CSE 234: Data Systems for Machine Learning Winter 2025

LLMSys

Optimizations and Parallelization

MLSys Basics

Forms worth your attention

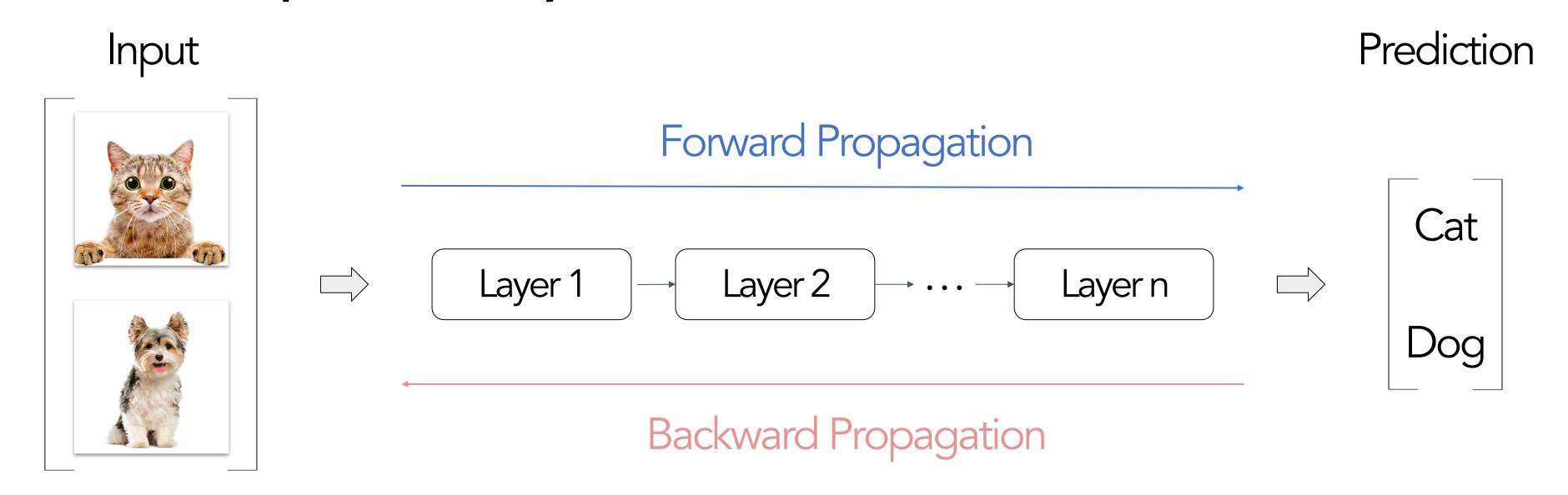
- Beginning of quarter survey
 - Please fill the survey by end of week 2
 - If >=80% of you filled the survey, all of you get 1%
 - If <80%, all of you do not get 1%
- Scribe sign-up:
 - Do it as a team.
 - Do it as detailed as possible.
 - Most efficient way to get 8%!
- There is a slack for your convenience:
 - https://join.slack.com/t/cse234-w25/shared_invite/zt-2xc1bsmxz-xFXiufPMM8Fv8eCsiaT2Rg

Today

- Understand our workloads
- Dataflow graph representation
 - Flavors of different ML frameworks

