

CSE 234: Data Systems for Machine Learning Winter 2025

https://hao-ai-lab.github.io/cse234-w25/

LLMSys

Optimizations and Parallelization

MLSys Basics

Recap: Last Lecture

- GPU Matmul
- Operator compiler
- Triton

What is a "kernel" in the context of GPUs?

- A. A specific section of the CPU used for memory operations.
- B. A specific section of the GPU used for memory operations.
- C. A type of thread that operates on the GPU.
- D. A function that is executed simultaneously by tens of thousands of
- threads on GPU cores.

What is the function of shared memory in the context of GPU execution?

A. It's HBM B. It's used to store all the threads in a block. C. It can be used to "cache" data that is used by more than one thread, avoiding multiple reads from the global memory. D. It's used to store all the CUDA cores.

What is the significance of over-subscribing the GPU?

A. It reduces the overall performance of the GPU.
B. It ensures that there are more blocks than SMPs present on the device, helping to hide latencies and ensure high occupancy of the GPU.
C. It leads to a memory overflow in the GPU.
D. It ensures that there are more SMPs than blocks present on the device.

Which of the following is True about GPU Memory

- memory
- memory
- C. Pinned memory is a part of memory allocated on GPU
- D. print(a) function in C++ can print an array allocated via a =cudaMalloc(..)

A. On H100, a CPU process can access an array stored on H100 GPU

B. A thread in a threadblock can access its threadblock-level shared

Which of the following operations is most likely to be limited by arithmetic operations?

- A. ReLU Activation
- Linear layer (8192 outputs, 2048 inputs, batch size 1)
- c. Batch normalization
- D. Max pooling (3x3 window and unit stride)
- E. Layer normalization
- E. Linear layer (2048 outputs, 1024 inputs, batch size 512)

When picking a tile size for GEMM, why not always pick the biggest tile size?

- The tile might not fit on the GPU HBM for some GEMM sizes Α.
- The bigger size could result in low parallelism for some GEMM sizes Β.
- Larger tiles have lower data reuse C.
- Larger tiles means more data is read, lowering arithmetic intensity. D.

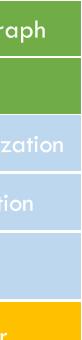
Today's Learning Goal

- High-level DSL for CUDA: Triton
- Graph Optimization
 - Manual
 - Automatic

Dataflow Graph

Autodiff

Operator



Triton Programming Model

primitives

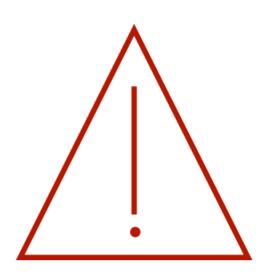
Embedded in Python

Kernels are defined in Python using triton.jit

Users construct tensors of pointers and (de)reference them elementwise

Users define tensors in SARM, and modify them using torch-like

Shape Constraints



Must have power-of-two number of elements along each dimension

Example: elementwise add v1 (z = x + y)

- Triton kernel will be mapped to a single block (SM) of threads
- Users will be responsible for mapping to multiple blocks

```
import triton.language as tl
Import triton
```

```
@triton.jit
def _add(z_ptr, x_ptr, y_ptr, N):
    # same as torch.arrange
    offsets = tl.arange(0, 1024)
    # create 1024 pointers to X, Y, Z
    x_ptrs = x_ptr + offsets
    y_ptrs = y_ptr + offsets
    z_ptrs = z_ptr + offsets
    # load 1024 elements of X, Y, Z
    x = tl.load(x_ptrs)
    y = tl.load(y_ptrs)
    # do computations
    z = x + y
    # write-back 1024 elements of X, Y, Z
    tl.store(z_ptrs, z)
```

```
N = 1024
x = torch.randn(N, device='cuda')
y = torch.randn(N, device='cuda')
z = torch.randn(N, device='cuda')
grid = (1, )
_add[grid](z, x, y, N)
```

Example: elementwise add v2 (z = x + y)

Use multiple blocks

- Index the block and apply offset
- Adds bound check

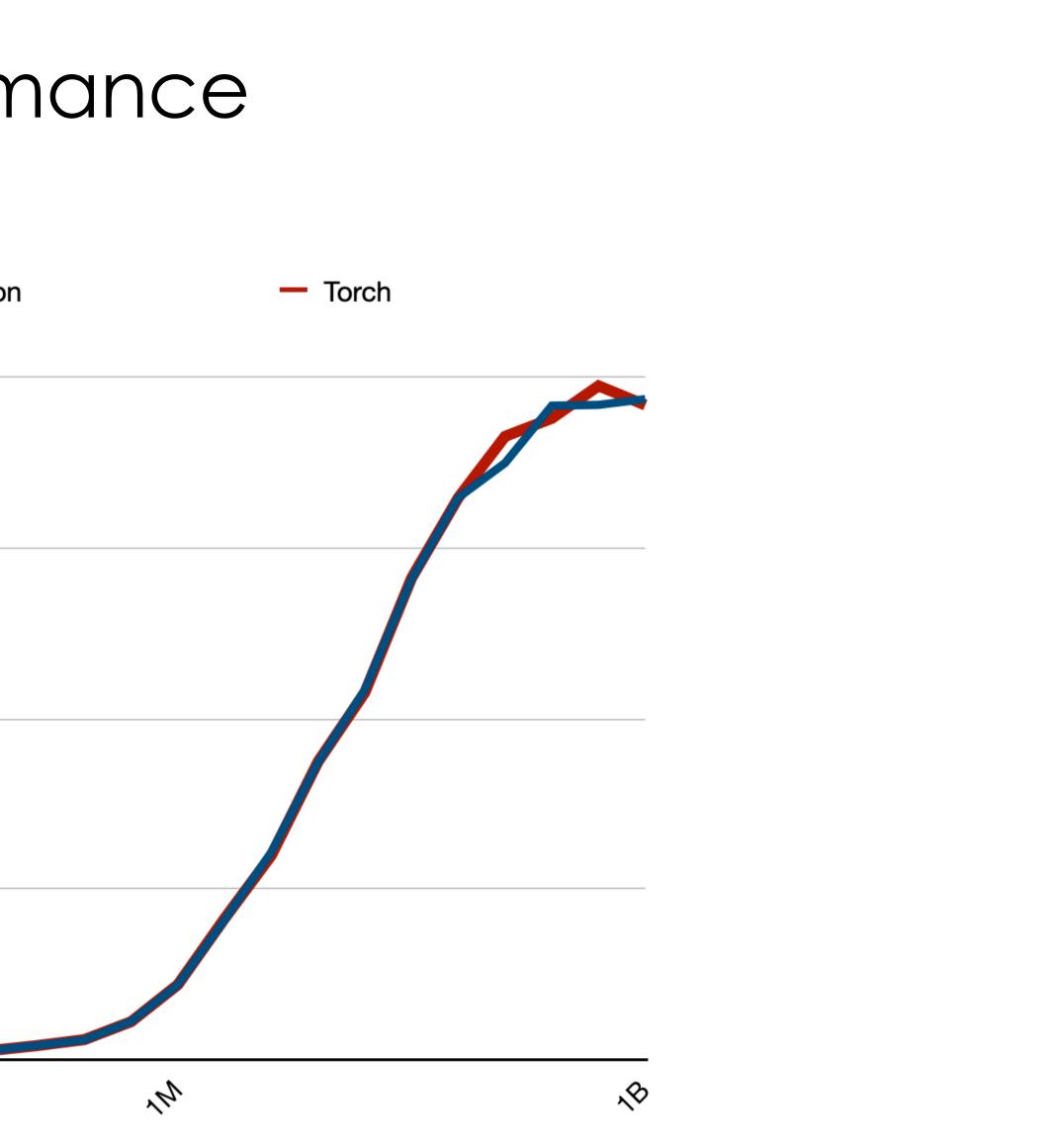
import triton.language as tl
Import triton

```
@triton.jit
def _add(z_ptr, x_ptr, y_ptr, N):
 # same as torch.arrange
  offsets = tl.arange(0, 1024)
  offsets += tl.program_id(0)*1024
  # create 1024 pointers to X, Y, Z
  x ptrs = x ptr + offsets
  y_ptrs = y_ptr + offsets
  z_ptrs = z_ptr + offsets
  # load 1024 elements of X, Y, Z
  x = tl.load(x_ptrs, mask=offset<N)</pre>
  y = tl.load(y_ptrs, mask=offset<N)</pre>
  # do computations
  z = x + y
  # write-back 1024 elements of X, Y, Z
  tl.store(z_ptrs, z)
N = 192311
```

```
x = torch.randn(N, device='cuda')
y = torch.randn(N, device='cuda')
z = torch.randn(N, device='cuda')
grid = (triton.cdiv(N, 1024),)
_add[grid](z, x, y, N)
```

Elementwise Add Performance

	— Triton
4000	
3000	
S/ල 2000	
1000	
0	4



Another Example: Softmax

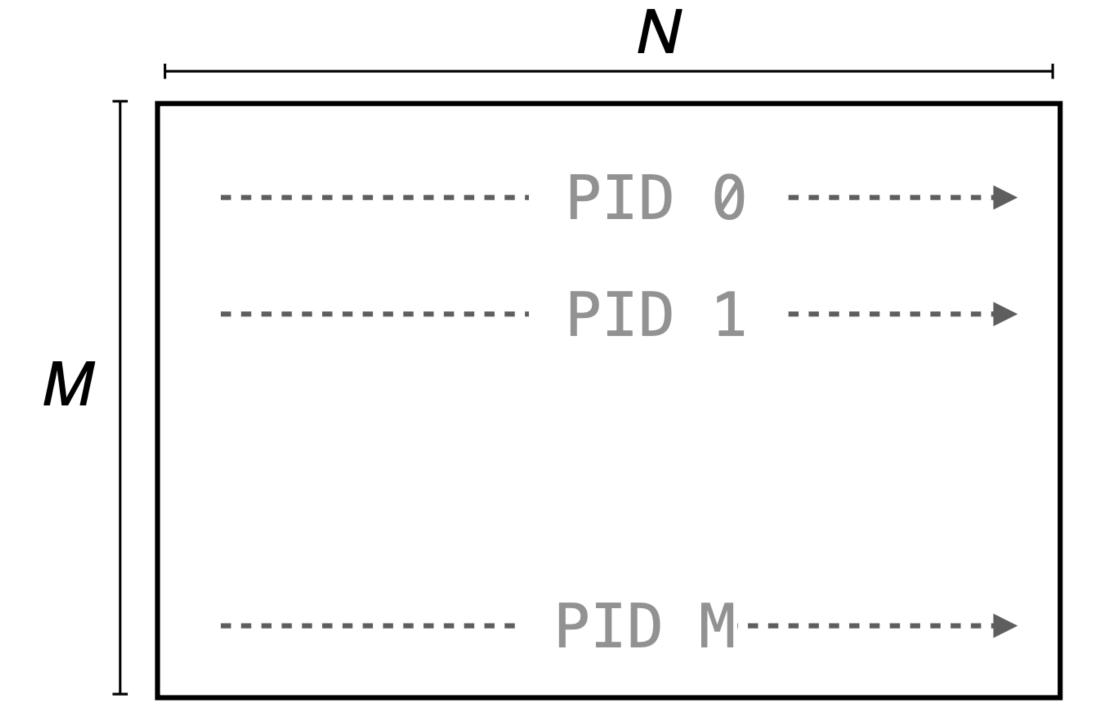
- How did you implement this in PA1?
 - from primitives
- - Think about the complexity of implementing in CUDA

Performant option: implementing an end-to-end softmax kernel

Think about the potential overhead when compose softmax

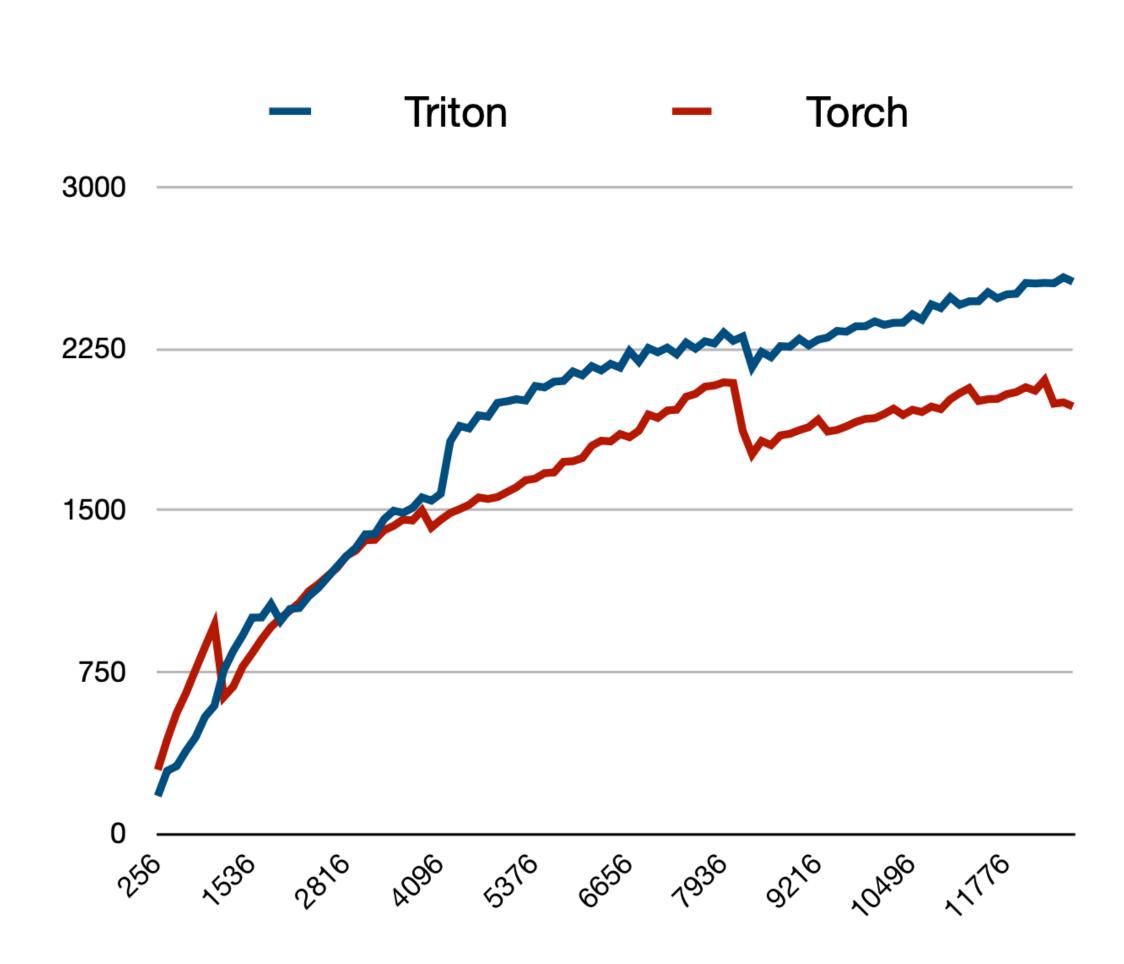
 $y_i = softmax(\mathbf{x})_i = \frac{e^{x_i}}{\sum e^{x_d}}$

