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Recap: Last Lecture

• GPU Matmul

• Operator compiler

• Triton



What is a “kernel” in the context of GPUs?

A. A specific section of the CPU used for memory operations.

B. A specific section of the GPU used for memory operations.

C. A type of thread that operates on the GPU.

D. A function that is executed simultaneously by tens of thousands of 

threads on GPU cores.



What is the function of shared memory in the context of GPU 

execution?

A. It’s HBM

B. It’s used to store all the threads in a block.

C. It can be used to “cache” data that is used by more than 

one thread, avoiding multiple reads from the global 

memory.

D. It’s used to store all the CUDA cores.



What is the significance of over-subscribing the GPU?

A. It reduces the overall performance of the GPU.

B. It ensures that there are more blocks than SMPs present on the device, 

helping to hide latencies and ensure high occupancy of the GPU.

C. It leads to a memory overflow in the GPU.

D. It ensures that there are more SMPs than blocks present on the device.



Which of the following is True about GPU Memory

A. On H100, a CPU process can access an array stored on H100 GPU 

memory

B. A thread in a threadblock can access its threadblock-level shared 

memory

C. Pinned memory is a part of memory allocated on GPU

D. print(a) function in C++  can print an array allocated via a = 

cudaMalloc(..)



Which of the following operations is most likely to be limited by 

arithmetic operations?

A. ReLU Activation

B. Linear layer (8192 outputs, 2048 inputs, batch size 1)

C. Batch normalization

D. Max pooling (3x3 window and unit stride)

E. Layer normalization

F. Linear layer (2048 outputs, 1024 inputs, batch size 512)



When picking a tile size for GEMM, why not always pick the biggest 
tile size?

A. The tile might not fit on the GPU HBM for some GEMM sizes

B. The bigger size could result in low parallelism for some GEMM sizes

C. Larger tiles have lower data reuse

D. Larger tiles means more data is read, lowering arithmetic intensity.



Today’s Learning Goal

• High-level DSL for CUDA: Triton

• Graph Optimization

• Manual

• Automatic

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime



Triton Programming Model

• Users define tensors in SARM, and modify them using torch-like

primitives

Kernels are defined in

Python using triton.jit

Users construct tensors of

pointers and (de)reference

them elementwise

Must have power-of-two

number of elements

along each dimension



Example: elementwise add v1 (z = x + y)
import triton.language as tl
Import triton

@triton.jit
def _add(z_ptr, x_ptr, y_ptr, N):
# same as torch.arrange
offsets = tl.arange(0, 1024)
# create 1024 pointers to X, Y, Z
x_ptrs = x_ptr + offsets
y_ptrs = y_ptr + offsets
z_ptrs = z_ptr + offsets
# load 1024 elements of X, Y, Z
x = tl.load(x_ptrs)
y = tl.load(y_ptrs)
# do computations
z = x + y
# write-back 1024 elements of X, Y, Z
tl.store(z_ptrs, z)

N = 1024
x = torch.randn(N, device='cuda’)
y = torch.randn(N, device='cuda’)
z = torch.randn(N, device='cuda’) 
grid = (1, )
_add[grid](z, x, y, N)

• Triton kernel will be mapped

to a single block (SM) of

threads

• Users will be responsible for

mapping to multiple blocks



Example: elementwise add v2 (z = x + y)

Use multiple blocks

• Index the block and apply offset

• Adds bound check

import triton.language as tl
Import triton

@triton.jit
def _add(z_ptr, x_ptr, y_ptr, N):
# same as torch.arrange
offsets = tl.arange(0, 1024)
offsets += tl.program_id(0)*1024
# create 1024 pointers to X, Y, Z
x_ptrs = x_ptr + offsets
y_ptrs = y_ptr + offsets
z_ptrs = z_ptr + offsets
# load 1024 elements of X, Y, Z
x = tl.load(x_ptrs, mask=offset<N)
y = tl.load(y_ptrs, mask=offset<N)
# do computations
z = x + y
# write-back 1024 elements of X, Y, Z
tl.store(z_ptrs, z)

N = 192311
x = torch.randn(N, device='cuda’)
y = torch.randn(N, device='cuda’)
z = torch.randn(N, device='cuda’) 
grid = (triton.cdiv(N, 1024), )
_add[grid](z, x, y, N)



Elementwise Add Performance



Another Example: Softmax

𝑦𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝒙 𝑖 =
𝑒𝑥𝑖

∑𝑒𝑥𝑑

• How did you implement this in PA1?