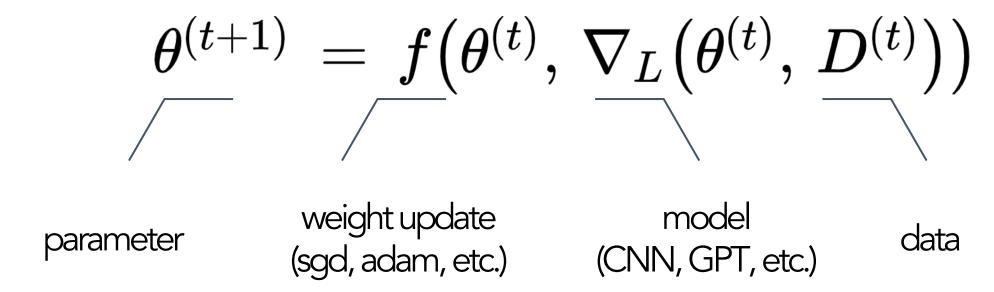
Background: DL Computation

Idea: Composable Layers



$$heta^{(t+1)} = fig(heta^{(t)},\,
abla_Lig(heta^{(t)},\, D^{(t)}ig)ig)$$

Dive in to Models: Three parts



- Model: A parameterized function that describes how do we map inputs to predictions
 - Parameters: to be optimized
 - Loss function: How "well" are we doing for a given set of parameters
 - L2 loss, hinge loss, softmax loss, ranking loss
- Optimization method: A procedure to find a set of parameters that minimizes the loss
 - SGD, Newton methods,

Three important components

DataImages

- Text
- Audio
- Table
- etc.

Model

- CNNs
- RNNs
- Transformers
- MoEs
- Etc.

Compute

- CPUs
- GPUs/TPUs/LPUs
- M1/M2/M3/M4
- FPGA/etc.

Today

- Understand our Workloads: Deep Learning
- Dataflow graph representation

How we prioritize in a fast-evolving world?

- There are many great models developed in history
- We will not be able to build systems that can support all models
- What are the most important workloads that solve 80% of the problems?
- System building is the process to reveal the most important factors

What are the most important models and optimization algos

Most important models?

- Convolutional neural networks
- Recurrent neural networks
- Transformers
- Mixture-of-Experts

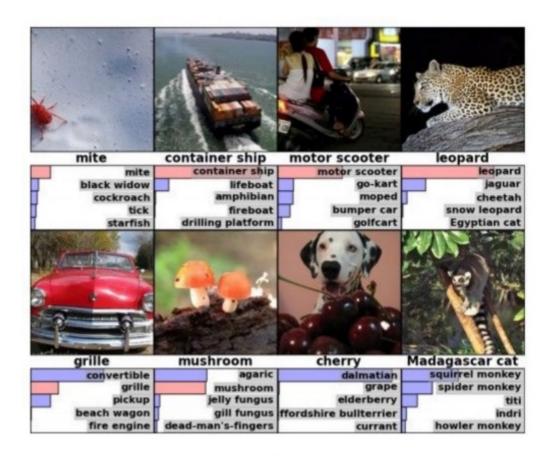
Most important optimization algorithms?

• SDG and its variants, e.g., Adam

Understand Our Workload (a.k.a. DL course in 20 mins)

- In this class, we review the most important 4 model families
 - Convolutional Neural Networks
 - Recurrent neural networks
 - Transformers
 - Mixture-of-Experts
- We will keep asking ourselves: what are the most important X in Y (X \subset Y) to spec out system building abstraction
 - E.g., X = ResNet, Y = CNNs
- If you have trouble following this session, spend time reading deep learning book or learn https://sites.google.com/view/cse251b