Triton Example: softmax



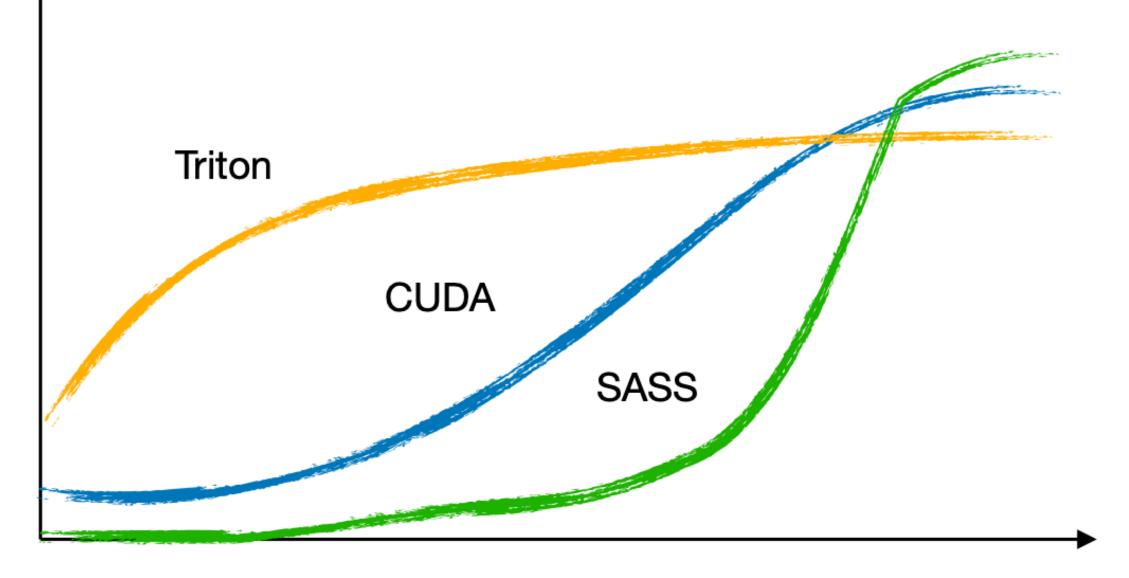
```
import triton.language as tl
Import triton
@triton.jit
def _softmax(z_ptr, x_ptr, stride, N, BLOCK: tl.constexpr):
 # Each program instance normalizes a row
  row = tl.program_id(0)
  cols = tl.arange(0, BLOCK)
  # Load a row of row-major X to SRAM
 x_ptrs = x_ptr + row*stride + cols
 x = tl.load(x_ptrs, mask = cols < N, other = float('-inf'))</pre>
  # Normalization in SRAM, in FP32
 x = x.to(tl.float32)
 x = x - tl.max(x, axis=0)
  num = tl.exp(x)
  den = tl.sum(num, axis=0)
  z = num / den;
  # Write-back to HBM
  tl.store(z_ptr + row*stride + cols, z, mask = cols < N)</pre>
```


Performance



Why Triton (seemingly) Succeeds

Performance



Time invested

SASS = streaming assembly

Summary: Operator Optimization

- Goal: to make individual operator run fast on diverse devices
- 1. General ways: vectorization, data layout, etc.
- 2. Matmul-specific: tiling to use fast memory
- 3. Parallelization SIMD using accelerators
- 4. Handcrafted operator kernels vs. automatically compile code
- 5. Triton to find the sweet spot

Dataflow Graph

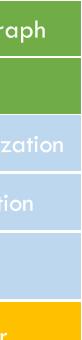
Autodiff

raph Optimiz

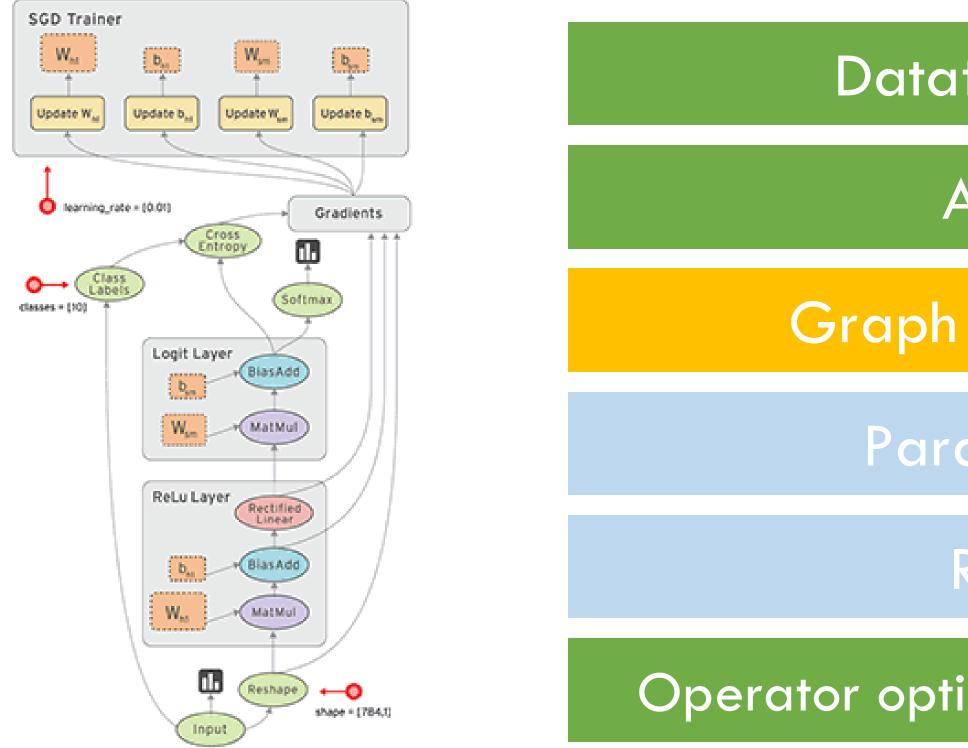
Parallelizat

Runtime

Operator



Next: Graph Optimization



Dataflow Graph

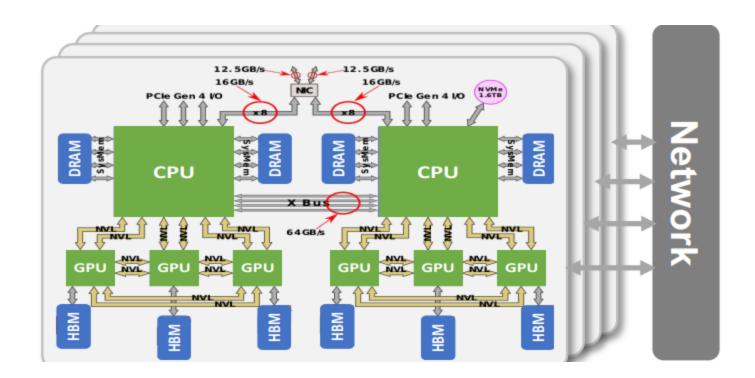
Autodiff

Graph Optimization

Parallelization

Runtime

Operator optimization/compilation



Recall Our Goal

- Goal: Rewrite the original Graph G to G';
 - G' runs faster than G
 - G' outputs equivalent results

- Straightforward solution: template
 - - Guarantee correctness and performance gain

Dataflow Graph

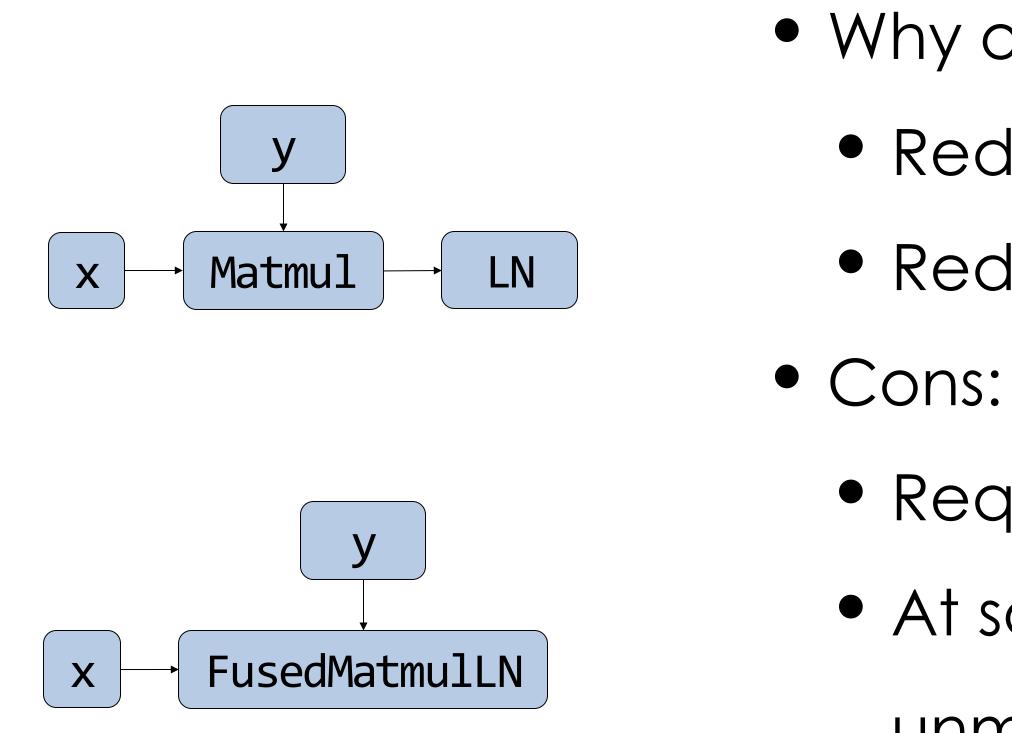
Autodiff

Graph Optimization

Human experts write (sub-)graph transformation templates

Run pattern matching over dataflow graph and replace

Graph Optimization Templates: Fusion

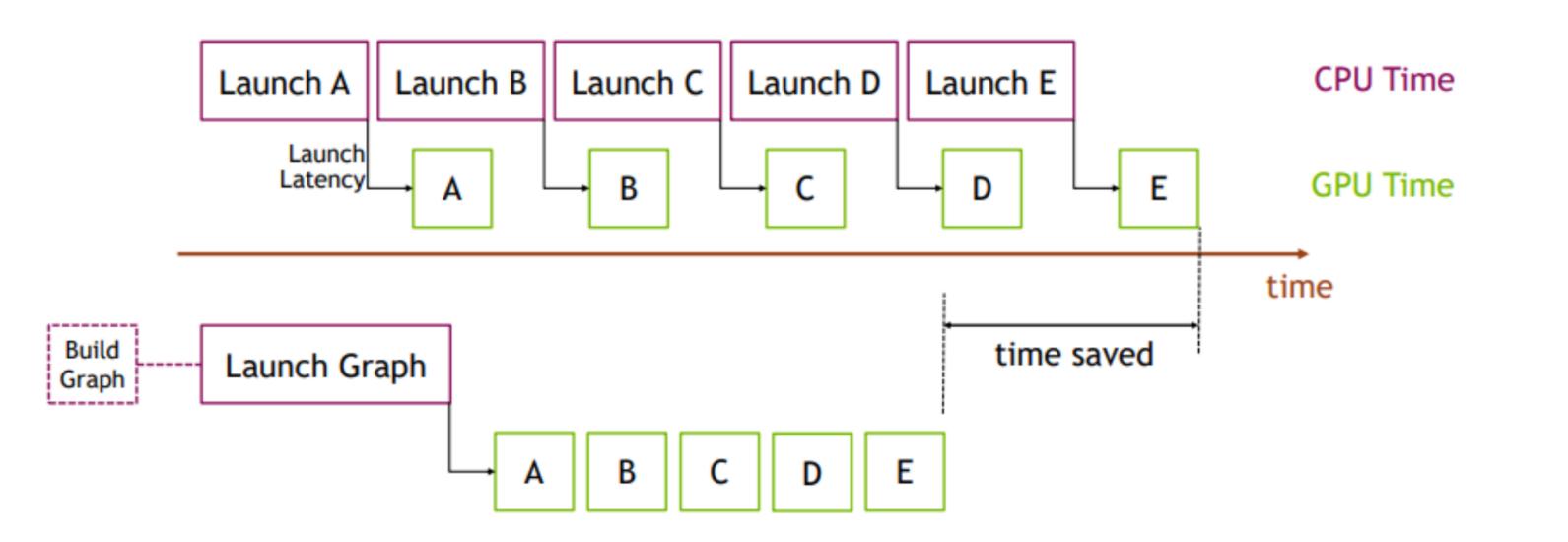


- Why operator fusion improves performance?
 - Reduce I/O
 - Reduce kernel launching

 Requiring many fused ops: FusedABCOp • At some point, codebase becomes unmanageable

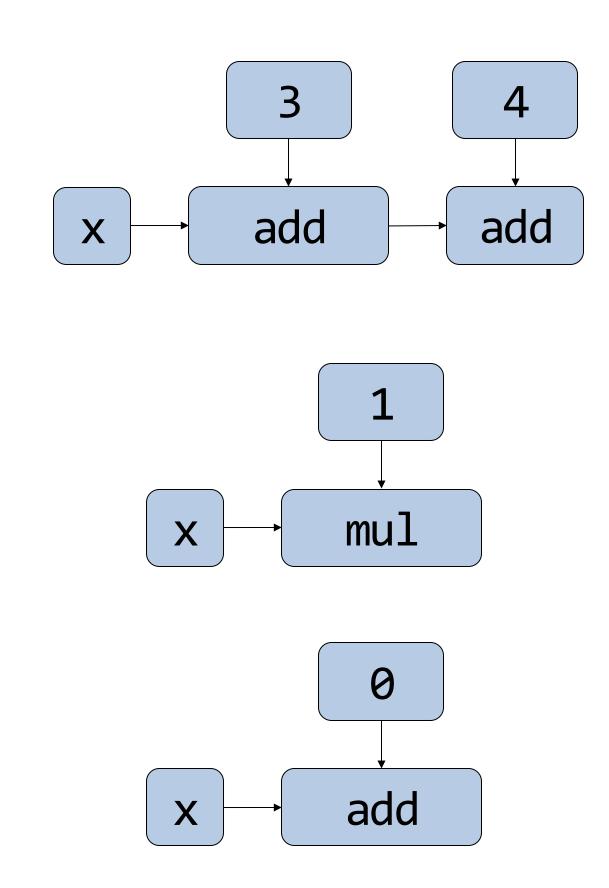
One trade-off in Practice results in "CUDA Graph"

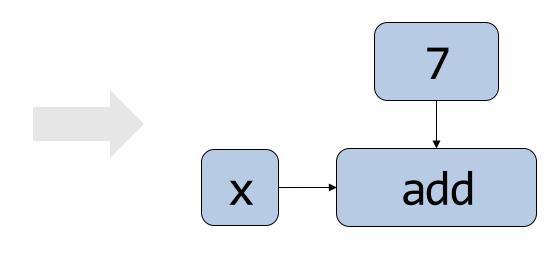
- Users are allowed to program using primitives with high-level APIs Graph is captured at CUDA level



More reading: https://pytorch.org/blog/accelerating-pytorch-with-auda-graphs/

Graph Optimization Templates: Constant Folding





X

Common Subexpression Elimination (CSE)

$$c = a + b$$

$$d = a$$

$$e = b$$

$$f = d + e$$

$$d = x$$

$$c^{3} = d^{2}$$

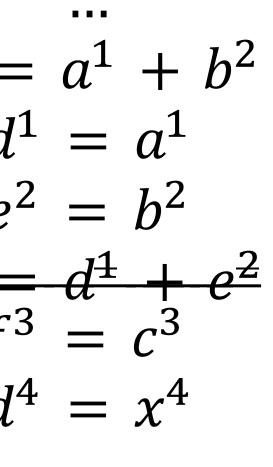
$$d^{2}$$

$$e^{2}$$

$$f^{3} = f^{3}$$

$$f^{3} = f^{3}$$

$$d^{4}$$



CSE hit

. . . .

