
CSE 234: Data Systems for Machine Learning

Winter 2025

1

https://hao-ai-lab.github.io/cse234-w25/

MLSys Basics

Optimizations and Parallelization

LLMSys

Big Picture: Where We Are

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator optimization/compilation

Runtime

Run the graph: gradient descent with minibatches

for 𝑡 = 1 → 𝑁

Disambiguate the Term “Batch”

• In deep learning training

• Batch

• Mini-batch

• Micro-batch

In optimization and gradient descent:

• Full-batch gradient descent

• stochastic gradient descent

• In big data processing

• Batch/offline processing

• Streaming/online processing

Disambiguate the Term “Batch”

Today’s Learning Goals

• Memory and Scheduling

• Checkpointing and rematerialization

• Swapping

• Memory and Compute

• Quantization

• Mixed precision

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime

Recall: data movement path

RAM

Disk

Our Goal on Memory

• Fit the workload on limited memory and ensure

peak memory < available memory

Note:

• Normally, we do not need to min (memory)

• We do not need to min(max(memory))

• We just need max(memory) < available memory

• Unless otherwise specificized

Source of Memory Consumption

x MSE

y

relu matmul

w2

matmul

w1

matmul

matmul

MSE’

matmul

relu’

sub sub

Sources of memory consumption

• Model weights

• Intermediate activation values

• Optimizer states

Methods to Analyze Memory

• Size

• How large the memory is

• Lifetime:

• When will this memory be needed and when not

Start with Inference: Lifetime?

We only need O(1) memory for computing the final output of a N

layer deep network by cycling through two buffers

Lifetime of

• weights

• activations?

• Optimizer states?

Estimate size: Popular floating point standards

• What does exponent and fraction control in float point representation?

• What’s the difference between bf16 and fp16?

• Will come back to this in detail later

Estimate the weight size: GPT-3 as an example

• Model weights: 175B, each param = 16 / 32 bits = 2 / 4 bytes

• 175B * 2 / 4 = 350G / 700G

• Rule of thumb: check precision, and N*2 (16bits) or N*4 (32bits)

Estimate the activation size

• Conv2d activation:

• Input: bs, nc, wi, hi

• Output: bs, nc, wo, ho

• Activation size:

• bs * nc * wo * ho *

sizeof(element)

Estimate the activation size: MLP

• Matmul activation

• Input: bs * m * n

• Output: bs * m * p

• Activation size:

• bs * m * p * sizeof(element)

C = X * W

Estimate the activation size: Transformers

• transformer activation

• Input: bs * h * seq_len

• Output: bs * h * seq_len

• Activation size:

• bs * h * seq_len *

sizeof(element)

Estimate the activation size: Transformers

GPT-3 Transformers per-layer activation (assuming seq_len = 1):

• bs * seqlen * d_model: 3.2M * 12288 = 39.321B = 78 / 156 G

• Note: For each operator inside a transformer layer, we also have

activations. We’ll come back to this later.

Estimate the Optimizer State Size: Adam

• Adam Optimizer: What is the memory added?

Optimizer state: first

moment estimate

(mean)

Optimizer state: second

moment estimate

(variance)

Estimate the Optimizer State Size?

• Gradient w.r.t. parameters: N * sizeof(element)

• First moment: N * sizeof(element)

• Second moment: N * sizeof(element)

• In total:

• 3N * sizeof(element)

Lifetime of activations at training

• Because the need to keep intermediate value around for the

gradient steps. Training a N-layer neural network would require

O(N).

Memory Overview

• Parameters: 175B * (fp32) = 350 / 700 G

• Activations:

• At the transformer boundary: (N = 96) * 78 / 156 G = 7488 / 14976

G

• (This is not accurate because transformers is a composite layers.)

• Optimizer states: (precision: fp32) * 3 * 175B = (12) * 175 G

Reduce memory

• Single Device (today)

• Parallelization (next week)

Reduce activation memory

Idea:

• The activation is not needed again until the backward pass comes

• Discard some of them and recompute the missing intermediate nodes in

small segments

Reduce activation memory

• Option 1: discard nothing

• Memory +, compute --

• Option 2: discard all and recompute for each layer

• Memory --, compute++

• We want to strike a balance?

Reduce activation memory

Q: In this case: what is the total recomputation

cost?

Memory dynamics

In practice

Discussion of Activation Checkpointing

• It is also called: rematerialization, recomputation

• Q: When to and not to enable it?

• Q: Optimal checkpointing policy

• Which layer to checkpoint at?

• Could influence memory cost because layer out has different sizes

• Could influence the recompute cost because the computation

between two checkpoints could be different

• Cons: Only applies to activations!