• Think about the potential overhead when compose softmax

from primitives

• Performant option: implementing an end-to-end softmax kernel

• Think about the complexity of implementing in CUDA



Triton Example: softmax
import triton.language as tl
Import triton

@triton.jit
def _softmax(z_ptr, x_ptr, stride, N, BLOCK: tl.constexpr):
# Each program instance normalizes a row
row = tl.program_id(0)
cols = tl.arange(0, BLOCK)

# Load a row of row-major X to SRAM
x_ptrs = x_ptr + row*stride + cols
x = tl.load(x_ptrs, mask = cols < N, other = float(‘-inf’))

# Normalization in SRAM, in FP32
x = x.to(tl.float32)
x = x - tl.max(x, axis=0)
num = tl.exp(x)
den = tl.sum(num, axis=0)
z = num / den;
# Write-back to HBM
tl.store(z_ptr + row*stride + cols, z, mask = cols < N)



Performance



Why Triton (seemingly) Succeeds

SASS = streaming assembly



Summary: Operator Optimization

Goal: to make individual operator run fast on diverse devices

1. General ways: vectorization, data layout, etc.

2. Matmul-specific: tiling to use fast memory

3. Parallelization SIMD using accelerators

4. Handcrafted operator kernels vs. automatically compile code

5. Triton to find the sweet spot

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime



Next: Graph Optimization

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator optimization/compilation

Runtime



Recall Our Goal

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime

• Goal: Rewrite the original Graph G to G’;

• G’ runs faster than G

• G’ outputs equivalent results

• Straightforward solution: template

• Human experts write (sub-)graph transformation templates

• Guarantee correctness and performance gain

• Run pattern matching over dataflow graph and replace



Graph Optimization Templates: Fusion

Matmul

y

x LN

FusedMatmulLN

y

x

• Why operator fusion improves performance?

• Reduce I/O

• Reduce kernel launching

• Cons:

• Requiring many fused ops: FusedABCOp

• At some point, codebase becomes

unmanageable



One trade-off in Practice results in “CUDA Graph”

• Users are allowed to program using primitives with high-level APIs

• Graph is captured at CUDA level

More reading:https://pytorch.org/blog/accelerating-pytorch-with-cuda-graphs/



Graph Optimization Templates: Constant Folding

add

3

x add

4

add

7

x

mul

1

x

add

0

x

x



Common Subexpression Elimination (CSE)

…
𝑐 = 𝑎 + 𝑏
𝑑 = 𝑎
𝑒 = 𝑏

𝑓 = 𝑑 + 𝑒
𝑑 = 𝑥
….

…
𝑐3 = 𝑎1 + 𝑏2

𝑑1 = 𝑎1

𝑒2 = 𝑏2

𝑓3 = 𝑑1 + 𝑒2

𝑓3 = 𝑐3

𝑑4 = 𝑥4

….

CSE hit



Dead Code Elimination (DCE)

…
𝑐 = 𝑎 + 𝑏
𝑑 = 𝑎
𝑒 = 𝑏

𝑓 = 𝑑 + 𝑒
𝑑 = 𝑥
….

…
𝑐3 = 𝑎1 + 𝑏2

𝑑1 = 𝑎1

𝑒2 = 𝑏2

𝑓3 = 𝑑1 + 𝑒2

𝑓3 = 𝑐3

𝑑4 = 𝑥4

….

…
𝑐3 = 𝑎1 + 𝑏2

𝑑1 = 𝑎1

𝑒2 = 𝑏2

𝑓3 = 𝑑1 + 𝑒2

𝑓3 = 𝑐3

𝑑4 = 𝑥4

….

CSE hit DCE hit



More templates for CSE and DCE

If_cond

y

x True Node1

False Node2 Unused

If_cond

y

x True Node1

False Node2 Unused



How to ensure performance gain?

• Greedily apply graph optimizations

• The final graph is 30% faster on V100 but 10% slower on K80.



Problems of Template-based Graph Optimizations 

200 - 300 1000s 10s

Problem: Infeasible to manually design graph optimizations
for all cases 



Problems of Template-based Graph Optimizations



Automate Graph Transformation

Key idea: replace manually-designed graph optimizations with 

automated generation and verification of graph substitutions for 

tensor algebra



Enumerate and Verify ALL possible graph 



Graph Substitution Generator



There are many subgraphs even only given 4 Ops

66M graphs with up to 4 operators

A substitution = a pair of equivalent graphs



Graph Substitution Generator

We can generate 28744 substitutions by enumerating graphs with up to 4 ops



Pruning repeated graphs

Variable renaming Common subgraph

28744 

substitutions
734 

substitutions



Can we trust graph substitutions?

• We have f(a) = g(a), f(b) = g(b)

• But can we say: f(x) = g(x) for ∀x

• We need to verify formally.