Dead Code Elimination (DCE)

$$c = a + b$$

$$d = a$$

$$e = b$$

$$f = d + e$$

$$d = x$$

$$c^{3} = d^{2}$$

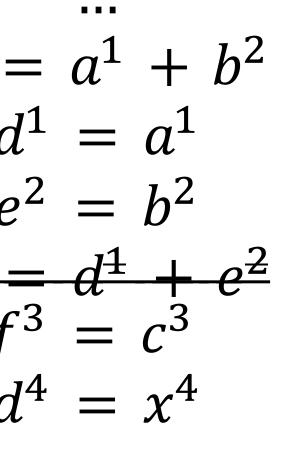
$$d^{2}$$

$$e^{2}$$

$$f^{3} = f^{3}$$

$$f^{3} = f^{3}$$

$$d^{2}$$



 $c^3 = a^1 + b^2$ $d^{\underline{1}} = a^{\underline{1}}$ $e^2 = b^2$ $\frac{f^3 - d^1 + e^2}{f^3 - c^3}$ $d^4 = x^4$

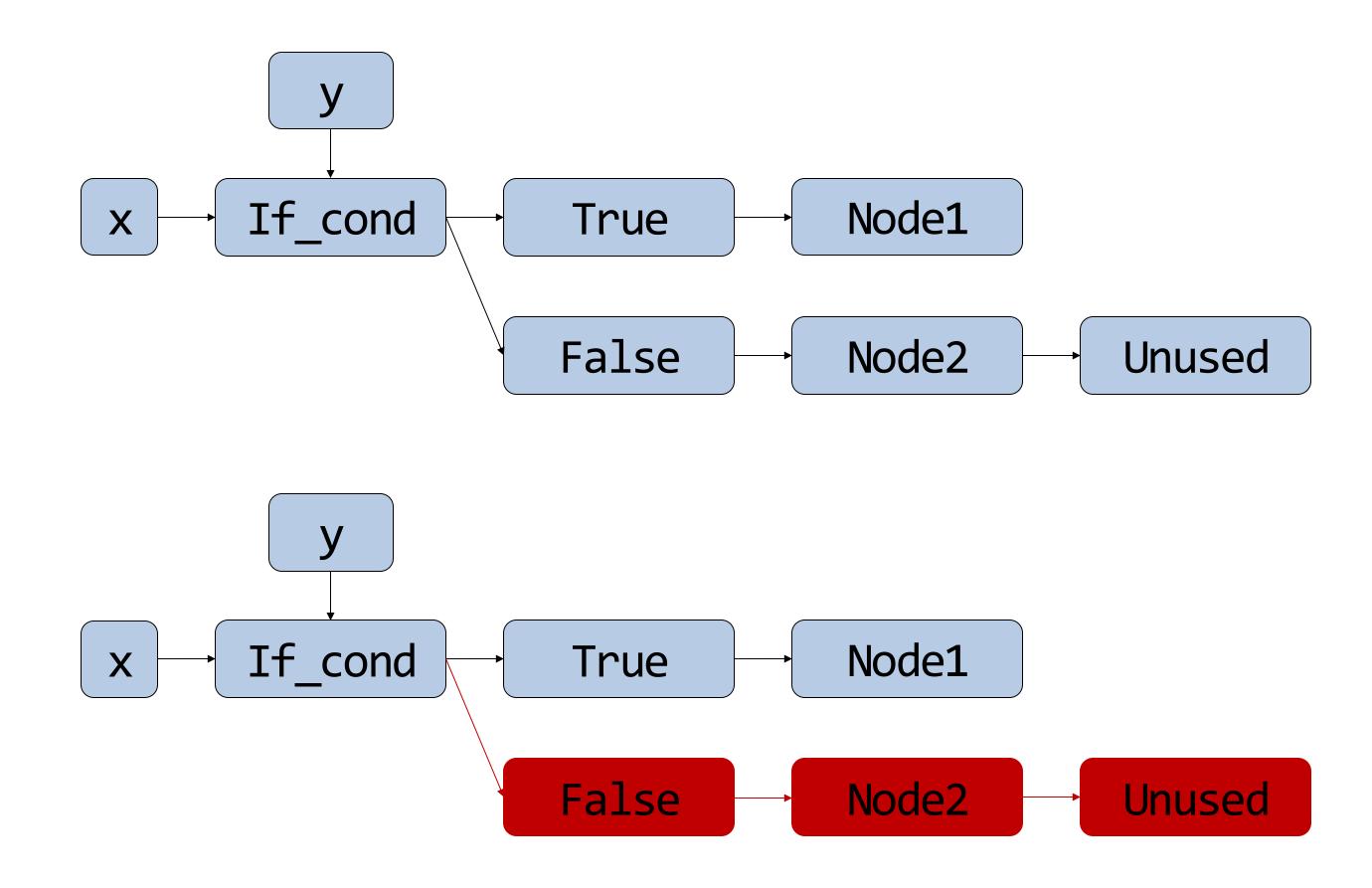
CSE hit

....

DCE hit

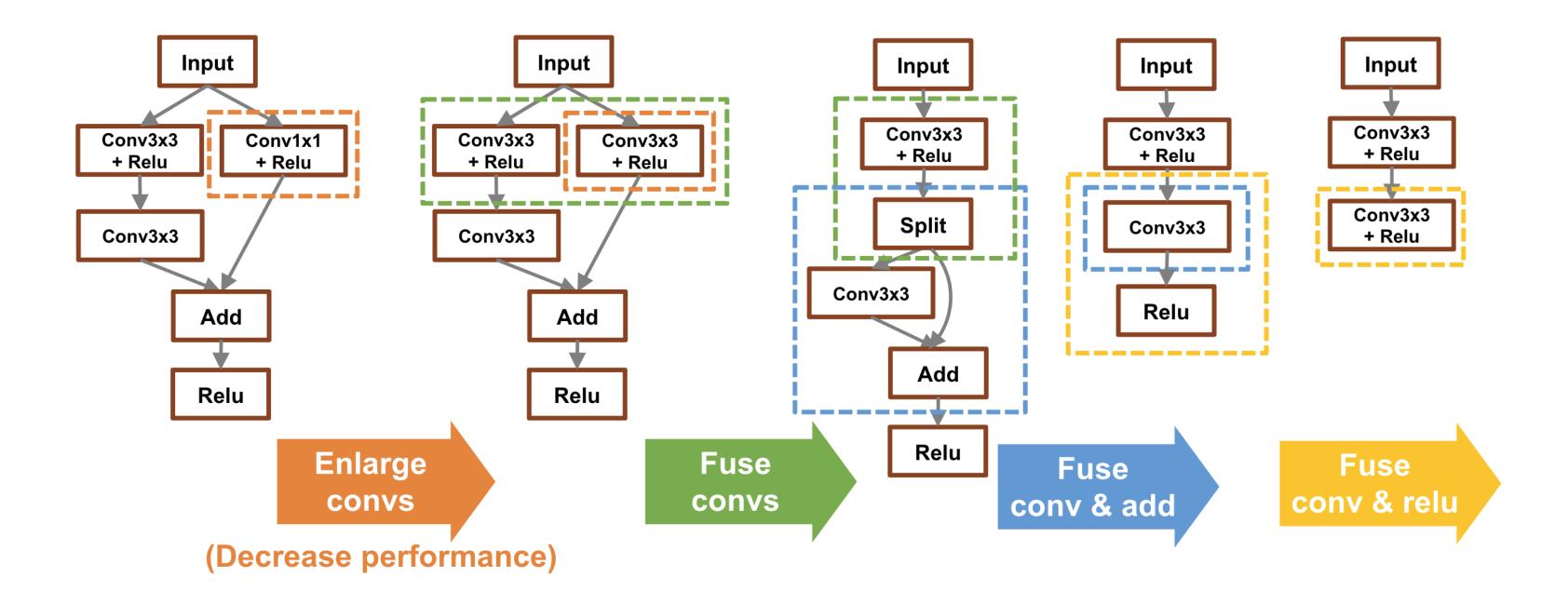
. . . .

More templates for CSE and DCE



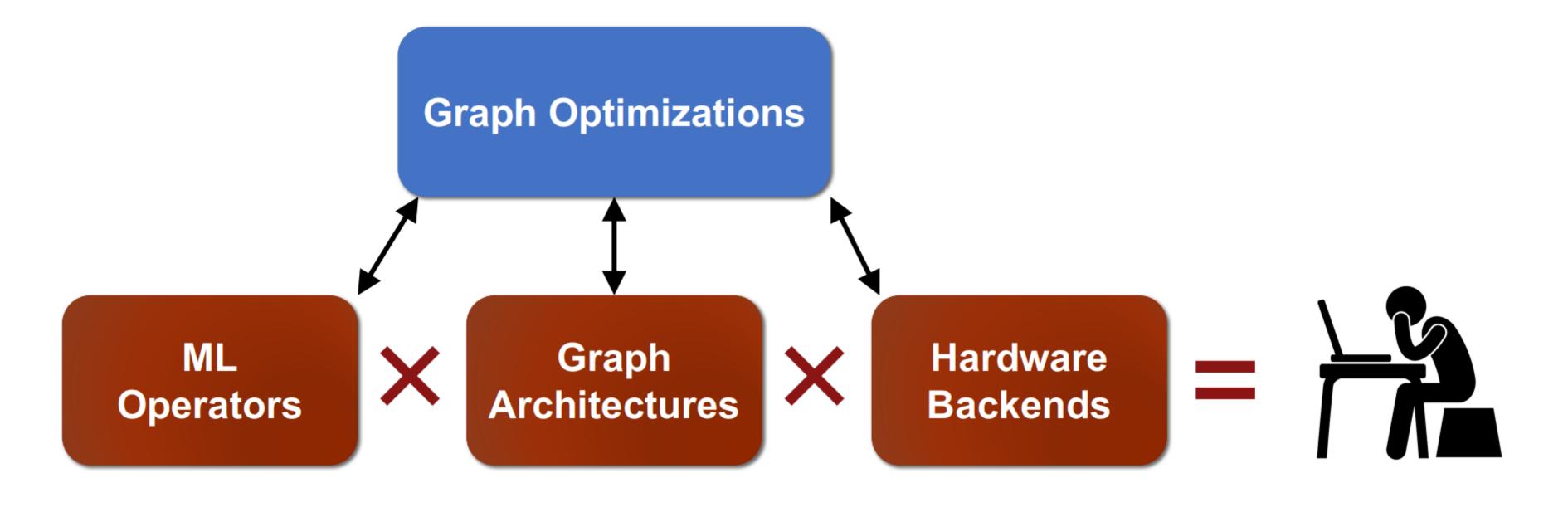
How to ensure performance gain?

Greedily apply graph optimizations



The final graph is 30% faster on V100 but 10% slower on K80. \bullet

Problems of Template-based Graph Optimizations



200 - 300 1000s

Problem: Infeasible to manually design graph optimizations for all cases

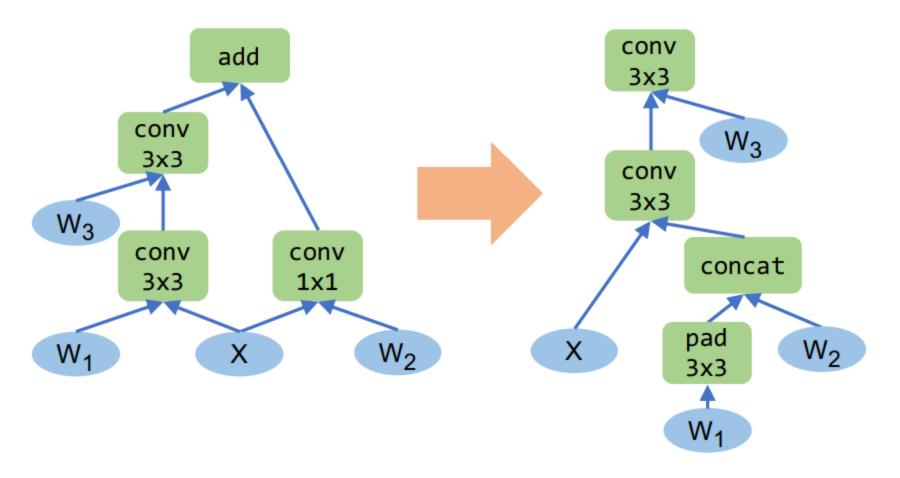
10s

Problems of Template-based Graph Optimizations

Robustness

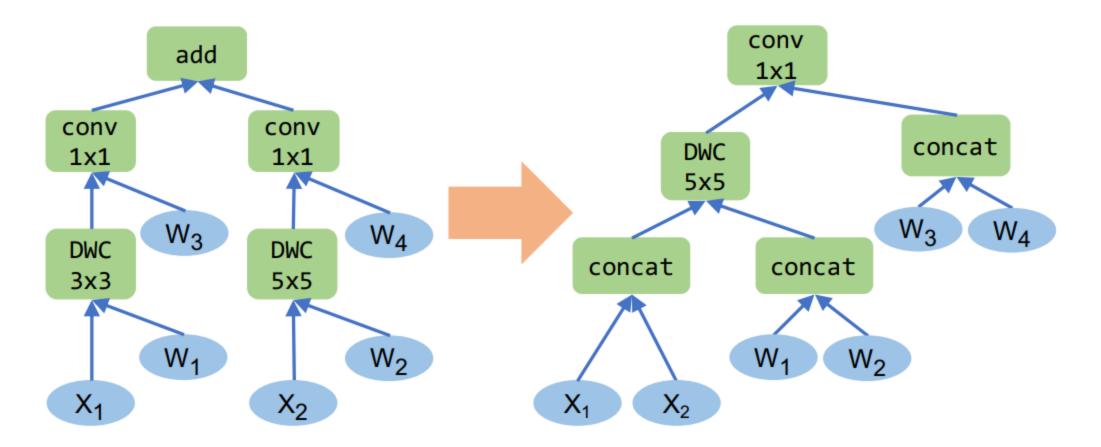
Experts' heuristics do not apply to all DNNs/hardware

Scalability New operators and graph structures require more rules



Only apply to **specific hardware**

Performance Miss subtle optimizations for specific DNNs/hardware



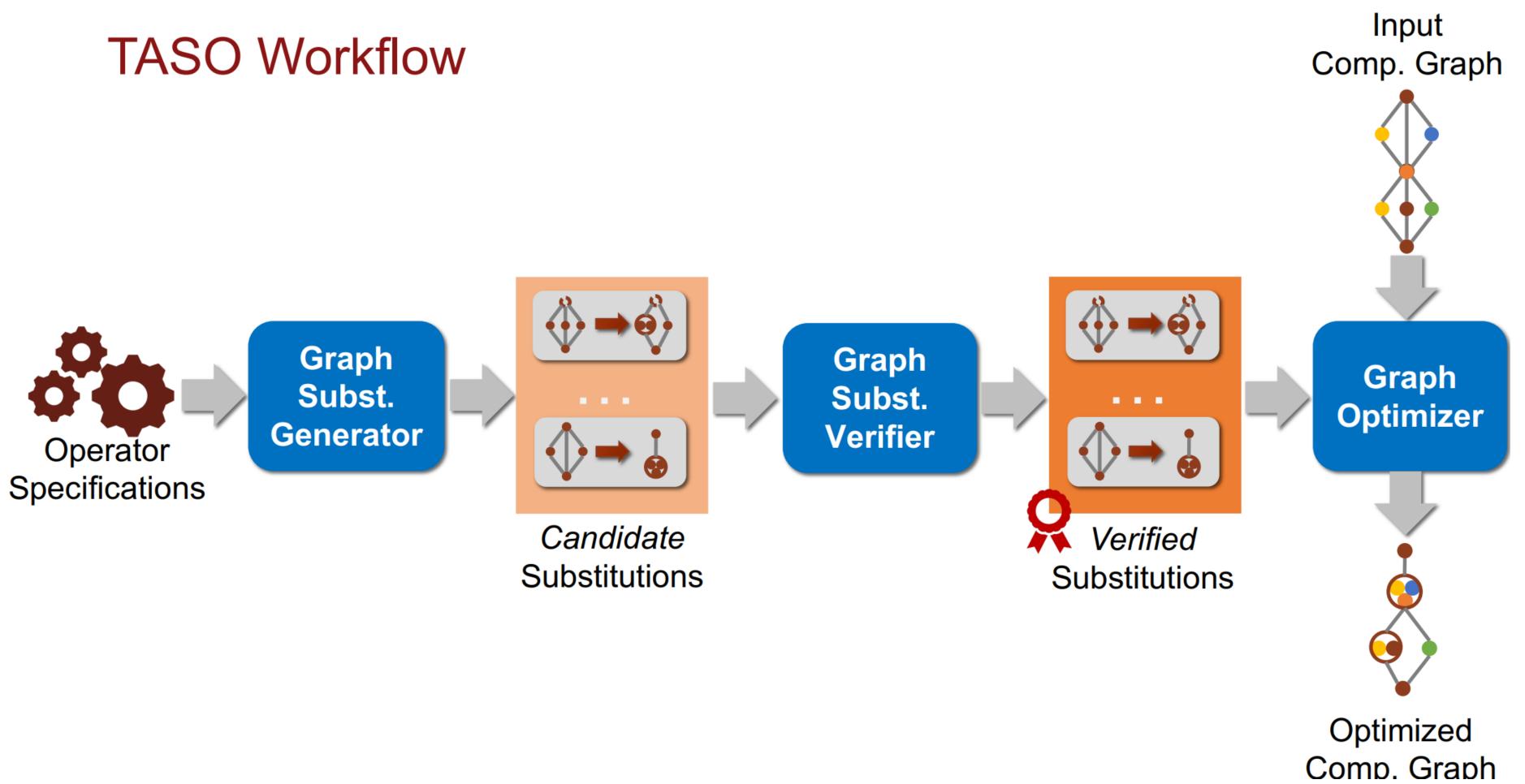
Only apply to specialized graph structures

