
CSE 234: Data Systems for Machine Learning

Winter 2025

1

https://hao-ai-lab.github.io/cse234-w25/

MLSys Basics

Optimizations and Parallelization

LLMSys

Recap: Last Lecture

• GPU Matmul

• Operator compiler

• Triton

What is a “kernel” in the context of GPUs?

A. A specific section of the CPU used for memory operations.

B. A specific section of the GPU used for memory operations.

C. A type of thread that operates on the GPU.

D. A function that is executed simultaneously by tens of thousands of

threads on GPU cores.

What is the function of shared memory in the context of GPU

execution?

A. It’s HBM

B. It’s used to store all the threads in a block.

C. It can be used to “cache” data that is used by more than

one thread, avoiding multiple reads from the global

memory.

D. It’s used to store all the CUDA cores.

What is the significance of over-subscribing the GPU?

A. It reduces the overall performance of the GPU.

B. It ensures that there are more blocks than SMPs present on the device,

helping to hide latencies and ensure high occupancy of the GPU.

C. It leads to a memory overflow in the GPU.

D. It ensures that there are more SMPs than blocks present on the device.

Which of the following is True about GPU Memory

A. On H100, a CPU process can access an array stored on H100 GPU

memory

B. A thread in a threadblock can access its threadblock-level shared

memory

C. Pinned memory is a part of memory allocated on GPU

D. print(a) function in C++ can print an array allocated via a =

cudaMalloc(..)

Which of the following operations is most likely to be limited by

arithmetic operations?

A. ReLU Activation

B. Linear layer (8192 outputs, 2048 inputs, batch size 1)

C. Batch normalization

D. Max pooling (3x3 window and unit stride)

E. Layer normalization

F. Linear layer (2048 outputs, 1024 inputs, batch size 512)

When picking a tile size for GEMM, why not always pick the biggest
tile size?

A. The tile might not fit on the GPU HBM for some GEMM sizes

B. The bigger size could result in low parallelism for some GEMM sizes

C. Larger tiles have lower data reuse

D. Larger tiles means more data is read, lowering arithmetic intensity.

Today’s Learning Goal

• High-level DSL for CUDA: Triton

• Graph Optimization

• Manual

• Automatic

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime

Triton Programming Model

• Users define tensors in SARM, and modify them using torch-like

primitives

Kernels are defined in

Python using triton.jit

Users construct tensors of

pointers and (de)reference

them elementwise

Must have power-of-two

number of elements

along each dimension

Example: elementwise add v1 (z = x + y)
import triton.language as tl
Import triton

@triton.jit
def _add(z_ptr, x_ptr, y_ptr, N):
same as torch.arrange
offsets = tl.arange(0, 1024)
create 1024 pointers to X, Y, Z
x_ptrs = x_ptr + offsets
y_ptrs = y_ptr + offsets
z_ptrs = z_ptr + offsets
load 1024 elements of X, Y, Z
x = tl.load(x_ptrs)
y = tl.load(y_ptrs)
do computations
z = x + y
write-back 1024 elements of X, Y, Z
tl.store(z_ptrs, z)

N = 1024
x = torch.randn(N, device='cuda’)
y = torch.randn(N, device='cuda’)
z = torch.randn(N, device='cuda’)
grid = (1,)
_add[grid](z, x, y, N)

• Triton kernel will be mapped

to a single block (SM) of

threads

• Users will be responsible for

mapping to multiple blocks

Example: elementwise add v2 (z = x + y)

Use multiple blocks

• Index the block and apply offset

• Adds bound check

import triton.language as tl
Import triton

@triton.jit
def _add(z_ptr, x_ptr, y_ptr, N):
same as torch.arrange
offsets = tl.arange(0, 1024)
offsets += tl.program_id(0)*1024
create 1024 pointers to X, Y, Z
x_ptrs = x_ptr + offsets
y_ptrs = y_ptr + offsets
z_ptrs = z_ptr + offsets
load 1024 elements of X, Y, Z
x = tl.load(x_ptrs, mask=offset<N)
y = tl.load(y_ptrs, mask=offset<N)
do computations
z = x + y
write-back 1024 elements of X, Y, Z
tl.store(z_ptrs, z)

N = 192311
x = torch.randn(N, device='cuda’)
y = torch.randn(N, device='cuda’)
z = torch.randn(N, device='cuda’)
grid = (triton.cdiv(N, 1024),)
_add[grid](z, x, y, N)

Elementwise Add Performance

Another Example: Softmax

𝑦𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝒙 𝑖 =
𝑒𝑥𝑖

∑𝑒𝑥𝑑

• How did you implement this in PA1?