Gradient Accumulation

• Activation memory is linear to batch size

• Can we still compute using the given batch size but

with limited memory

∇𝜃 = ∇𝐿 𝑥𝑖 𝑖
𝑏𝑠,…

for𝑡 = 1 → #𝑚𝑏

∇𝜃 += ∇𝐿 𝑥𝑖 𝑖
𝑚𝑏𝑠,…

𝜃 = 𝜃+∇𝜃

vs.
𝜃 = 𝜃+∇𝜃

Gradient Accumulation in Practice

Q: potential cons of gradient accumulation?

Alternative Method: Move to DRAM

CPU Swap

• SwapIn: swap from CPU DRAM to HBM

• SwapOut: swap from HBM to CPU DRAM

• This applies to both weights and activations!

SwapOut SwapOut SwapOut

SwapInSwapInSwapIn

Discussion

• When will this work and when will this not work?

SwapOut SwapOut SwapOut

SwapInSwapInSwapIn

Summary of Memory Optimizations

• Gradient checkpointing

• Trading compute for memory

• Gradient accumulation

• Reduce “effective” batch size

• CPU Swapping

• Use lower-level memory hierarchy

Today’s Learning Goals

• Memory and Scheduling

• Checkpointing and rematerialization

• Swapping

• Memory and Compute

• Quantization

• Mixed precision

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime

Reduce Memory of Parameters: Quantization

• Observation: all our memory usage (weights, activation,

optimizer states) is a multiple of sizeof(element)

• Can we reduce sizeof(element)?

What is Quantization

Quantization is the process of constraining an input from a

continuous or otherwise large set of values to a discrete set.

Quantization in ML

High-level Idea: Use a lower-precision representation for data, while:

• (Almost) preserve ML performance, e.g., accuracy

• Accelerate compute

• Reduce memory

• Save energy

• etc.

Quantization

• Digital representation of data

• Basics of quantization

• Quantization in ML

• Post-training quantization

• Quantization aware training

• Mixed precision training

Representation of Data: Integer

Unsigned Integer

• n-bit range: [0, 2𝑛 − 1]

Signed Integer

• Sign-Magnitude Representation

• n-bit range: [−2𝑛−1 − 1, 2𝑛−1 − 1]

• Problem: Both 000…00 and 100…00 represent 0

Two’s complement representation

• n-bit range: [−2𝑛−1 − 1, 2𝑛−1 − 1]

Fixed-point Number

Floating-point Representation

Practice: What is the number

Floating-point Representation

Q: How to represent 0?

Floating-point Number: normal vs. subnormal

Q: What is the representation power of fp32?

What is the minimum positive value?

Some Special Values

Summary of fp32

Next Lecture

	Slide 1: CSE 234: Data Systems for Machine Learning Winter 2025
	Slide 2: Big Picture: Where We Are
	Slide 3: Run the graph: gradient descent with minibatches
	Slide 4: Disambiguate the Term “Batch”
	Slide 5: Disambiguate the Term “Batch”
	Slide 6: Today’s Learning Goals
	Slide 7: Recall: data movement path
	Slide 8: Our Goal on Memory
	Slide 9: Source of Memory Consumption
	Slide 10: Methods to Analyze Memory
	Slide 11: Start with Inference: Lifetime?
	Slide 12: Estimate size: Popular floating point standards
	Slide 13: Estimate the weight size: GPT-3 as an example
	Slide 14: Estimate the activation size
	Slide 15: Estimate the activation size: MLP
	Slide 16: Estimate the activation size: Transformers
	Slide 17: Estimate the activation size: Transformers
	Slide 18: Estimate the Optimizer State Size: Adam
	Slide 19: Estimate the Optimizer State Size?
	Slide 20: Lifetime of activations at training
	Slide 21: Memory Overview
	Slide 22: Reduce memory
	Slide 23: Reduce activation memory
	Slide 24: Reduce activation memory
	Slide 25: Reduce activation memory
	Slide 26: Memory dynamics
	Slide 27: In practice
	Slide 28: Discussion of Activation Checkpointing
	Slide 29: Gradient Accumulation
	Slide 30: Gradient Accumulation in Practice
	Slide 31: Alternative Method: Move to DRAM
	Slide 32: CPU Swap
	Slide 33: Discussion
	Slide 34: Summary of Memory Optimizations
	Slide 35: Today’s Learning Goals
	Slide 36: Reduce Memory of Parameters: Quantization
	Slide 37: What is Quantization
	Slide 38: Quantization in ML
	Slide 39: Quantization
	Slide 40: Representation of Data: Integer
	Slide 41: Fixed-point Number
	Slide 42: Floating-point Representation
	Slide 43: Practice: What is the number
	Slide 44: Floating-point Representation
	Slide 45: Floating-point Number: normal vs. subnormal
	Slide 46: What is the minimum positive value?
	Slide 47: Some Special Values
	Slide 48: Summary of fp32
	Slide 49: Next Lecture