Automate Graph Transformation

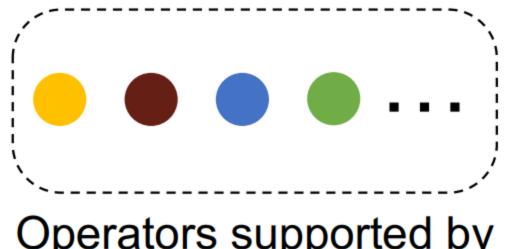
tensor algebra

Key idea: replace manually-designed graph optimizations with automated generation and verification of graph substitutions for

Enumerate and Verify ALL possible graph

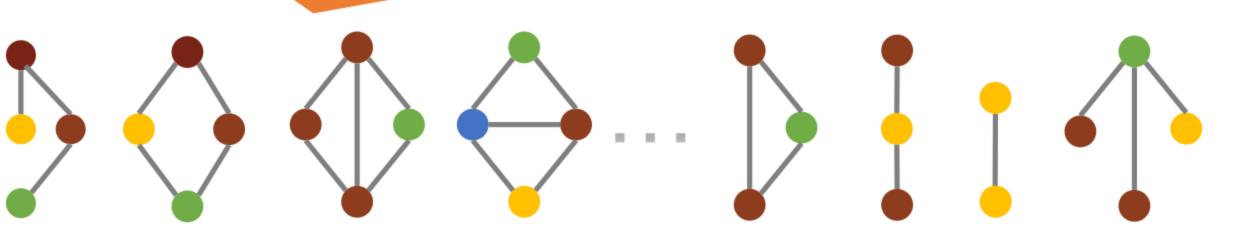


Graph Substitution Generator

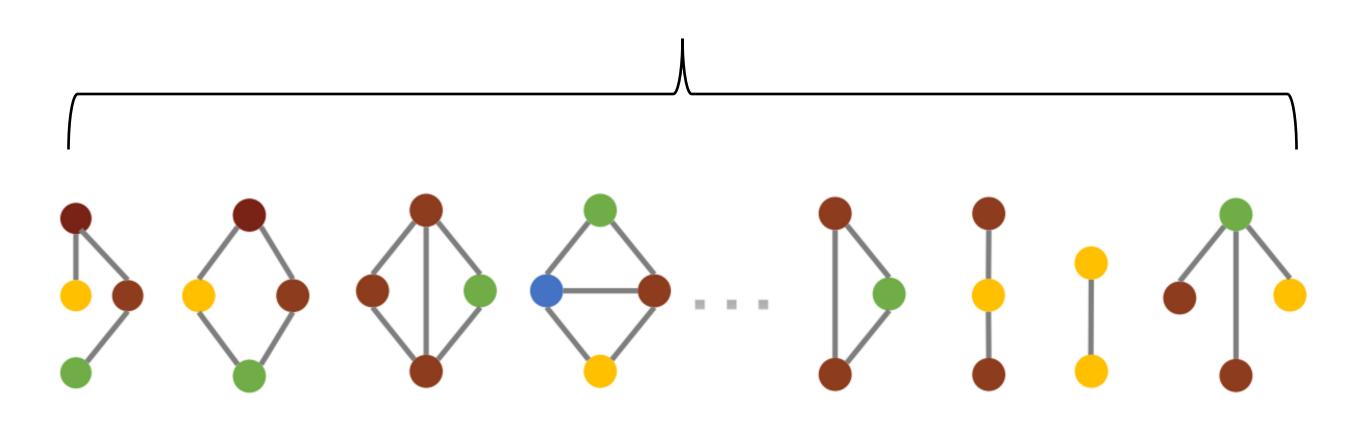


Operators supported by hardware backend

Enumerate <u>all possible</u> graphs up to a fixed size using available operators



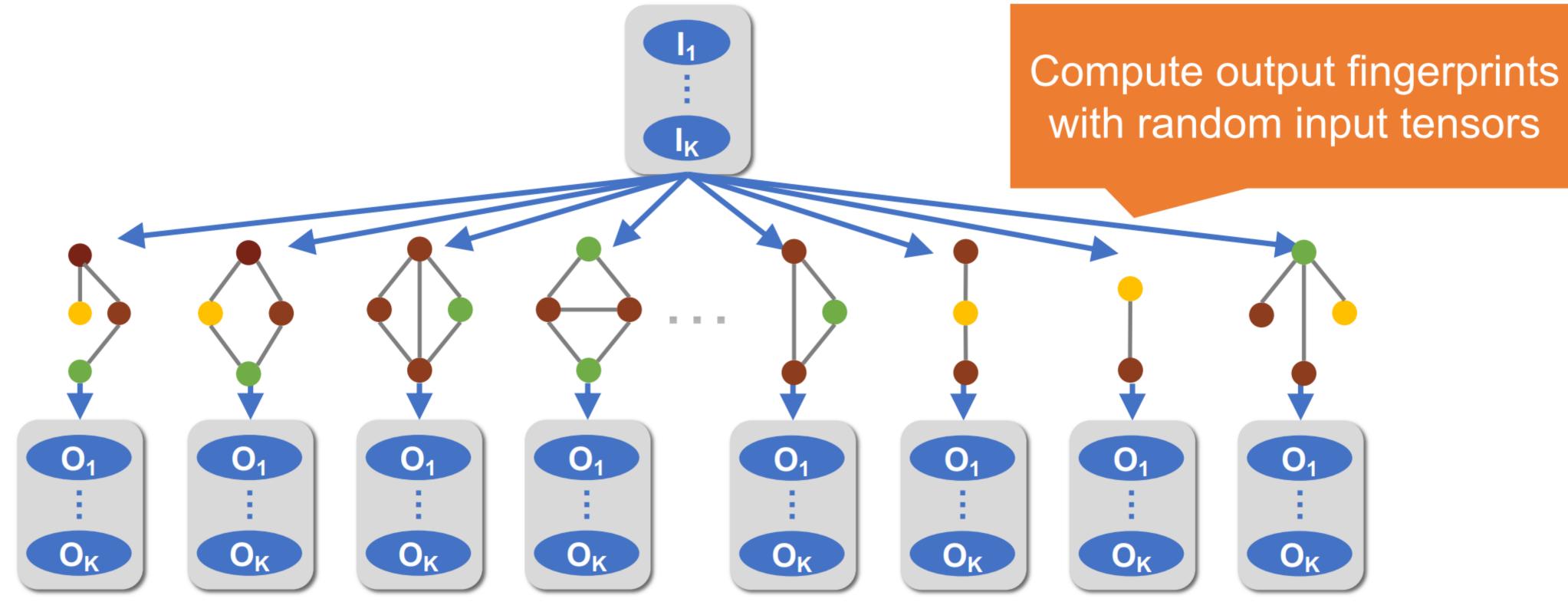
There are many subgraphs even only given 4 Ops



A substitution = a pair of equivalent graphs

66M graphs with up to 4 operators

Graph Substitution Generator



We can generate 28744 substitutions by enumerating graphs with up to 4 ops

Pruning repeated graphs



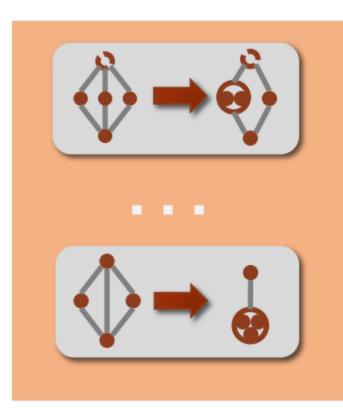
Variable renaming

Common subgraph

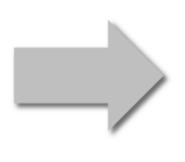
Can we trust graph substitutions?

- We have f(a) = g(a), f(b) = g(b)
 - But can we say: f(x) = g(x) for $\forall x$
- We need to verify formally.

Substitution Verifier



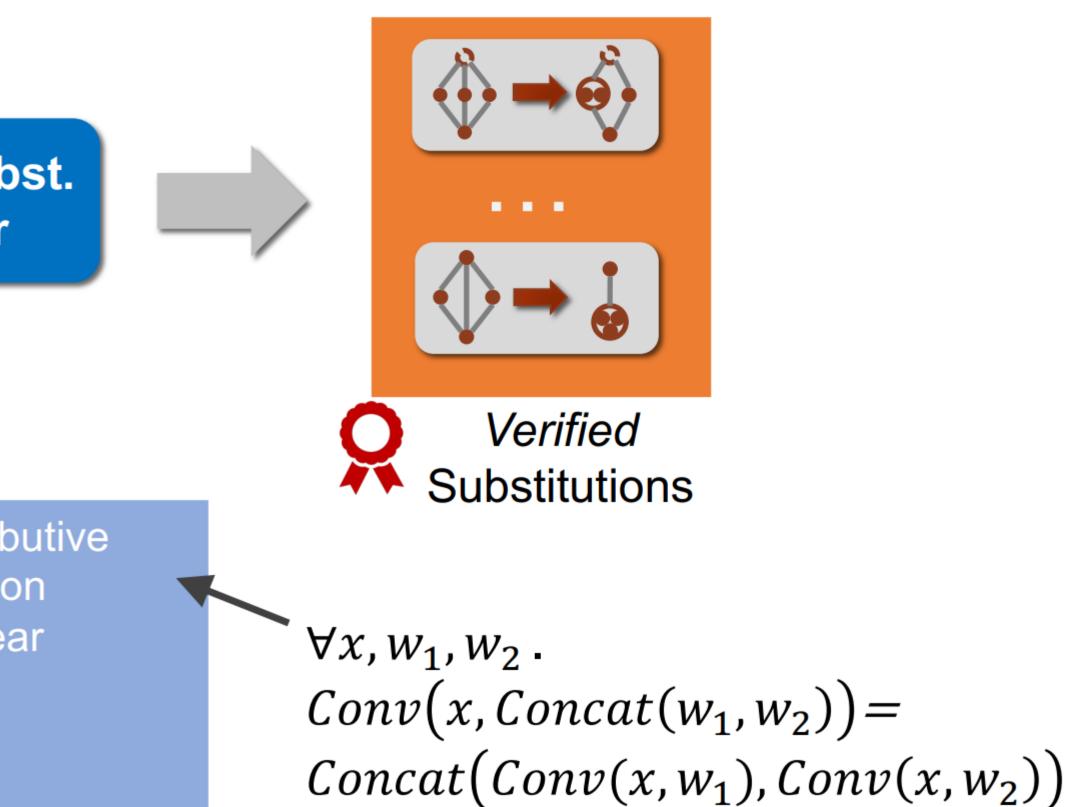
Candidate Substitutions



Graph Subst. Verifier

P1. conv is distributiveover concatenationP2. conv is bilinear

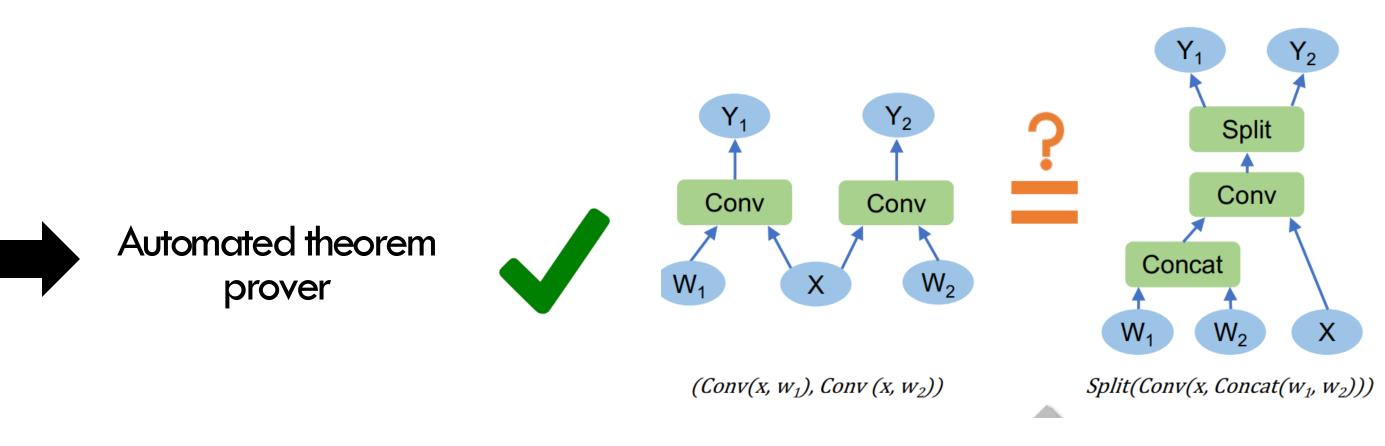
... Pn.