• Think about the potential overhead when compose softmax

from primitives

• Performant option: implementing an end-to-end softmax kernel

• Think about the complexity of implementing in CUDA

Triton Example: softmax
import triton.language as tl
Import triton

@triton.jit
def _softmax(z_ptr, x_ptr, stride, N, BLOCK: tl.constexpr):
Each program instance normalizes a row
row = tl.program_id(0)
cols = tl.arange(0, BLOCK)

Load a row of row-major X to SRAM
x_ptrs = x_ptr + row*stride + cols
x = tl.load(x_ptrs, mask = cols < N, other = float(‘-inf’))

Normalization in SRAM, in FP32
x = x.to(tl.float32)
x = x - tl.max(x, axis=0)
num = tl.exp(x)
den = tl.sum(num, axis=0)
z = num / den;
Write-back to HBM
tl.store(z_ptr + row*stride + cols, z, mask = cols < N)

Performance

Why Triton (seemingly) Succeeds

SASS = streaming assembly

Summary: Operator Optimization

Goal: to make individual operator run fast on diverse devices

1. General ways: vectorization, data layout, etc.

2. Matmul-specific: tiling to use fast memory

3. Parallelization SIMD using accelerators

4. Handcrafted operator kernels vs. automatically compile code

5. Triton to find the sweet spot

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime

Next: Graph Optimization

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator optimization/compilation

Runtime

Recall Our Goal

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime

• Goal: Rewrite the original Graph G to G’;

• G’ runs faster than G

• G’ outputs equivalent results

• Straightforward solution: template

• Human experts write (sub-)graph transformation templates

• Guarantee correctness and performance gain

• Run pattern matching over dataflow graph and replace

Graph Optimization Templates: Fusion

Matmul

y

x LN

FusedMatmulLN

y

x

• Why operator fusion improves performance?

• Reduce I/O

• Reduce kernel launching

• Cons:

• Requiring many fused ops: FusedABCOp

• At some point, codebase becomes

unmanageable

One trade-off in Practice results in “CUDA Graph”

• Users are allowed to program using primitives with high-level APIs

• Graph is captured at CUDA level

More reading:https://pytorch.org/blog/accelerating-pytorch-with-cuda-graphs/

Graph Optimization Templates: Constant Folding

add

3

x add

4

add

7

x

mul

1

x

add

0

x

x

Common Subexpression Elimination (CSE)

…
𝑐 = 𝑎 + 𝑏
𝑑 = 𝑎
𝑒 = 𝑏

𝑓 = 𝑑 + 𝑒
𝑑 = 𝑥
….

…
𝑐3 = 𝑎1 + 𝑏2

𝑑1 = 𝑎1

𝑒2 = 𝑏2

𝑓3 = 𝑑1 + 𝑒2

𝑓3 = 𝑐3

𝑑4 = 𝑥4

….

CSE hit

Dead Code Elimination (DCE)

…
𝑐 = 𝑎 + 𝑏
𝑑 = 𝑎
𝑒 = 𝑏

𝑓 = 𝑑 + 𝑒
𝑑 = 𝑥
….

…
𝑐3 = 𝑎1 + 𝑏2

𝑑1 = 𝑎1

𝑒2 = 𝑏2

𝑓3 = 𝑑1 + 𝑒2

𝑓3 = 𝑐3

𝑑4 = 𝑥4

….

…
𝑐3 = 𝑎1 + 𝑏2

𝑑1 = 𝑎1

𝑒2 = 𝑏2

𝑓3 = 𝑑1 + 𝑒2

𝑓3 = 𝑐3

𝑑4 = 𝑥4

….

CSE hit DCE hit

More templates for CSE and DCE

If_cond

y

x True Node1

False Node2 Unused

If_cond

y

x True Node1

False Node2 Unused

How to ensure performance gain?

• Greedily apply graph optimizations

• The final graph is 30% faster on V100 but 10% slower on K80.

