S) {
  syncthreads();
  // needs to be implemented by thread cooperative fetching
  sA[:, :] = A[ko : ko + S, yblock * L : yblock * L + L];
  sB[:, :] = B[ko : ko + S, xblock * L : xblock * L + L];
  _____syncthreads();
  for (int ki = 0; ki < S; ++ ki) {</pre>
    a[:] = sA[ki, threadIdx.y * V : threadIdx.y * V + V];
    b[:] = sA[ki, threadIdx.x * V : threadIdx.x * V + V];
    for (int y = 0; y < V; ++y) {
      for (int x = 0; x < V; ++x) {
        c[y][x] += a[y] * b[x];
int ybase = blockIdx.y * blockDim.y + threadIdx.y;
int xbase = blockIdx.x * blockDim.x + threadIdx.x;
C[ybase * V : ybase*V + V, xbase*V : xbase*V + V] = c[:];
```

Cooperative Fetching

int nthreads = blockDim.y * blockDim.x; for(int j = 0; j < L * S / nthreads; ++j) {</pre> int y = (j * nthreads + tid) / L;int x = (j * nthreads + tid) % L;s[y, x] = A[k + y, yblock * L + x];}

```
sA[:, :] = A[k : k + S, yblock * L : yblock * L + L];
```

```
int tid = threadIdx.y * blockDim.x + threadIdx.x;
```

Many More GPU Optimizations

- Global memory continuous read
- Shared memory bank conflict
- Pipelining
- Tensor core
- Lower precision

Core Problems Here

- How to choose L/V? Tradeoffs:
 - #threads
 - #registers
 - Amount of SRAM


```
_global___void mm(float A[N][N], float B[N][N], float C[N][N]) {
__shared__ float sA[S][L], sB[S][L];
float c[V][V] = \{0\};
float a[V], b[V];
int yblock = blockIdx.y;
int xblock = blockIdx.x;
for (int ko = 0; ko < N; ko += S) {
  _____syncthreads();
  // needs to be implemented by thread cooperative fetching
  sA[:, :] = A[ko : ko + S, yblock * L : yblock * L + L];
  sB[:, :] = B[ko : ko + S, xblock * L : xblock * L + L];
  syncthreads();
  for (int ki = 0; ki < S; ++ ki) {</pre>
    a[:] = sA[ki, threadIdx.y * V : threadIdx.y * V + V];
    b[:] = sA[ki, threadIdx.x * V : threadIdx.x * V + V];
    for (int y = 0; y < V; ++y) {
      for (int x = 0; x < V; ++x) {
        c[y][x] += a[y] * b[x];
int ybase = blockIdx.y * blockDim.y + threadIdx.y;
int xbase = blockIdx.x * blockDim.x + threadIdx.x;
C[ybase * V : ybase*V + V, xbase*V : xbase*V + V] = c[:];
```

In Reality

MKL-DNN

cuDNN

Transformer, ... ResNet, LSTM

ARM-Compute

Back to Today's Problem

- How to implement an highly efficient kern¹
- How to choose configs.
 - #threads
 - #registers
 - Amount of SRAM
- Solution 1:
 - expert-craft -> Enumerate configs -> profile
- Solution 2: Operator compilation

Introduce ML Compilation: Big Picture

ML compilation's Goal: Automatically generate optimal configurations and code given users code and target hardware

Traditional vs. ML Compiler

Transformer, ... ResNet, LSTM

Dataflow Graph

Transformed Dataflow Graph

Efficient Kernel code

Machine code

Grand Problems:

- Programming-level:
 - Automatically transform an arbitrary (usually imperative) code (by developers) into a compile-able code (e.g., static dataflow graph)?
- Graph-level:
 - Automatic graph transformations to make it faster
- Op-level:
 - How to make operator fast on different hardware?

Notable Compilers

Today: Operator Compilation

Transforming Loops: Loop Splitting

Code

for x in range(128): C[x] = A[x] + B[x]

for xo in range(32): for xi in range(4): C[xo * 4 + xi]= A[xo * 4 + xi] + B[xo * 4 + xi]

def gpu_kernel(): C[threadId.x * 4 + blockIdx.x] = . . .

for xi in range(4): for xo in range(32): C[xo * 4 + xi]= A[xo * 4 + xi] + B[xo * 4 + xi]

Problems

- We need to enumerate many possibilities
 - How to represent all "possibilities"
- We need to find the (close-to-)optimal values (register/cache sizes)
 - How to search?
- We need to apply this to so many operators and devices
 - How to reduce search space
 - How to generalize?

Search via Learned Cost Model

Search Space Definition e.g. Template based

Issue: still need experts to write templates

Fixed Manual Template for i.0 in range(?): for j.0 in range(?)

How to Search

- Sequential Construction using Early pruning
- Cost Model

Elements of an automated ML Compiler

- Program abstraction
- Represent the program/optimization of interest Build Search space through a set of transformations Good coverage of common optimizations like tiling
- Effective Search
 - Accurate cost models
 - Transferability

Discussion

- ML compilation's Promise:
- Automatically generate optimal configurations and code
 - given users ML code on target hardware
- Q: How well are we achieving our goals in ML compilers?

Today's Learning Goal

- Case study: Matmul on GPU
- Operator Compilation
- High-level DSL for CUDA: Triton
- Graph Optimization Starter

Dataflow Graph

Autodiff

Operator

Which Triton?

Device-specific DSL (e.g., CUDA) vs. Compiler

+ Very fast iteration speed for developers + developers can do whatever the heck they Can prototype ideas quickly and give it to want: compiler squeeze the last bits of performance -- Cannot represent certain types of ideas use whatever data-structure you want In-operator control flow Custom data structure -- developers can do whatever the heck they -- Code generation is a old difficult problem want: heavy use of templates and pattern-matching Require deep expertise; performance

- optimization is very time-consuming
- Codebases are complex and hard to maintain

lots of performance cliffs

Compiler

Triton Logos...

Triton's Pitch (Please think about why this makes sense)

+ simpler than CUDA; more expressive than graph compilers:

Device-specific DSL

-- less expressive than CUDA; more complicated than graph compilers;

Compiler

Triton Programming Model

primitives

Embedded in Python

Kernels are defined in Python using triton.jit

Users construct tensors of pointers and (de)reference them elementwise

Users define tensors in SARM, and modify them using torch-like

Shape Constraints

Must have power-of-two number of elements along each dimension

Example: elementwise add v1 (z = x + y)

- Triton kernel will be mapped to a single block (SM) of threads
- Users will be responsible for mapping to multiple blocks

```
import triton.language as tl
Import triton
```

```
@triton.jit
def _add(z_ptr, x_ptr, y_ptr, N):
    # same as torch.arrange
    offsets = tl.arange(0, 1024)
    # create 1024 pointers to X, Y, Z
    x_ptrs = x_ptr + offsets
    y_ptrs = y_ptr + offsets
    z_ptrs = z_ptr + offsets
    # load 1024 elements of X, Y, Z
    x = tl.load(x_ptrs)
    y = tl.load(y_ptrs)
    # do computations
    z = x + y
    # write-back 1024 elements of X, Y, Z
    tl.store(z_ptrs, z)
```

```
N = 1024
x = torch.randn(N, device='cuda')
y = torch.randn(N, device='cuda')
z = torch.randn(N, device='cuda')
grid = (1, )
_add[grid](z, x, y, N)
```