Idea: writing specifications are easier than actually, conducting the optimizations



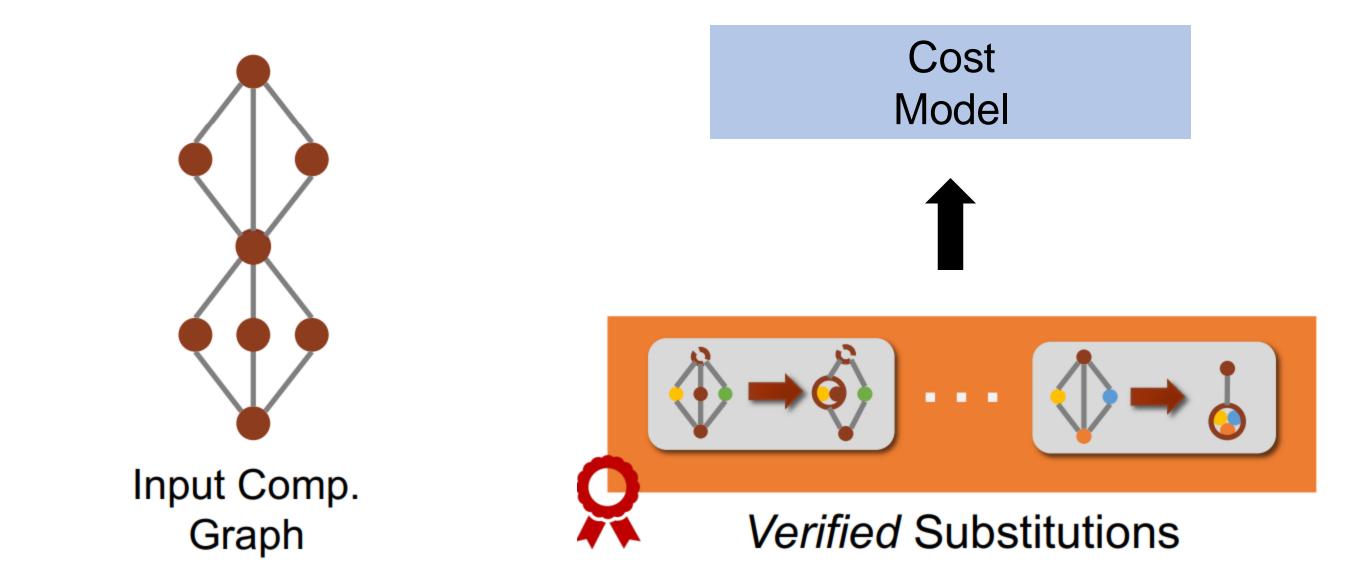
- $= Split \left(Conv(x, Concat(w_1, w_2)) \right)$
- P1. $\forall x, w_1, w_2$. $Conv(x, Concat(w_1, w_2)) =$ $Concat(Conv(x, w_1), Conv(x, w_2))$ P2. ...

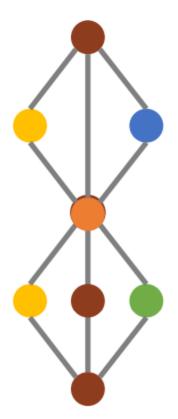


- Generating 743 substitutions = 5 mins
- Verify against 43 op specs = 10 mins
- Supporting a new op requires experts to write specs = 1400 LoC
 - vs. 53K LoC of manual optimization in TF

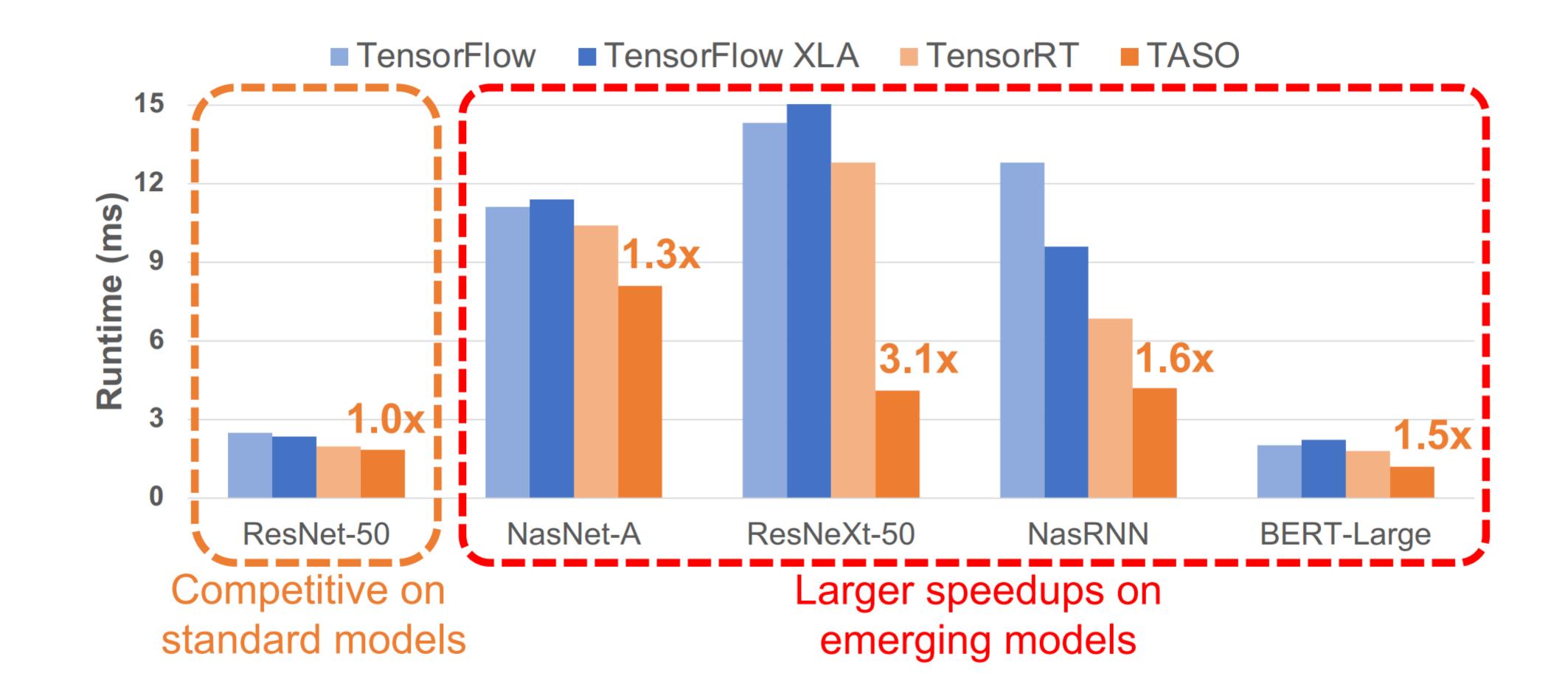
Incorporating substitutions

- Goal: apply verified substitutions to obtain an optimized graph
- Cost Model
 - Based on the sum of individual operator's cost
 - Profile each operator's cost on the target hardware
- Traverse the graph, apply substitutions, calculate cost, use backtracking

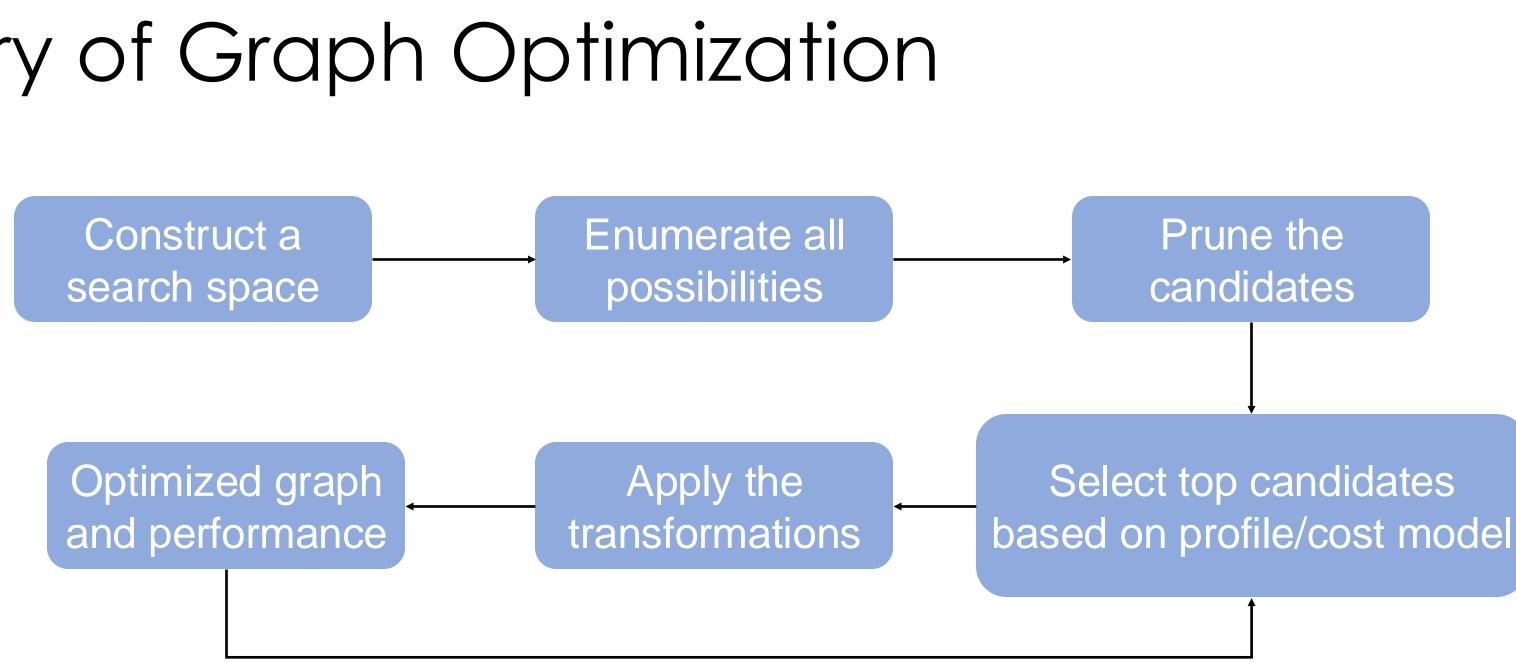




Performance (as of 2019)

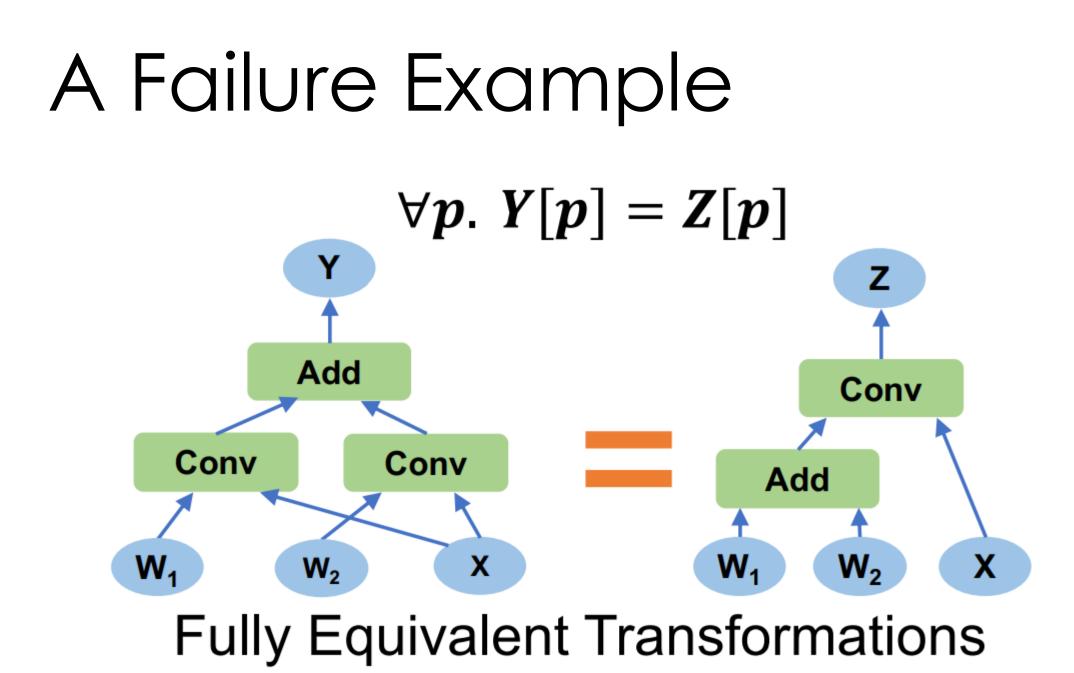


Summary of Graph Optimization



Limitations

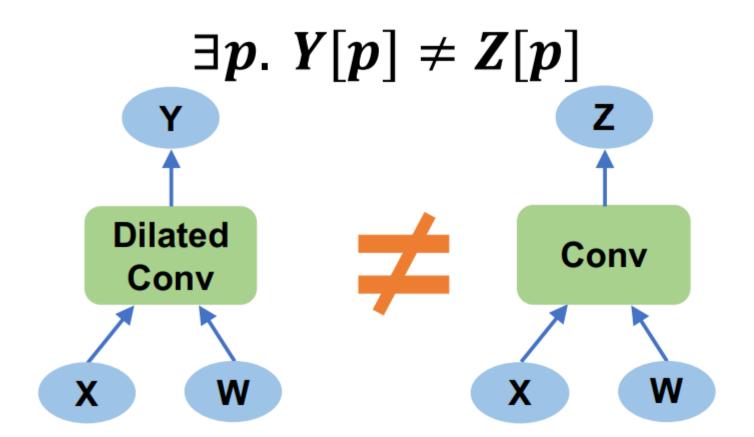
- The best optimization is not covered by search space
- Search might be too slow
- Evaluation of the resulting graph is too expensive
 - Limits your trial-and-error times



Math-equivalent

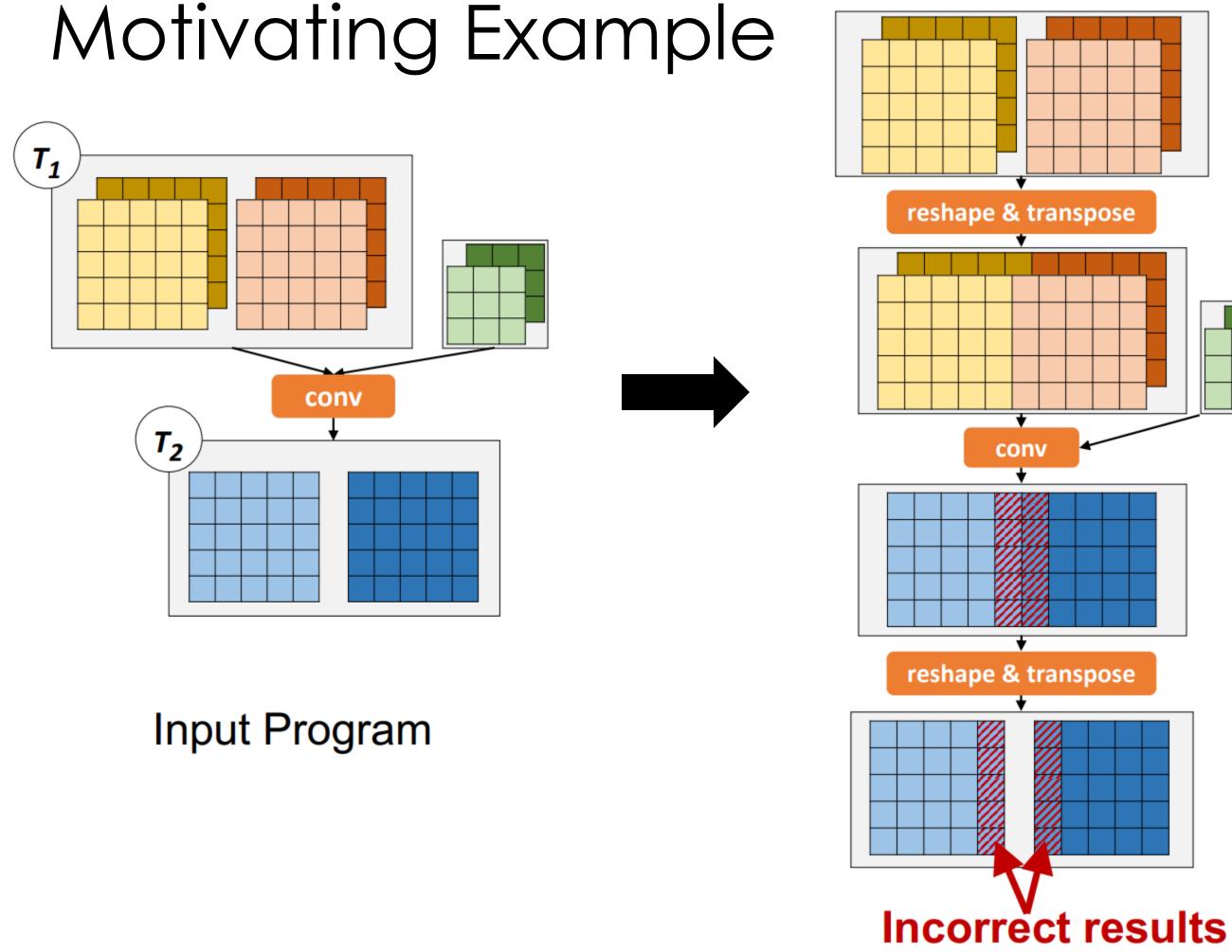
Missing some optimization opportunities
 Not fully equivalent -> accuracy loss

How about: exploit the larger space partially equivalent transformations for performance while still preserve correctness?

