
CSE 234: Data Systems for Machine Learning

Winter 2025

1

https://hao-ai-lab.github.io/cse234-w25/

MLSys Basics

Optimizations and Parallelization

LLMSys

Recap of Last Lecture

• GPU Execution Model: thread hierarchy

• Bulk launch of many threads

• Two-level hierarchy: threads are grouped into thread blocks

• Distributed address space

• Built-in memcpy primitives to copy between host and device address

spaces (cudamalloc, cudamemcpy, pinned memory)

• Three different types of device address spaces

• Per thread, per block (“shared”, SRAM), or per device (“global”, HBM)

• Barrier synchronization primitive for threads in thread block and cpu <->

gpu

• First GPU program: window average (== conv1d)

Today’s Learning Goal

• Case study: Matmul on GPU

• Operator Compilation

• High-level DSL for CUDA: Triton

• Graph Optimization Starter

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

Develop the Thought Process when CUDA-ing

Convert your brain to be SIMD:

1. Identify work that can be performed in parallel

2. Partition work (and data associated with the work)

3. Manage data access, communication, and synchronization

And make sure

1. Oversubscription: create enough tasks to keep all execution units on a

machine busy

2. Mitigate straggler: Balance workload (because GPU cores does not

know control flow)

3. Minimize “communication”: reduce I/O across memory hierarchies

Case study: GPU Matmul v1

• C = A x B

• Q: what’s the work that can be parallelized?

• Each thread computes one element!

• Global memory read per thread?

• N + N = 2N

• # threads?

• N^2

• Total global memory access?

• N^2 * 2N = 2N^3

• Memory?

• 1 float per thread

Recall Memory Hierarchy and Register tiling

Each thread uses more thread-level registers to compute

outputs to save I/o

GPU Matmul v1.5: Thread Tiling

A

B

C

V

V

V

V N

N

N

N

__global__ void mm(float A[N][N], float B[N][N], float C[N][N]) {
int ybase = blockIdx.y * blockDim.y + threadIdx.y;
int xbase = blockIdx.x * blockDim.x + threadIdx.x;

float c[V][V] = {0};
float a[N], b[N];
for (int x = 0; x < V; ++x) {
a[:] = A[xbase * V + x, :];
for (int y = 0; y < V; ++y) {
b[:] = B[:, ybase * V + y]
for (int k = 0; k < N; ++k)
c[x][y] += a[k] * b[k];

}
}

}
C[xbase * V: xbase*V + V, ybase * V: ybase*V + V] = c[:];

}

• Each thread computes a VxV submatrix

• Global memory read per thread?

• NV + NV^2

• # threads?

• N/V * N/V = N^2/V^2

• Total global memory access?

• N^2 / V^2 * (NV + NV^2) = N^3/V + N^3

• Memory?

• V^2 + 2N float per thread

GPU Matmul v2: Can we do better?

• Each thread computes a VxV submatrix

• compute partial sum: 𝑋1, 𝑋2
𝑌1
𝑌2

= 𝑋1𝑌1 + 𝑋2𝑌2

• Global memory read per thread?

• NV * 2

• # threads?

• N/V * N/V = N^2/V^2

• Total global memory access?

• N^2 / V^2 * 2NV = 2N^3/V

• Memory?

• V^2 + 2V float per thread

Recall Memory Hierarchy and Cache tiling

Try to utilize block-level shared memory (SRAM)

GPU Matmul v3: SRAM Tiling (GPU)

• Use block shared mem

• A block computes a L x L submatrix

• Then a thread computes a V x V

submatrix and reuses the matrices in

shared block memory

__global__ void mm(float A[N][N], float B[N][N], float C[N][N]) {
__shared__ float sA[S][L], sB[S][L];
float c[V][V] = {0};
float a[V], b[V];
int yblock = blockIdx.y;
int xblock = blockIdx.x;

for (int ko = 0; ko < N; ko += S) {
__syncthreads();
// needs to be implemented by thread cooperative fetching
sA[:, :] = A[ko : ko + S, yblock * L : yblock * L + L];
sB[:, :] = B[ko : ko + S, xblock * L : xblock * L + L];
__syncthreads();
for (int ki = 0; ki < S; ++ ki) {
a[:] = sA[ki, threadIdx.y * V : threadIdx.y * V + V];
b[:] = sA[ki, threadIdx.x * V : threadIdx.x * V + V];
for (int y = 0; y < V; ++y) {
for (int x = 0; x < V; ++x) {
c[y][x] += a[y] * b[x];

}
}

}
}
int ybase = blockIdx.y * blockDim.y + threadIdx.y;
int xbase = blockIdx.x * blockDim.x + threadIdx.x;
C[ybase * V : ybase*V + V, xbase*V : xbase*V + V] = c[:];

}

Memory overhead?