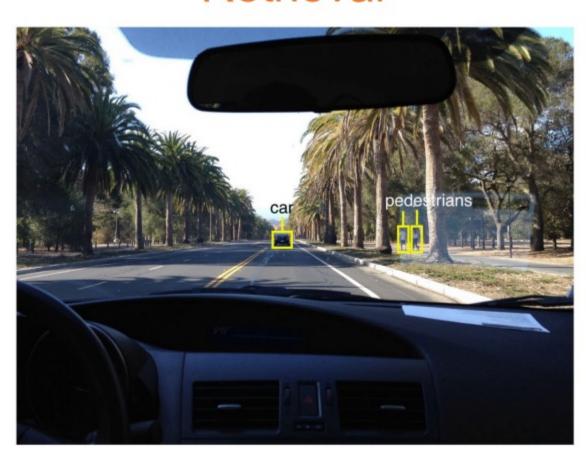
CNNs: Applications



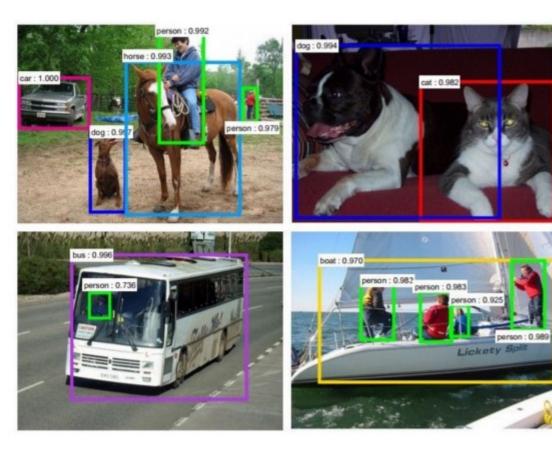
Classification

Segmentation

Retrieval



Self-Driving

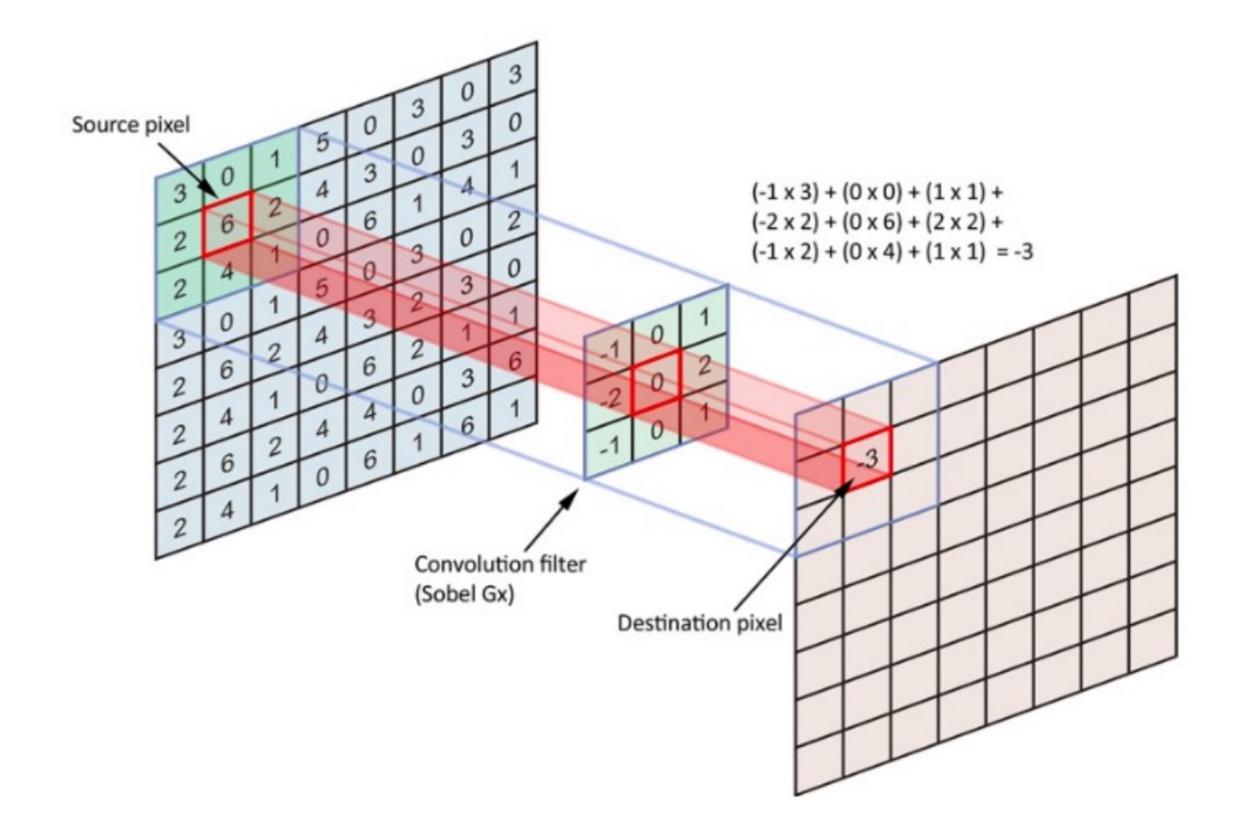