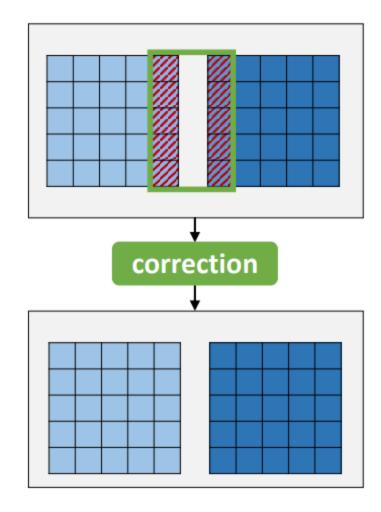


Partially Equivalent Transformations

Better performance



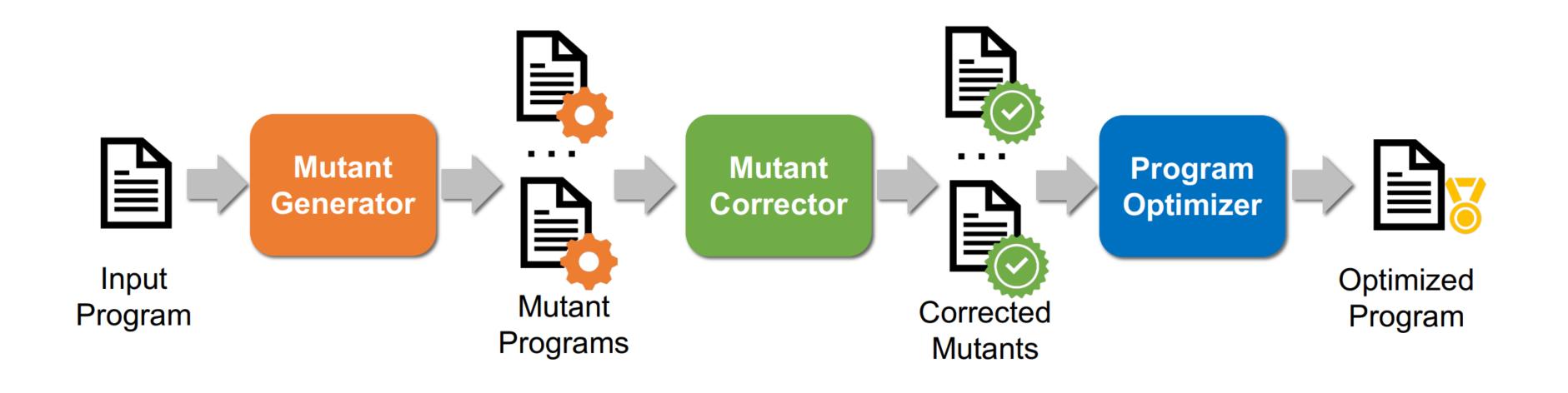
- Partial equivalent transformations + correction yield 1.2x speedup



+ Correction

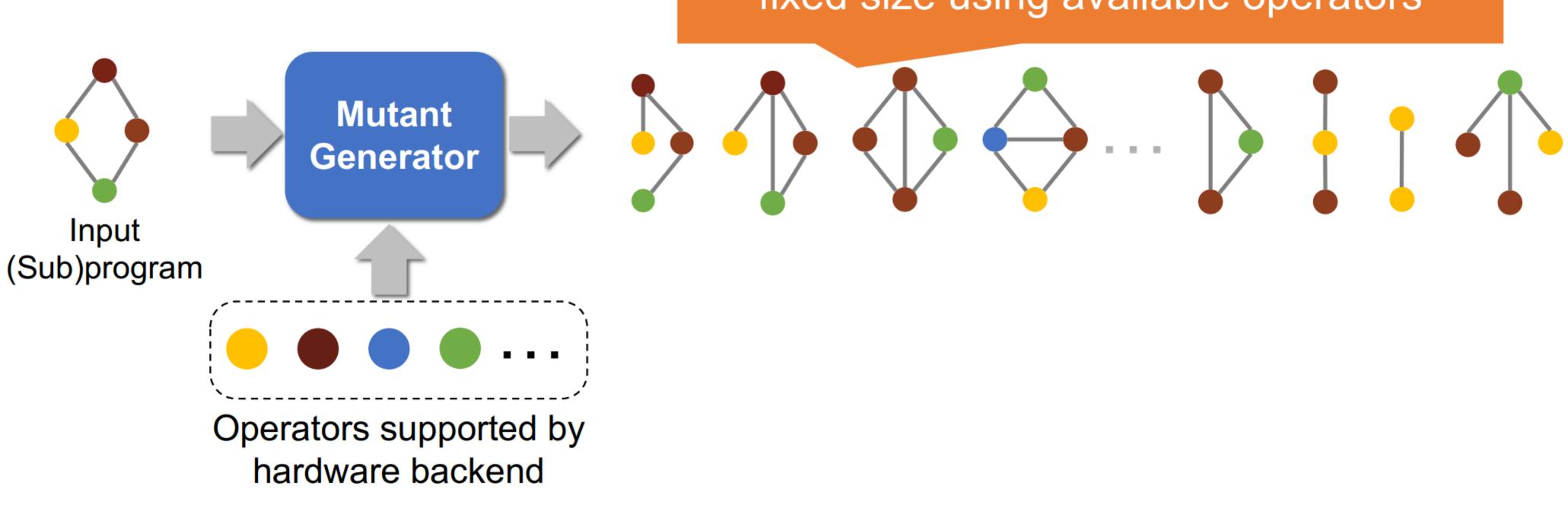
Which would otherwise be impossible in fully equivalent transformations space

Partially Equivalent Transformations



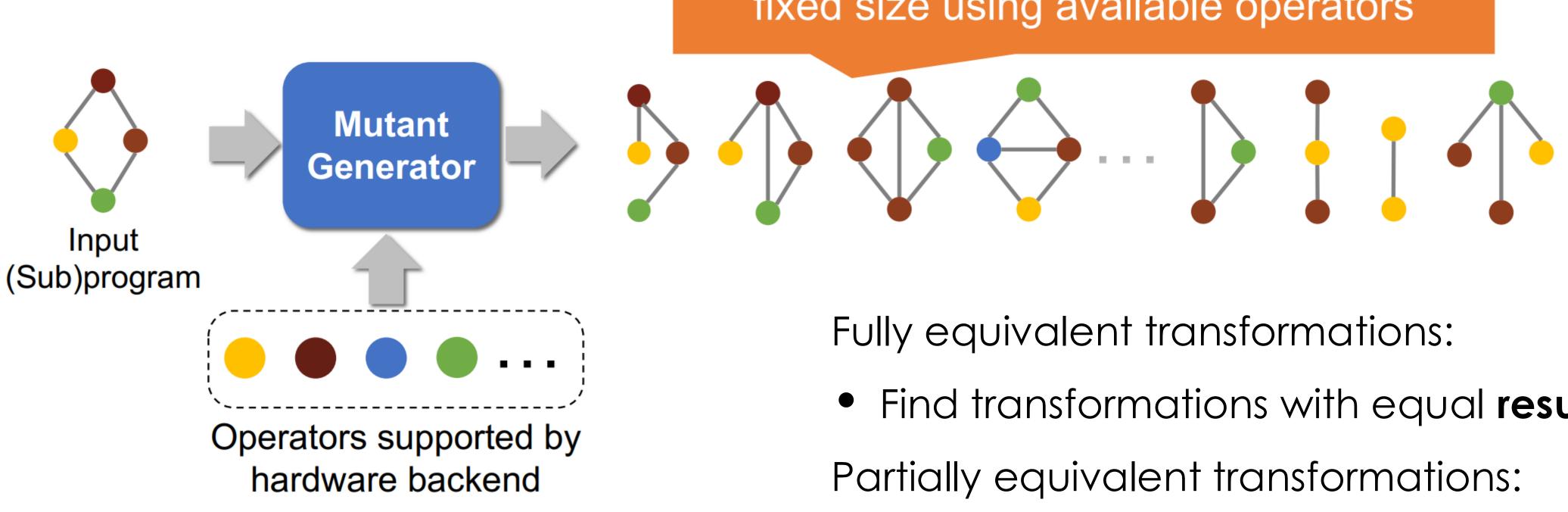
- How to mutate?
- How to correct?

Mutant Generator: Step 1



Enumerate <u>all possible</u> programs up to a fixed size using available operators

Mutant Generator: Step 2

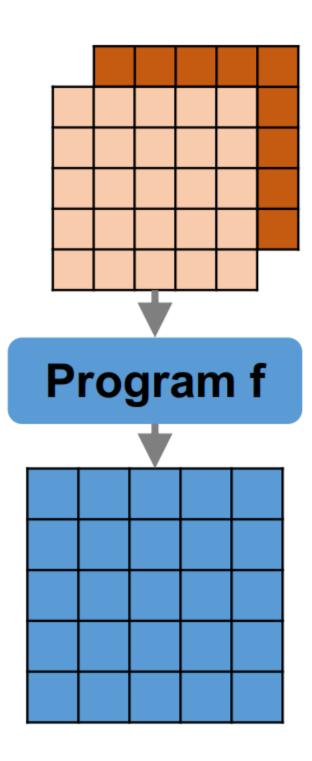


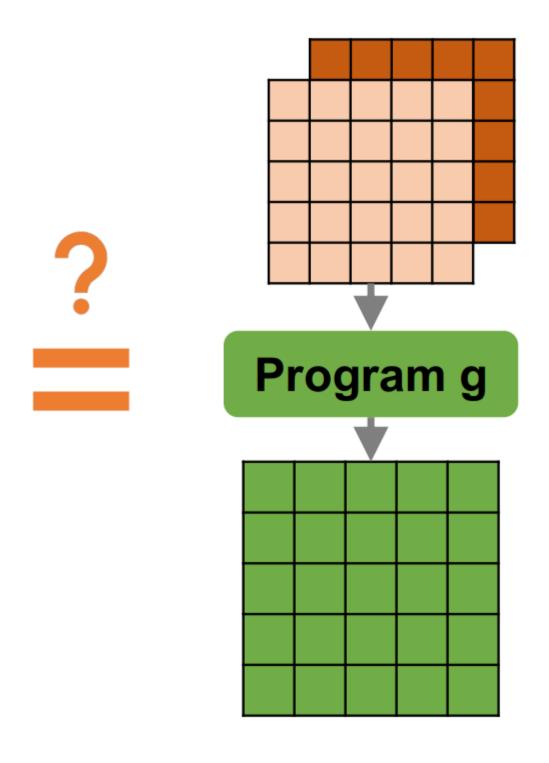
Enumerate all possible programs up to a fixed size using available operators

- Find transformations with equal **results**
- Find transformations with equal **shapes**

How to Detect and Correct?

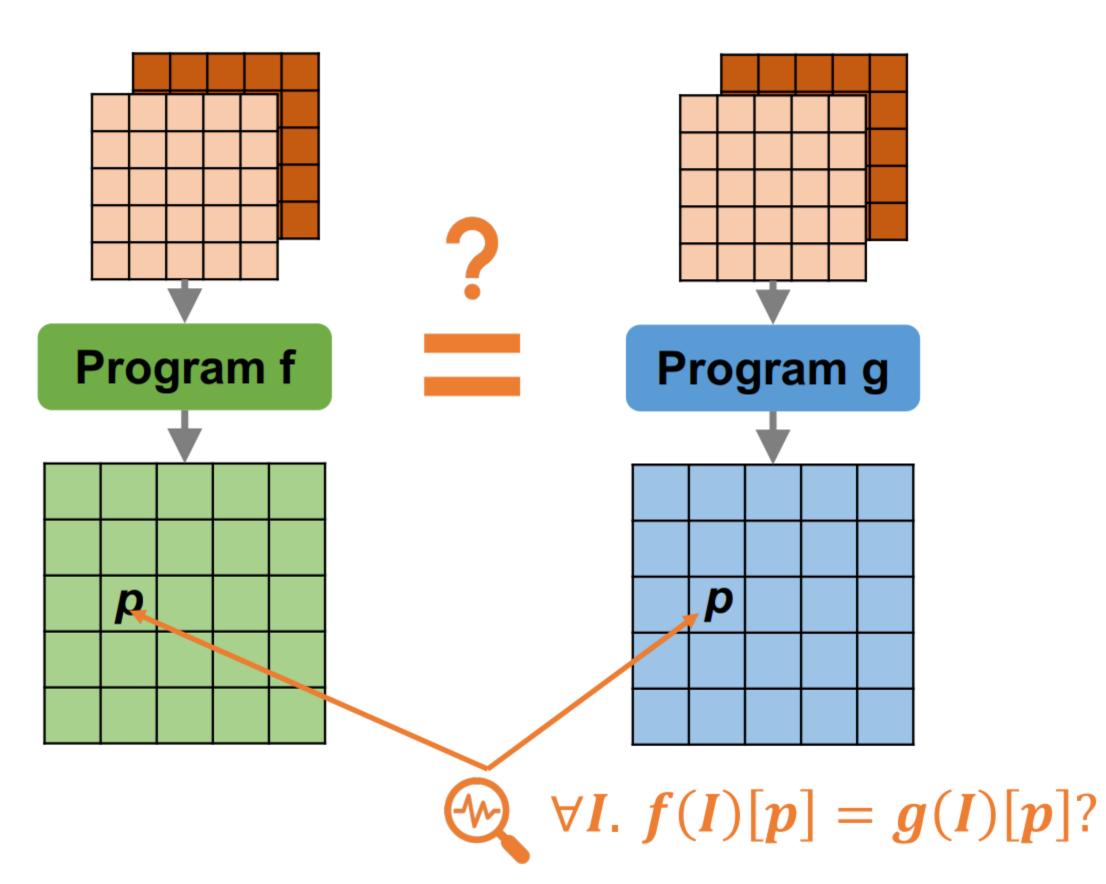
- Which part of the computation is not equivalent?
- How to correct the results?





By Enumeration

- For each possible input I
 - For each position p
 - Check if f(I)[p] == g(I)[p]
- Complexity O(m x n):
 - m: possible inputs
 - n: output shape
- How to reduce enumeration effort?
 - Reduce m and n



How to reduce n?