Substitution Verifier 

Idea: writing specifications are easier than 

actually, conducting the optimizations 



How to Verify

• Generating 743 substitutions  = 5 mins

• Verify against 43 op specs = 10 mins

• Supporting a new op requires experts to write 

specs = 1400 LoC 

• vs. 53K LoC of manual optimization in TF

Automated theorem 
prover



Incorporating substitutions 

• Goal: apply verified substitutions to obtain an optimized graph

• Cost Model

• Based on the sum of individual operator’s cost

• Profile each operator’s cost on the target hardware

• Traverse the graph, apply substitutions, calculate cost, use backtracking

Cost

Model



Performance (as of 2019)



Summary of Graph Optimization

Enumerate all 

possibilities

Construct a 

search space

Prune the 

candidates

Apply the 

transformations

Select top candidates 

based on profile/cost model

Optimized graph 

and performance

Limitations

• The best optimization is not covered by search space

• Search might be too slow

• Evaluation of the resulting graph is too expensive

• Limits your trial-and-error times



A Failure Example

• Math-equivalent

• Missing some optimization opportunities

• Better performance 

• Not fully equivalent -> accuracy loss

How about: exploit the larger space partially equivalent transformations for 

performance while still preserve correctness?



Motivating Example

+ Correction 

• Partial equivalent transformations + correction yield 1.2x speedup

• Which would otherwise be impossible in fully equivalent transformations space



Partially Equivalent Transformations

• How to mutate?

• How to correct?



Mutant Generator: Step 1



Mutant Generator: Step 2

Fully equivalent transformations:

• Find transformations with equal results

Partially equivalent transformations:

• Find transformations with equal shapes



How to Detect and Correct?

• Which part of the computation is not equivalent?

• How to correct the results?



By Enumeration

• For each possible input I

• For each position p

• Check if f(I)[p] == g(I)[p]

• Complexity O(m x n):

• m: possible inputs

• n: output shape

• How to reduce enumeration 

effort?

• Reduce m and n



How to reduce n?

• Can we just check out a few (or even just one) position at f(I)[p] 

and assert the (in-)correctness?

• Answer: Yes for 80% of the computation

• Reason: Neural nets computation are mostly Multi-Linear

• Define Multi-linear: f is multi-linear if the output is linear to all inputs

𝑓 𝐼1, … , 𝑋, … , 𝐼𝑛 + 𝑓 𝐼1, … , 𝑌, … , 𝐼𝑛 = 𝑓 𝐼1, … , 𝑋 + 𝑌,… , 𝐼𝑛

𝛼𝑓 𝐼1, … , 𝑋, … , 𝐼𝑛 = 𝑓 𝐼1, … , 𝛼𝑋,… , 𝐼𝑛



Important ML Operators are multi-linear



How to reduce n

• Theorem 1: For two Multi-linear functions f and g, if f=g for O(1) 

positions in a region, then f=g for all positions in the region

• Implications: only need to examine O(1) positions for each region

• Reduce O(mn) -> O(mr)

• r (# regions) <<< n



How to reduce m?

• Theorm 2: if ∃𝐼, 𝑓 𝐼 𝑝 ≠ 𝑔(𝐼)[𝑝], then the probability that f and g 

give identical results on t random inputs is 
1

231

𝑡

• Implications: Run t random tests with random input, and if all t 

passed, it is very unlikely f and g are inequivalent

• O(mn) -> O(mr) -> O(tr) (t << m, r << n)



Correct the Mutant

• Goal: quickly and efficiently 

correcting the outputs of a 

mutant program



Correct the Mutant

• Goal: quickly and efficiently 

correcting the outputs of a 

mutant program

• Step 1: recompute the incorrect 

outputs using the original program



Correct the Mutant

• Goal: quickly and efficiently 

correcting the outputs of a 

mutant program

• Step 1: recompute the incorrect 

outputs using the original 

program

• Step 2: opportunistically fuse 

correction kernels with other 

operators



Recap



Summary & Questions to discuss

• Fully equivalent transformations vs. Partial

• How to define search space

• How to prune search space

• How to verify & correct

• How to apply to the ML graph optimization



ML Compiler Retrospective

2013 Now

Halide

2016 ~

2017
2018 2019

~2020

MLIR

Flexflow
Torch Dynamo

TensorRT

cuDNN

ONNX

Q: why the community shifts away from compiler

500+ compiler papers are written during



More Compiler in Guest Lecture

• Guest Speaker: Tianqi Chen

• A.k.a.: GOAT of MLSys

• Inventor of: XGBoost, TVM, MLC-LLM

• Date: Feb. 6



Big Picture: Where We Are

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator optimization/compilation

Runtime



Next: Runtime

• “Batching”

• Checkpointing and rematerialization

• Swapping 

• Quantization, Mixed precision, and Pruning
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