• Global memory access per threadblock

• 2LN

• Number of threadblocks:

• N^2 / L^2

• Total global memory access:

• 2N^3 / L

• Shared memory access per thread:

• 2VN

• Number of threads

• N^2 / V^2

• Total shared memory access:

• 2N^3 / V

__global__ void mm(float A[N][N], float B[N][N], float C[N][N]) {
__shared__ float sA[S][L], sB[S][L];
float c[V][V] = {0};
float a[V], b[V];
int yblock = blockIdx.y;
int xblock = blockIdx.x;

for (int ko = 0; ko < N; ko += S) {
__syncthreads();
// needs to be implemented by thread cooperative fetching
sA[:, :] = A[ko : ko + S, yblock * L : yblock * L + L];
sB[:, :] = B[ko : ko + S, xblock * L : xblock * L + L];
__syncthreads();
for (int ki = 0; ki < S; ++ ki) {
a[:] = sA[ki, threadIdx.y * V : threadIdx.y * V + V];
b[:] = sA[ki, threadIdx.x * V : threadIdx.x * V + V];
for (int y = 0; y < V; ++y) {
for (int x = 0; x < V; ++x) {
c[y][x] += a[y] * b[x];

}
}

}
}
int ybase = blockIdx.y * blockDim.y + threadIdx.y;
int xbase = blockIdx.x * blockDim.x + threadIdx.x;
C[ybase * V : ybase*V + V, xbase*V : xbase*V + V] = c[:];

}

Cooperative Fetching

Many More GPU Optimizations

• Global memory continuous read

• Shared memory bank conflict

• Pipelining

• Tensor core

• Lower precision

Core Problems Here

• How to choose L/V? Tradeoffs:

• #threads

• #registers

• Amount of SRAM

__global__ void mm(float A[N][N], float B[N][N], float C[N][N]) {
__shared__ float sA[S][L], sB[S][L];
float c[V][V] = {0};
float a[V], b[V];
int yblock = blockIdx.y;
int xblock = blockIdx.x;

for (int ko = 0; ko < N; ko += S) {
__syncthreads();
// needs to be implemented by thread cooperative fetching
sA[:, :] = A[ko : ko + S, yblock * L : yblock * L + L];
sB[:, :] = B[ko : ko + S, xblock * L : xblock * L + L];
__syncthreads();
for (int ki = 0; ki < S; ++ ki) {
a[:] = sA[ki, threadIdx.y * V : threadIdx.y * V + V];
b[:] = sA[ki, threadIdx.x * V : threadIdx.x * V + V];
for (int y = 0; y < V; ++y) {
for (int x = 0; x < V; ++x) {
c[y][x] += a[y] * b[x];

}
}

}
}
int ybase = blockIdx.y * blockDim.y + threadIdx.y;
int xbase = blockIdx.x * blockDim.x + threadIdx.x;
C[ybase * V : ybase*V + V, xbase*V : xbase*V + V] = c[:];

}

In Reality

Back to Today’s Problem

• How to implement an highly efficient kernel

• How to choose configs.

• #threads

• #registers

• Amount of SRAM

• Solution 1:

• expert-craft -> Enumerate configs -> profile

• Solution 2: Operator compilation

Introduce ML Compilation: Big Picture

ML compilation’s Goal:

Automatically generate optimal configurations and code

given users code and target hardware

Traditional vs. ML Compiler

Compiler

Human

Code (e.g., cpp)
Dataflow Graph

Transformed Dataflow Graph

Efficient Kernel code

Machine code

Machine code

Grand Problems:

• Programming-level:

• Automatically transform an arbitrary

(usually imperative) code (by

developers) into a compile-able

code (e.g., static dataflow graph)?

• Graph-level:

• Automatic graph transformations to

make it faster

• Op-level:

• How to make operator fast on

different hardware?

Dataflow Graph

Transformed Dataflow Graph

Efficient Kernel code

Machine code

Notable Compilers

Today: Operator Compilation

Transforming Loops: Loop Splitting

Problems

• We need to enumerate many possibilities

• How to represent all “possibilities”

• We need to find the (close-to-)optimal values (register/cache

sizes)

• How to search?

• We need to apply this to so many operators and devices

• How to reduce search space

• How to generalize?