- Can we just check out a few (or even just one) position at f(I)[p] and assert the (in-)correctness?
- Answer: Yes for 80% of the computation

- Reason: Neural nets computation are mostly Multi-Linear
- Define Multi-linear: f is multi-linear if the output is linear to all inputs
 - $f(I_1, ..., X, ..., I_n) + f(I_1, ..., Y, ..., I_n) = f(I_1, ..., X + Y, ..., I_n)$
 - $\alpha f(I_1, \dots, X, \dots, I_n) = f(I_1, \dots, \alpha X, \dots, I_n)$

Important ML Operators are multi-linear

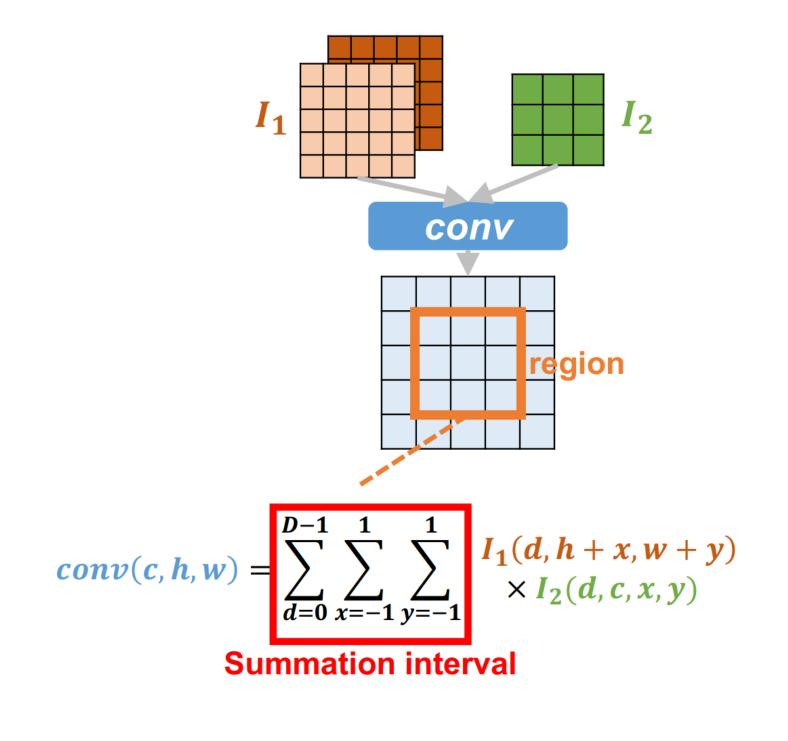
Operator	Descrip
add	Elemen
mul	Elemen
conv	Convol
groupconv	Groupe
dilatedconv	Dilated
batchnorm	Batch n
avgpool	Average
matmul	Matrix
batchmatmul	Batch n
concat	Concate
split	Split a t
transpose	Transpo
reshape	Decoup

iption

- nt-wise addition nt-wise multiplication
- lution
- ed convolution
- d convolution
- normalization
- ge pooling
- multiplication
- matrix multiplication
- tenate multiple tensors
- tensor into multiple tensors
- ose a tensor's dimensions
- ple/combine a tensor's dimensions

How to reduce n

- Theorem 1: For two Multi-linear functions f and g, if f=g for O(1) positions in a region, then f=g for all positions in the region • Implications: only need to examine O(1) positions for each region
- - Reduce $O(mn) \rightarrow O(mr)$
 - r (# regions) <<< n



How to reduce m?

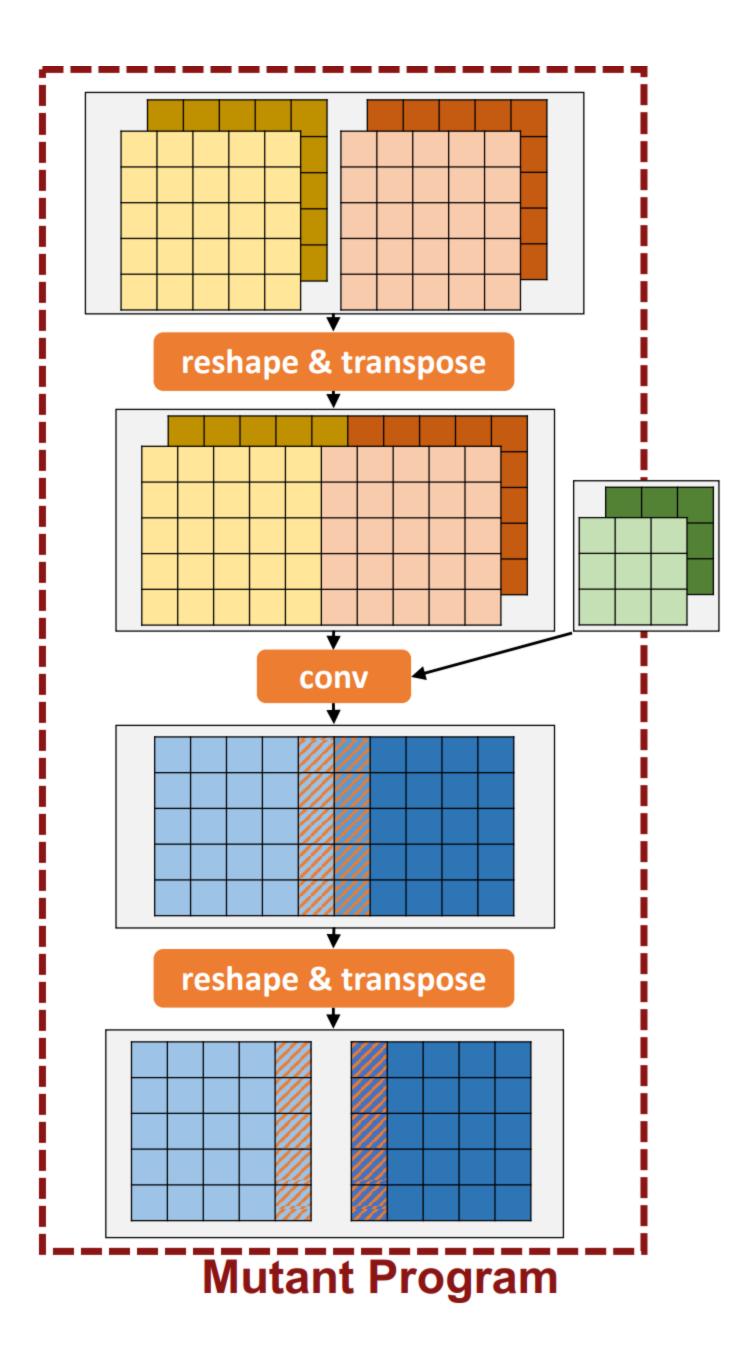
• Theorm 2: if $\exists I, f(I)[p] \neq g(I)[p]$, then the probability that f and g

give identical results on t random inputs is $\left(\frac{1}{2^{31}}\right)^{l}$

- Implications: Run t random tests with random input, and if all t passed, it is very unlikely f and g are inequivalent
- $O(mn) \rightarrow O(mr) \rightarrow O(tr)$ (t << m, r << n)

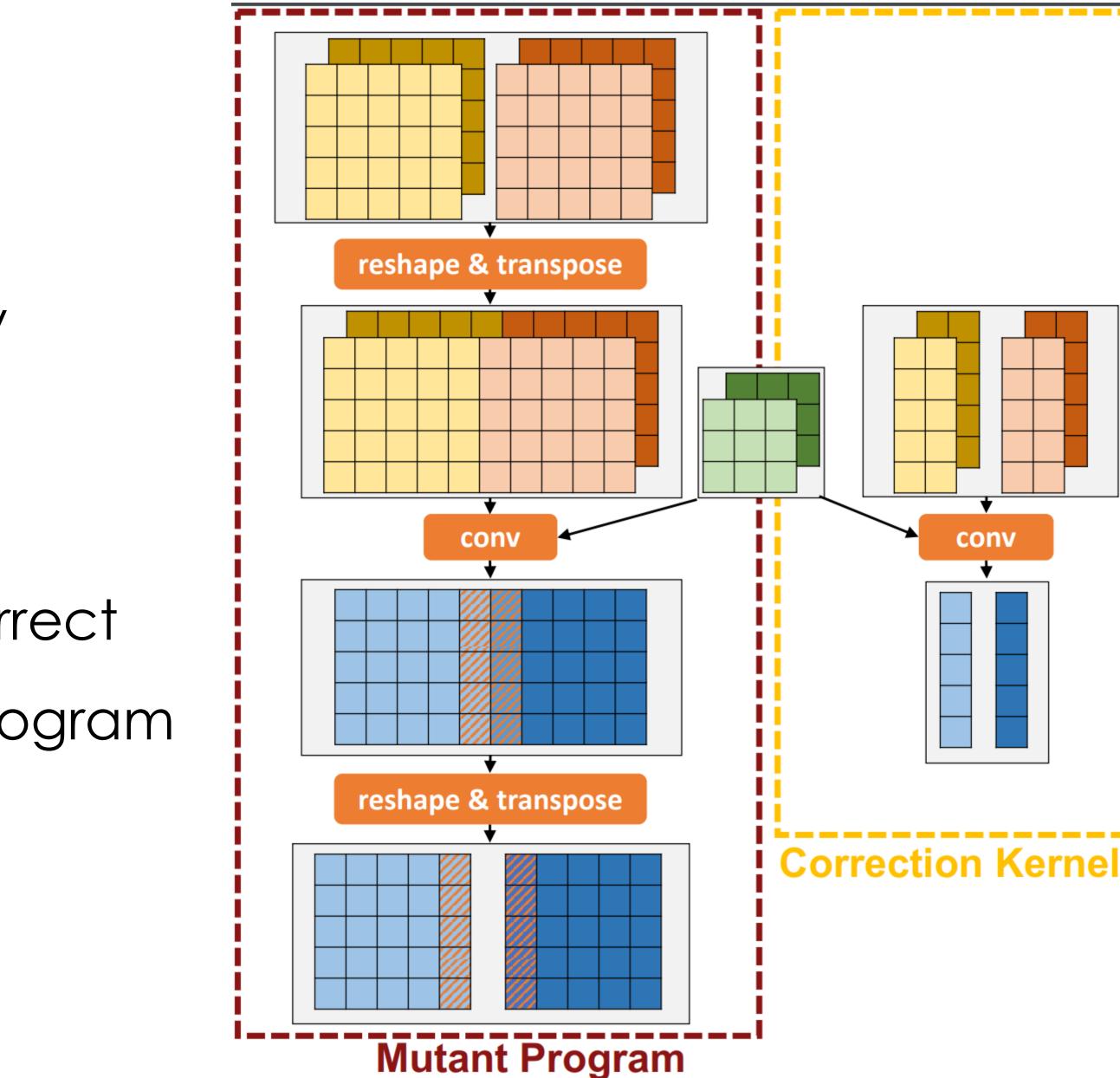
Correct the Mutant

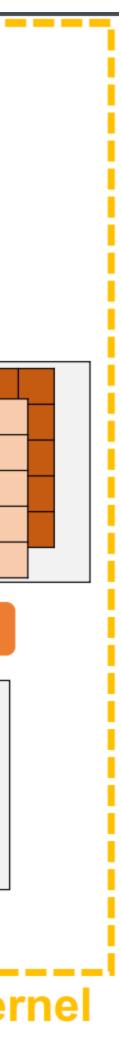
 Goal: quickly and efficiently correcting the outputs of a mutant program



Correct the Mutant

- Goal: quickly and efficiently correcting the outputs of a mutant program
- Step 1: recompute the incorrect outputs using the original program



