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MLSys Basics

Optimizations and Parallelization

LLMSys



Big Picture: Where We Are

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator optimization/compilation

Runtime



Run the graph: gradient descent with minibatches

for 𝑡 = 1 → 𝑁



Disambiguate the Term “Batch”

• In deep learning training

• Batch

• Mini-batch

• Micro-batch

In optimization and gradient descent:

• Full-batch gradient descent

• stochastic gradient descent

• In big data processing

• Batch/offline processing

• Streaming/online processing



Disambiguate the Term “Batch”



Today’s Learning Goals

• Memory and Scheduling

• Checkpointing and rematerialization

• Swapping 

• Memory and Compute

• Quantization

• Mixed precision

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime



Recall: data movement path

RAM

Disk



Our Goal on Memory

• Fit the workload on limited memory and ensure 

peak memory < available memory

Note:

• Normally, we do not need to min (memory)

• We do not need to min(max(memory))

• We just need max(memory) < available memory

• Unless otherwise specificized 



Source of Memory Consumption
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Sources of memory consumption

• Model weights

• Intermediate activation values

• Optimizer states



Methods to Analyze Memory

• Size

• How large the memory is

• Lifetime:

• When will this memory be needed and when not



Start with Inference: Lifetime?

We only need O(1) memory for computing the final output of a N 

layer deep network by cycling through two buffers

Lifetime of 

• weights 

• activations?

• Optimizer states?



Estimate size: Popular floating point standards

• What does exponent and fraction control in float point representation?

• What’s the difference between bf16 and fp16?

• Will come back to this in detail later



Estimate the weight size: GPT-3 as an example 

• Model weights: 175B, each param = 16 / 32 bits = 2 / 4 bytes

• 175B * 2 / 4 = 350G / 700G

• Rule of thumb: check precision, and N*2 (16bits) or N*4 (32bits)



Estimate the activation size

• Conv2d activation: 

• Input: bs, nc, wi, hi

• Output: bs, nc, wo, ho

• Activation size:

• bs * nc * wo * ho * 

sizeof(element)



Estimate the activation size: MLP

• Matmul activation

• Input: bs * m * n

• Output: bs * m * p

• Activation size:

• bs * m * p * sizeof(element)

C = X * W



Estimate the activation size: Transformers

• transformer activation

• Input: bs * h * seq_len

• Output: bs * h * seq_len

• Activation size:

• bs * h * seq_len * 

sizeof(element)



Estimate the activation size: Transformers

GPT-3 Transformers per-layer activation (assuming seq_len = 1):

• bs * seqlen * d_model: 3.2M * 12288  = 39.321B = 78 / 156 G

• Note: For each operator inside a transformer layer, we also have

activations. We’ll come back to this later.



Estimate the Optimizer State Size: Adam

• Adam Optimizer: What is the memory added?

Optimizer state: first 

moment estimate 

(mean)

Optimizer state: second 

moment estimate 

(variance)



Estimate the Optimizer State Size?

• Gradient w.r.t. parameters: N * sizeof(element)

• First moment: N * sizeof(element)

• Second moment: N * sizeof(element)

• In total:

• 3N * sizeof(element)



Lifetime of activations at training

• Because the need to keep intermediate value around for the 

gradient steps. Training a N-layer neural network would require 

O(N).



Memory Overview

• Parameters: 175B * (fp32) = 350 / 700 G

• Activations: 

• At the transformer boundary: (N = 96) * 78 / 156 G = 7488 / 14976 

G

• (This is not accurate because transformers is a composite layers.)

• Optimizer states: (precision: fp32) * 3 * 175B = (12) * 175 G



Reduce memory

• Single Device (today)

• Parallelization (next week) 



Reduce activation memory

Idea:

• The activation is not needed again until the backward pass comes

• Discard some of them and recompute the missing intermediate nodes in 

small segments



Reduce activation memory

• Option 1: discard nothing

• Memory +, compute --

• Option 2: discard all and recompute for each layer

• Memory --, compute++

• We want to strike a balance?



Reduce activation memory

Q: In this case: what is the total recomputation

cost?



Memory dynamics 



In practice



Discussion of Activation Checkpointing

• It is also called: rematerialization, recomputation

• Q: When to and not to enable it?

• Q: Optimal checkpointing policy

• Which layer to checkpoint at?

• Could influence memory cost because layer out has different sizes

• Could influence the recompute cost because the computation 

between two checkpoints could be different

• Cons: Only applies to activations!



Gradient Accumulation

• Activation memory is linear to batch size

• Can we still compute using the given batch size but

with limited memory

∇𝜃 = ∇𝐿 𝑥𝑖 𝑖
𝑏𝑠,…

for𝑡 = 1 → #𝑚𝑏

∇𝜃 += ∇𝐿 𝑥𝑖 𝑖
𝑚𝑏𝑠,…

𝜃 = 𝜃+∇𝜃

vs.
𝜃 = 𝜃+∇𝜃



Gradient Accumulation in Practice

Q: potential cons of gradient accumulation?



Alternative Method: Move to DRAM



CPU Swap

• SwapIn: swap from CPU DRAM to HBM

• SwapOut: swap from HBM to CPU DRAM

• This applies to both weights and activations!

SwapOut SwapOut SwapOut

SwapInSwapInSwapIn



Discussion

• When will this work and when will this not work?

SwapOut SwapOut SwapOut

SwapInSwapInSwapIn



Summary of Memory Optimizations

• Gradient checkpointing

• Trading compute for memory

• Gradient accumulation

• Reduce “effective” batch size

• CPU Swapping

• Use lower-level memory hierarchy



Today’s Learning Goals

• Memory and Scheduling

• Checkpointing and rematerialization

• Swapping 

• Memory and Compute

• Quantization

• Mixed precision

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime



Reduce Memory of Parameters: Quantization

• Observation: all our memory usage (weights, activation,

optimizer states) is a multiple of sizeof(element)

• Can we reduce sizeof(element)?



What is Quantization

Quantization is the process of constraining an input from a

continuous or otherwise large set of values to a discrete set.



Quantization in ML

High-level Idea: Use a lower-precision representation for data, while:

• (Almost) preserve ML performance, e.g., accuracy

• Accelerate compute

• Reduce memory

• Save energy

• etc.



Quantization

• Digital representation of data

• Basics of quantization

• Quantization in ML

• Post-training quantization

• Quantization aware training

• Mixed precision training



Representation of Data: Integer

Unsigned Integer

• n-bit range: [0, 2𝑛 − 1]

Signed Integer

• Sign-Magnitude Representation

• n-bit range: [−2𝑛−1 − 1, 2𝑛−1 − 1]

• Problem: Both 000…00 and 100…00 represent 0

Two’s complement representation

• n-bit range: [−2𝑛−1 − 1, 2𝑛−1 − 1]



Fixed-point Number



Floating-point Representation



Practice: What is the number



Floating-point Representation

Q: How to represent 0?



Floating-point Number: normal vs. subnormal

Q: What is the representation power of fp32?



What is the minimum positive value?



Some Special Values



Summary of fp32



Next Lecture
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