Problems of Template-based Graph Optimizations

200 - 300 1000s 10s

Problem: Infeasible to manually design graph optimizations
for all cases

Problems of Template-based Graph Optimizations

Automate Graph Transformation

Key idea: replace manually-designed graph optimizations with

automated generation and verification of graph substitutions for

tensor algebra

Enumerate and Verify ALL possible graph

Graph Substitution Generator

There are many subgraphs even only given 4 Ops

66M graphs with up to 4 operators

A substitution = a pair of equivalent graphs

Graph Substitution Generator

We can generate 28744 substitutions by enumerating graphs with up to 4 ops

Pruning repeated graphs

Variable renaming Common subgraph

28744

substitutions
734

substitutions

Can we trust graph substitutions?

• We have f(a) = g(a), f(b) = g(b)

• But can we say: f(x) = g(x) for ∀x

• We need to verify formally.

Substitution Verifier

Idea: writing specifications are easier than

actually, conducting the optimizations

How to Verify

• Generating 743 substitutions = 5 mins

• Verify against 43 op specs = 10 mins

• Supporting a new op requires experts to write

specs = 1400 LoC

• vs. 53K LoC of manual optimization in TF

Automated theorem
prover

Incorporating substitutions

• Goal: apply verified substitutions to obtain an optimized graph

• Cost Model

• Based on the sum of individual operator’s cost

• Profile each operator’s cost on the target hardware

• Traverse the graph, apply substitutions, calculate cost, use backtracking

Cost

Model

Performance (as of 2019)

Summary of Graph Optimization

Enumerate all

possibilities

Construct a

search space

Prune the

candidates

Apply the

transformations

Select top candidates

based on profile/cost model

Optimized graph

and performance

Limitations

• The best optimization is not covered by search space

• Search might be too slow

• Evaluation of the resulting graph is too expensive

• Limits your trial-and-error times

A Failure Example

• Math-equivalent

• Missing some optimization opportunities

• Better performance

• Not fully equivalent -> accuracy loss

How about: exploit the larger space partially equivalent transformations for

performance while still preserve correctness?

Motivating Example

+ Correction

• Partial equivalent transformations + correction yield 1.2x speedup

• Which would otherwise be impossible in fully equivalent transformations space

Partially Equivalent Transformations

• How to mutate?

• How to correct?

Mutant Generator: Step 1

Mutant Generator: Step 2

Fully equivalent transformations:

• Find transformations with equal results

Partially equivalent transformations:

• Find transformations with equal shapes

How to Detect and Correct?

• Which part of the computation is not equivalent?

• How to correct the results?

By Enumeration

• For each possible input I

• For each position p

• Check if f(I)[p] == g(I)[p]

• Complexity O(m x n):

• m: possible inputs

• n: output shape

• How to reduce enumeration

effort?

• Reduce m and n

How to reduce n?

• Can we just check out a few (or even just one) position at f(I)[p]

and assert the (in-)correctness?

• Answer: Yes for 80% of the computation

• Reason: Neural nets computation are mostly Multi-Linear

• Define Multi-linear: f is multi-linear if the output is linear to all inputs

𝑓 𝐼1, … , 𝑋, … , 𝐼𝑛 + 𝑓 𝐼1, … , 𝑌, … , 𝐼𝑛 = 𝑓 𝐼1, … , 𝑋 + 𝑌,… , 𝐼𝑛

𝛼𝑓 𝐼1, … , 𝑋, … , 𝐼𝑛 = 𝑓 𝐼1, … , 𝛼𝑋,… , 𝐼𝑛

Important ML Operators are multi-linear

How to reduce n

• Theorem 1: For two Multi-linear functions f and g, if f=g for O(1)

positions in a region, then f=g for all positions in the region

• Implications: only need to examine O(1) positions for each region

• Reduce O(mn) -> O(mr)

• r (# regions) <<< n

How to reduce m?