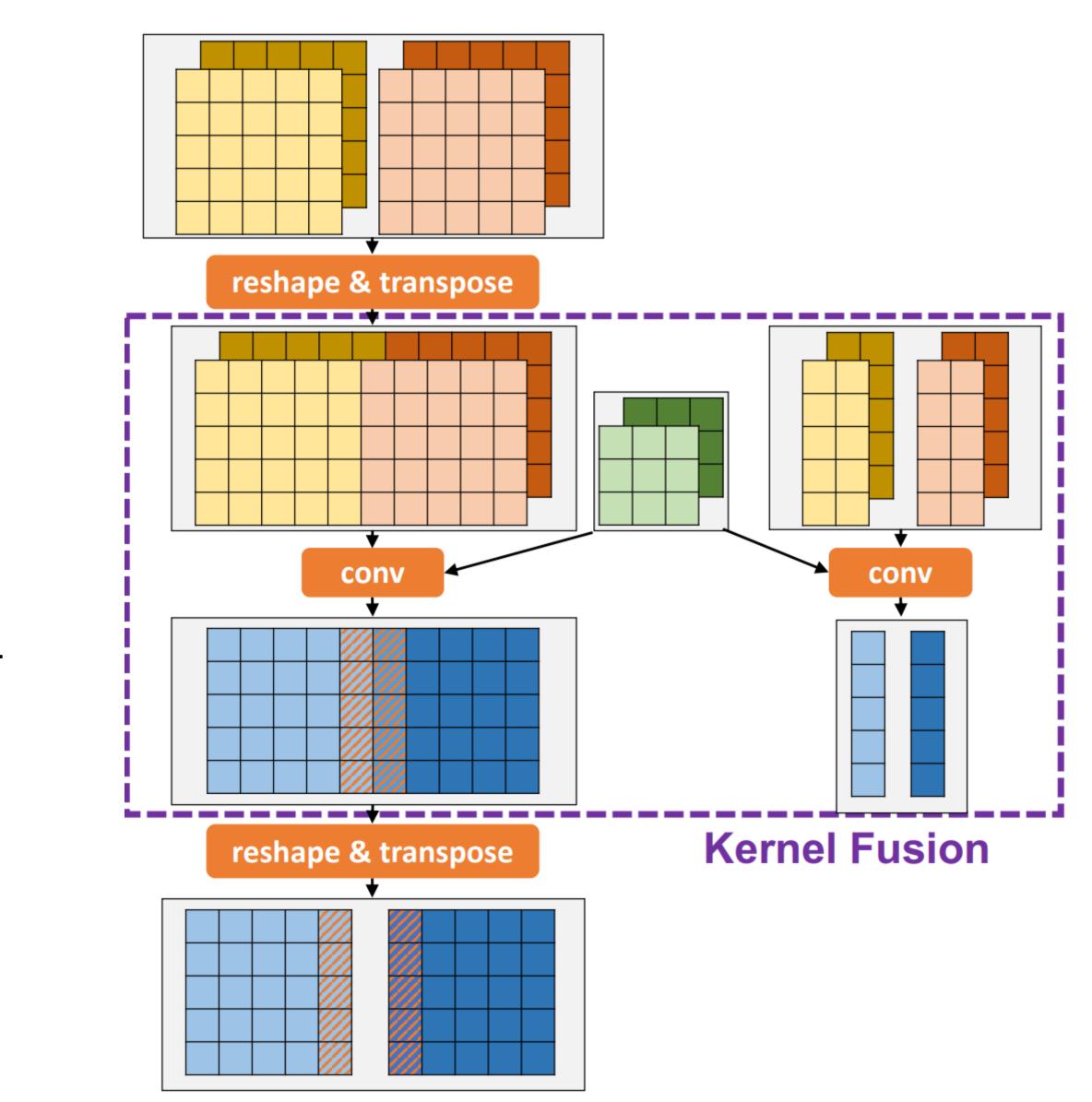


Correct the Mutant

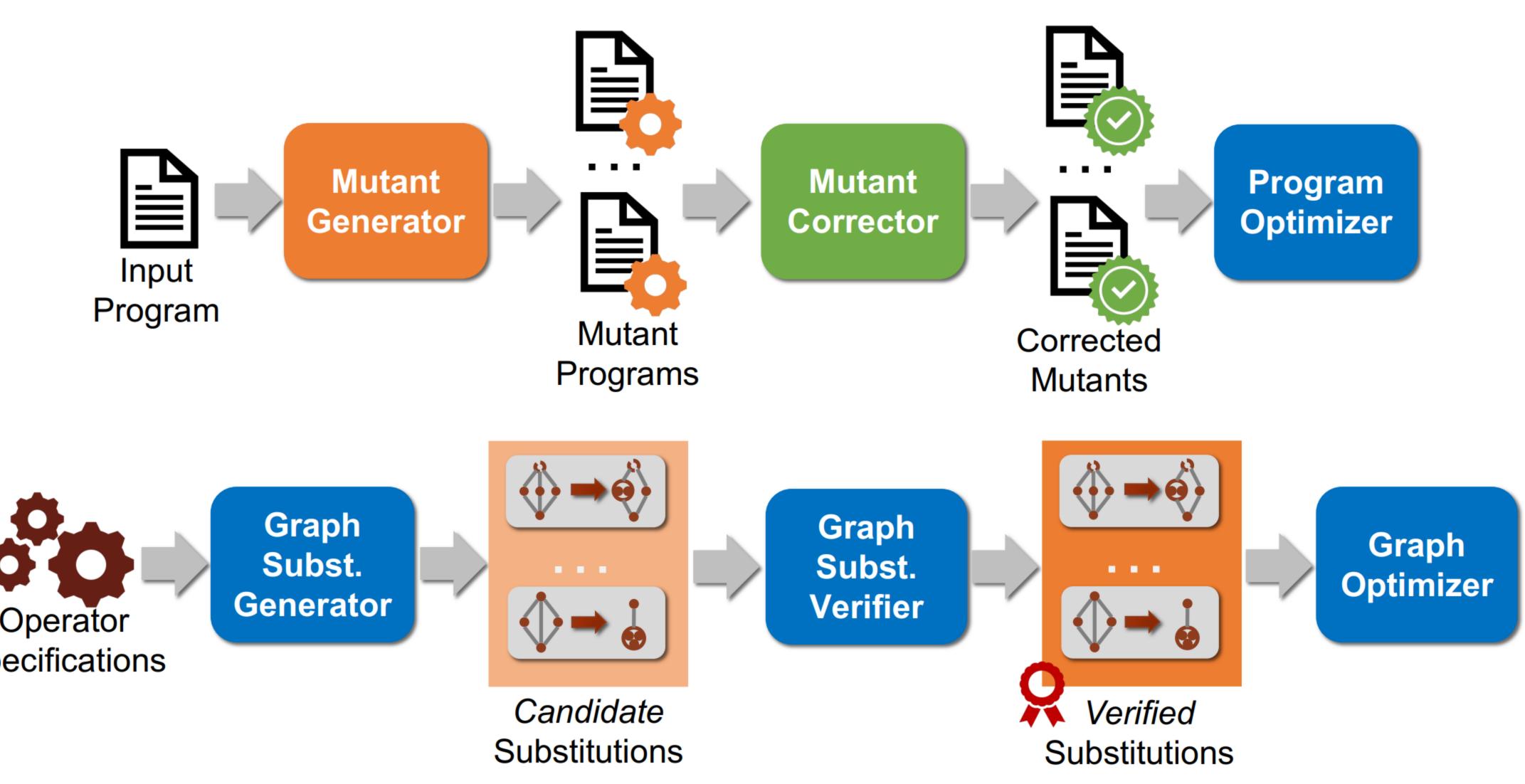
- Goal: quickly and efficiently correcting the outputs of a mutant program
- Step 1: recompute the incorrect outputs using the original

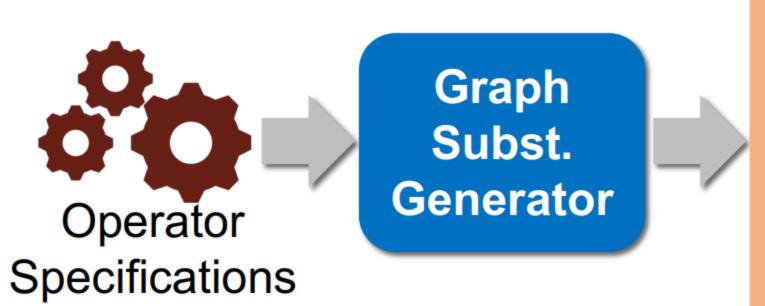
program

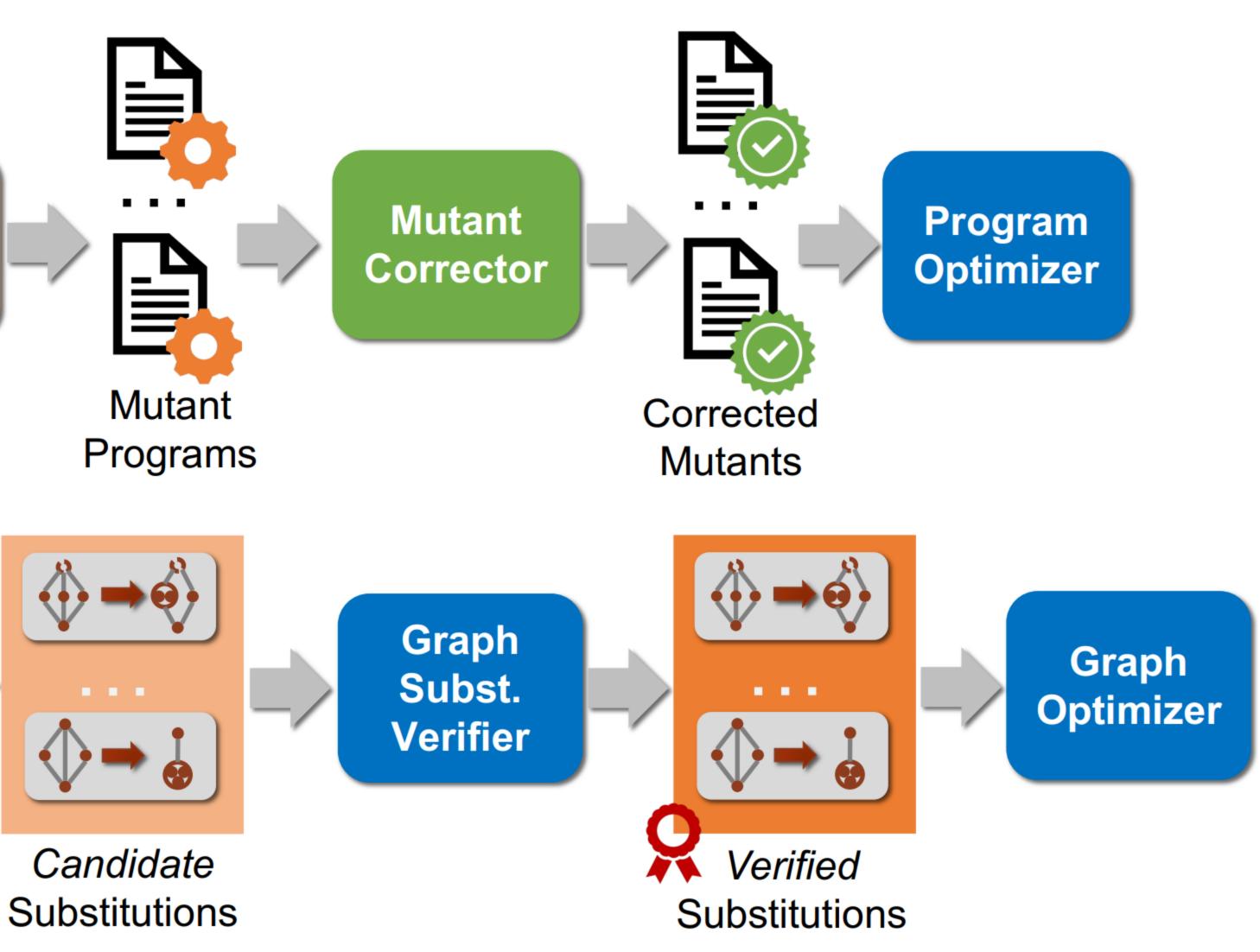
 Step 2: opportunistically fuse correction kernels with other operators



Recap







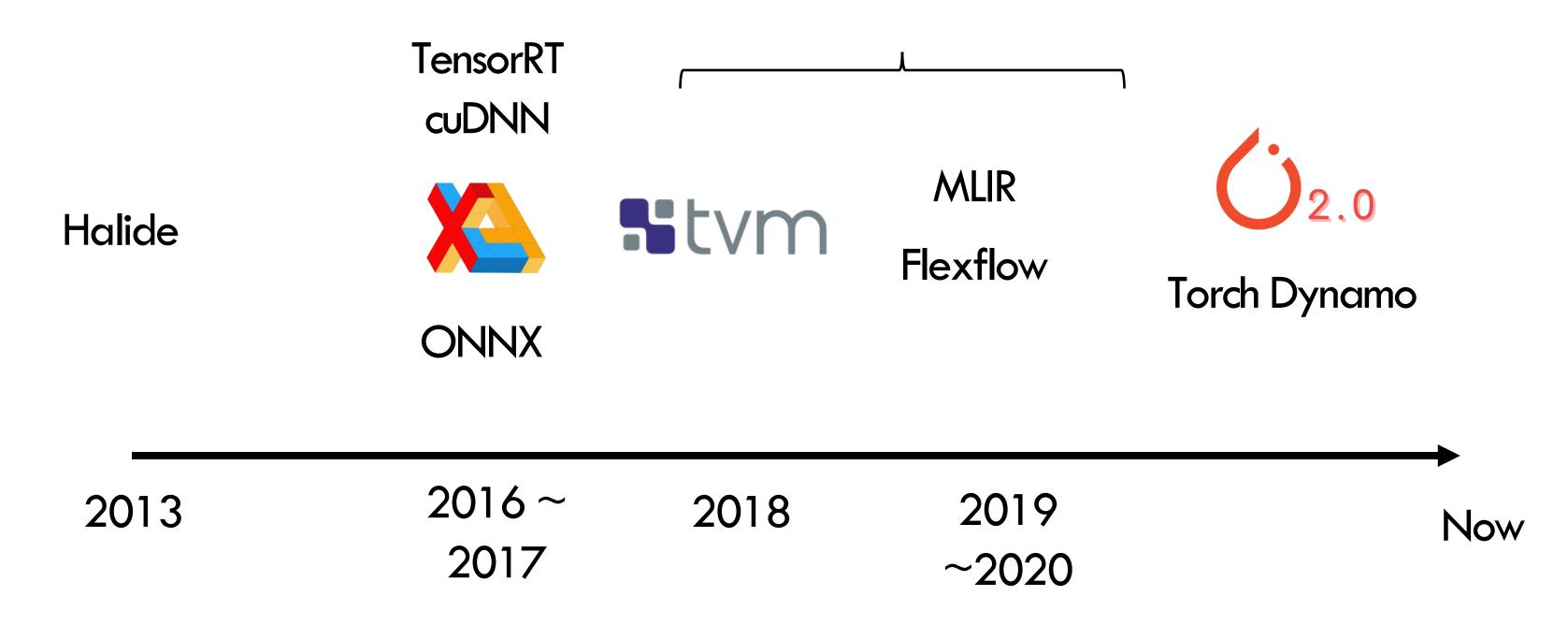
Summary & Questions to discuss

- Fully equivalent transformations vs. Partial
 - How to define search space
 - How to prune search space
 - How to verify & correct
 - How to apply to the ML graph optimization

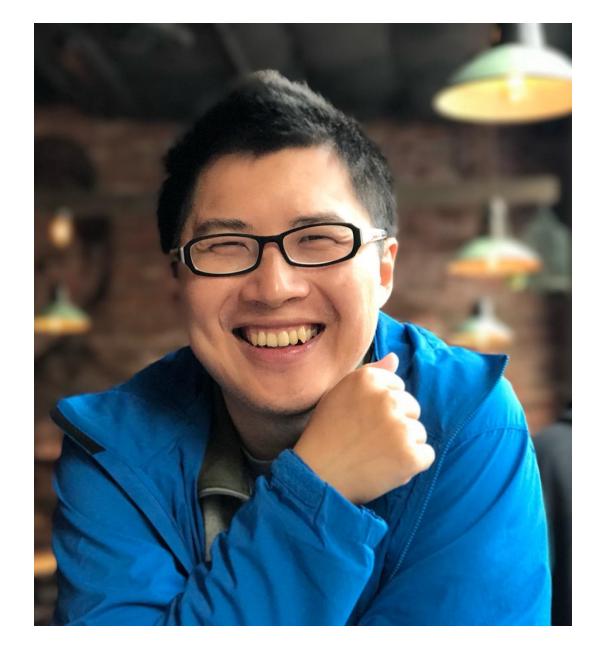
ML Compiler Retrospective

Q: why the community shifts away from compiler

500+ compiler papers are written during

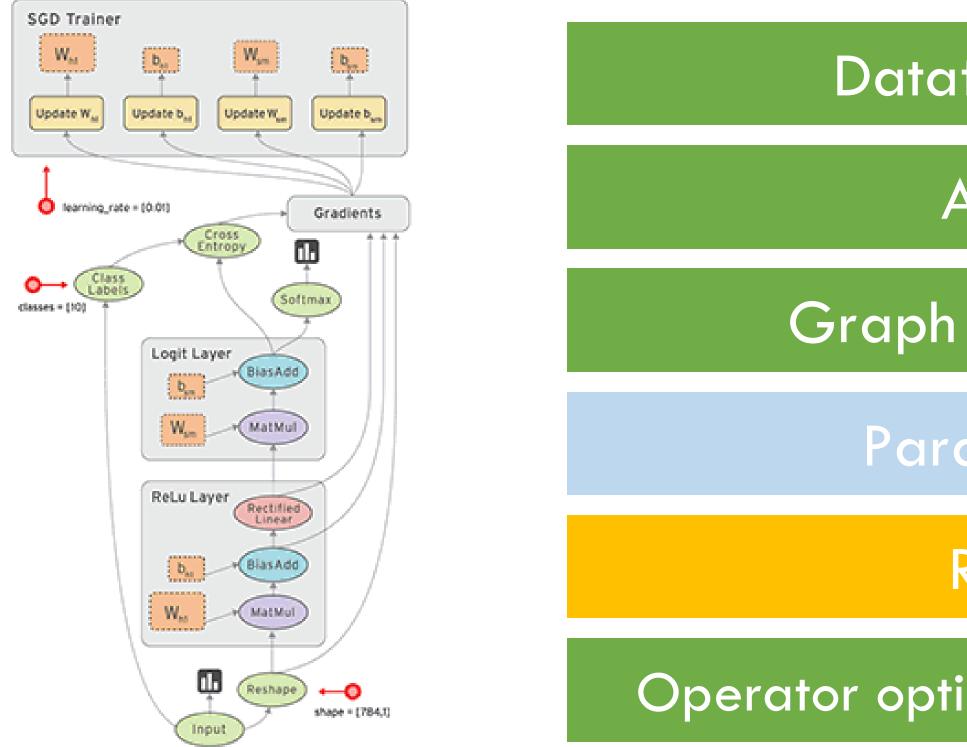


More Compiler in Guest Lecture



- Guest Speaker: Tianqi Chen
- A.k.a.: GOAT of MLSys
- Inventor of: XGBoost, TVM, MLC-LLM
- Date: Feb. 6

Big Picture: Where We Are



Dataflow Graph

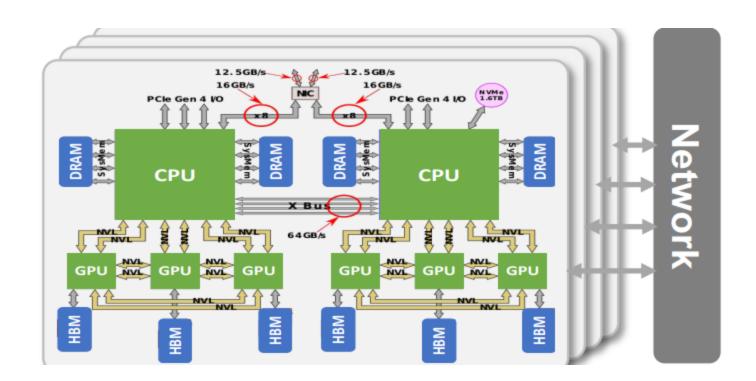
Autodiff

Graph Optimization

Parallelization

Runtime

Operator optimization/compilation



Next: Runtime

- "Batching"
- Checkpointing and rematerialization
- Swapping
- Quantization, Mixed precision, and Pruning