Search via Learned Cost Model

Search Space Definition e.g. Template based

• Issue: still need experts to write templates

How to Search

• Sequential Construction using Early pruning

• Cost Model

Elements of an automated ML Compiler

• Program abstraction

• Represent the program/optimization of interest

• Build Search space through a set of transformations

• Good coverage of common optimizations like tiling

• Effective Search

• Accurate cost models

• Transferability

Discussion

ML compilation’s Promise:

Automatically generate optimal configurations and code

given users ML code on target hardware

Q: How well are we achieving our goals in ML compilers?

Today’s Learning Goal

• Case study: Matmul on GPU

• Operator Compilation

• High-level DSL for CUDA: Triton

• Graph Optimization Starter

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

Which Triton?

Device-specific DSL (e.g., CUDA) vs. Compiler

Device-specific DSL Compiler

+ developers can do whatever the heck they

want:

• squeeze the last bits of performance

• use whatever data-structure you want

-- developers can do whatever the heck they

want:

• Require deep expertise; performance

optimization is very time-consuming

• Codebases are complex and hard to

maintain

+ Very fast iteration speed for developers

• Can prototype ideas quickly and give it to

compiler

-- Cannot represent certain types of ideas

• In-operator control flow

• Custom data structure

-- Code generation is a old difficult problem

• heavy use of templates and pattern-matching

• lots of performance cliffs

Triton Logos…

Triton’s Pitch (Please think about why this makes sense)

Device-specific DSL Compiler

+ simpler than CUDA;

more expressive than

graph compilers:

-- less expressive than

CUDA; more complicated

than graph compilers;

Triton Programming Model

• Users define tensors in SARM, and modify them using torch-like

primitives

Kernels are defined in

Python using triton.jit

Users construct tensors of

pointers and (de)reference

them elementwise

Must have power-of-two

number of elements

along each dimension

Example: elementwise add v1 (z = x + y)
import triton.language as tl
Import triton

@triton.jit
def _add(z_ptr, x_ptr, y_ptr, N):
same as torch.arrange
offsets = tl.arange(0, 1024)
create 1024 pointers to X, Y, Z
x_ptrs = x_ptr + offsets
y_ptrs = y_ptr + offsets
z_ptrs = z_ptr + offsets
load 1024 elements of X, Y, Z
x = tl.load(x_ptrs)
y = tl.load(y_ptrs)
do computations
z = x + y
write-back 1024 elements of X, Y, Z
tl.store(z_ptrs, z)

N = 1024
x = torch.randn(N, device='cuda’)
y = torch.randn(N, device='cuda’)
z = torch.randn(N, device='cuda’)
grid = (1,)
_add[grid](z, x, y, N)

• Triton kernel will be mapped

to a single block (SM) of

threads

• Users will be responsible for

mapping to multiple blocks

	Slide 1: CSE 234: Data Systems for Machine Learning Winter 2025
	Slide 2: Recap of Last Lecture
	Slide 3: Today’s Learning Goal
	Slide 4: Develop the Thought Process when CUDA-ing
	Slide 5: Case study: GPU Matmul v1
	Slide 6: Recall Memory Hierarchy and Register tiling
	Slide 7: GPU Matmul v1.5: Thread Tiling
	Slide 8: GPU Matmul v2: Can we do better?
	Slide 9: Recall Memory Hierarchy and Cache tiling
	Slide 10: GPU Matmul v3: SRAM Tiling (GPU)
	Slide 11: Memory overhead?
	Slide 12: Cooperative Fetching
	Slide 13: Many More GPU Optimizations
	Slide 14: Core Problems Here
	Slide 15: In Reality
	Slide 16: Back to Today’s Problem
	Slide 17: Introduce ML Compilation: Big Picture
	Slide 18: Traditional vs. ML Compiler
	Slide 19: Grand Problems:
	Slide 20: Notable Compilers
	Slide 21: Today: Operator Compilation
	Slide 22: Transforming Loops: Loop Splitting
	Slide 23: Problems
	Slide 24: Search via Learned Cost Model
	Slide 25: Search Space Definition e.g. Template based
	Slide 26: How to Search
	Slide 27: Elements of an automated ML Compiler
	Slide 28: Discussion
	Slide 29: Today’s Learning Goal
	Slide 30: Which Triton?
	Slide 31: Device-specific DSL (e.g., CUDA) vs. Compiler
	Slide 32: Triton Logos…
	Slide 33: Triton’s Pitch (Please think about why this makes sense)
	Slide 34: Triton Programming Model
	Slide 35: Example: elementwise add v1 (z = x + y)