• Theorm 2: if ∃𝐼, 𝑓 𝐼 𝑝 ≠ 𝑔(𝐼)[𝑝], then the probability that f and g

give identical results on t random inputs is
1

231

𝑡

• Implications: Run t random tests with random input, and if all t

passed, it is very unlikely f and g are inequivalent

• O(mn) -> O(mr) -> O(tr) (t << m, r << n)

Correct the Mutant

• Goal: quickly and efficiently

correcting the outputs of a

mutant program

Correct the Mutant

• Goal: quickly and efficiently

correcting the outputs of a

mutant program

• Step 1: recompute the incorrect

outputs using the original program

Correct the Mutant

• Goal: quickly and efficiently

correcting the outputs of a

mutant program

• Step 1: recompute the incorrect

outputs using the original

program

• Step 2: opportunistically fuse

correction kernels with other

operators

Recap

Summary & Questions to discuss

• Fully equivalent transformations vs. Partial

• How to define search space

• How to prune search space

• How to verify & correct

• How to apply to the ML graph optimization

ML Compiler Retrospective

2013 Now

Halide

2016 ~

2017
2018 2019

~2020

MLIR

Flexflow
Torch Dynamo

TensorRT

cuDNN

ONNX

Q: why the community shifts away from compiler

500+ compiler papers are written during

More Compiler in Guest Lecture

• Guest Speaker: Tianqi Chen

• A.k.a.: GOAT of MLSys

• Inventor of: XGBoost, TVM, MLC-LLM

• Date: Feb. 6

Big Picture: Where We Are

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator optimization/compilation

Runtime

Next: Runtime

• “Batching”

• Checkpointing and rematerialization

• Swapping

• Quantization, Mixed precision, and Pruning

	Slide 1: CSE 234: Data Systems for Machine Learning Winter 2025
	Slide 2: Recap: Last Lecture
	Slide 3: What is a “kernel” in the context of GPUs?
	Slide 4: What is the function of shared memory in the context of GPU execution?
	Slide 5: What is the significance of over-subscribing the GPU?
	Slide 6: Which of the following is True about GPU Memory
	Slide 7: Which of the following operations is most likely to be limited by arithmetic operations?
	Slide 8: When picking a tile size for GEMM, why not always pick the biggest tile size?
	Slide 9: Today’s Learning Goal
	Slide 10: Triton Programming Model
	Slide 11: Example: elementwise add v1 (z = x + y)
	Slide 12: Example: elementwise add v2 (z = x + y)
	Slide 13: Elementwise Add Performance
	Slide 14: Another Example: Softmax
	Slide 15: Triton Example: softmax
	Slide 16: Performance
	Slide 17: Why Triton (seemingly) Succeeds
	Slide 18: Summary: Operator Optimization
	Slide 19: Next: Graph Optimization
	Slide 20: Recall Our Goal
	Slide 21: Graph Optimization Templates: Fusion
	Slide 22: One trade-off in Practice results in “CUDA Graph”
	Slide 23: Graph Optimization Templates: Constant Folding
	Slide 24: Common Subexpression Elimination (CSE)
	Slide 25: Dead Code Elimination (DCE)
	Slide 26: More templates for CSE and DCE
	Slide 27: How to ensure performance gain?
	Slide 28: Problems of Template-based Graph Optimizations
	Slide 29: Problems of Template-based Graph Optimizations
	Slide 30: Automate Graph Transformation
	Slide 31: Enumerate and Verify ALL possible graph
	Slide 32: Graph Substitution Generator
	Slide 33: There are many subgraphs even only given 4 Ops
	Slide 34: Graph Substitution Generator
	Slide 35: Pruning repeated graphs
	Slide 36: Can we trust graph substitutions?
	Slide 37: Substitution Verifier
	Slide 38: How to Verify
	Slide 39: Incorporating substitutions
	Slide 40: Performance (as of 2019)
	Slide 41: Summary of Graph Optimization
	Slide 42: A Failure Example
	Slide 43: Motivating Example
	Slide 44: Partially Equivalent Transformations
	Slide 45: Mutant Generator: Step 1
	Slide 46: Mutant Generator: Step 2
	Slide 47: How to Detect and Correct?
	Slide 48: By Enumeration
	Slide 49: How to reduce n?
	Slide 50: Important ML Operators are multi-linear
	Slide 51: How to reduce n
	Slide 52: How to reduce m?
	Slide 53: Correct the Mutant
	Slide 54: Correct the Mutant
	Slide 55: Correct the Mutant
	Slide 56: Recap
	Slide 57: Summary & Questions to discuss
	Slide 58: ML Compiler Retrospective
	Slide 59: More Compiler in Guest Lecture
	Slide 60: Big Picture: Where We Are
	Slide 61: Next: Runtime