Detection

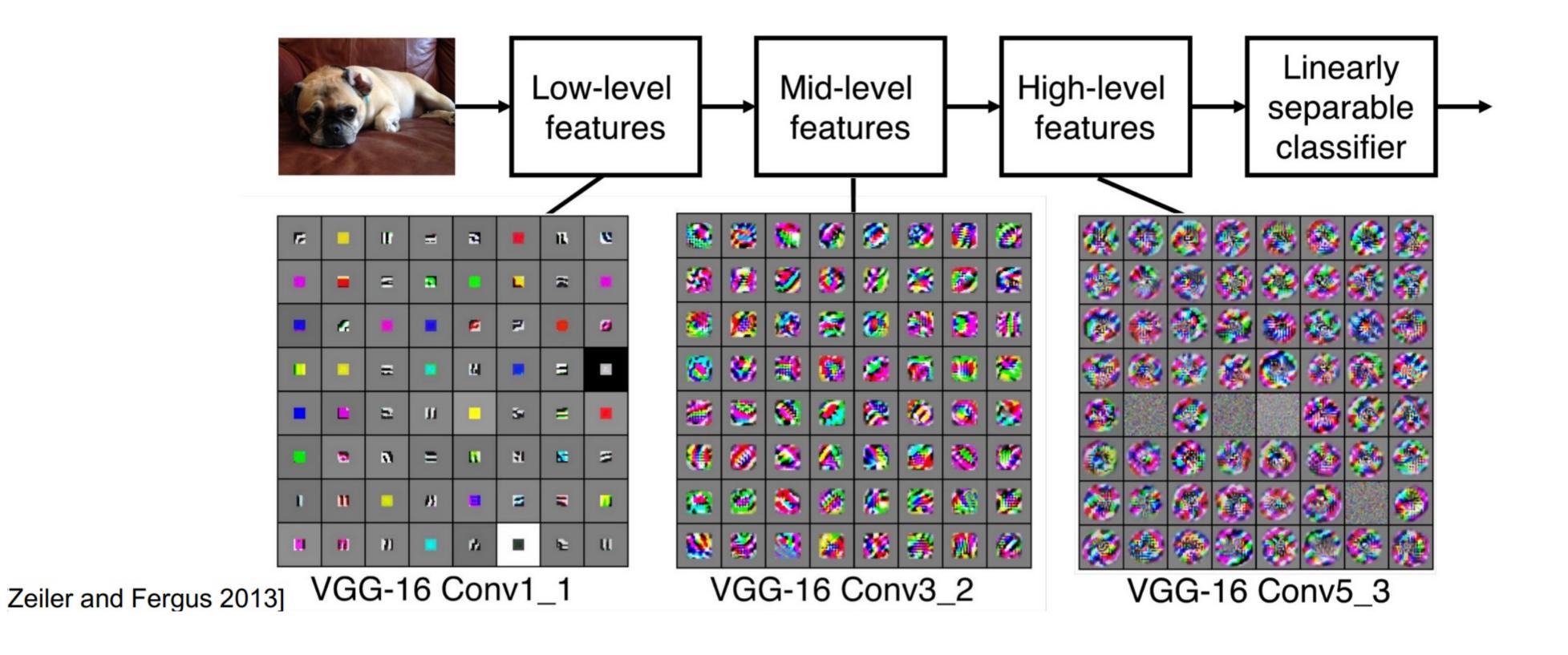
Synthesis

CNN: Key components

 Convolve the filter with the image: slide over the image spatially and compute dot products

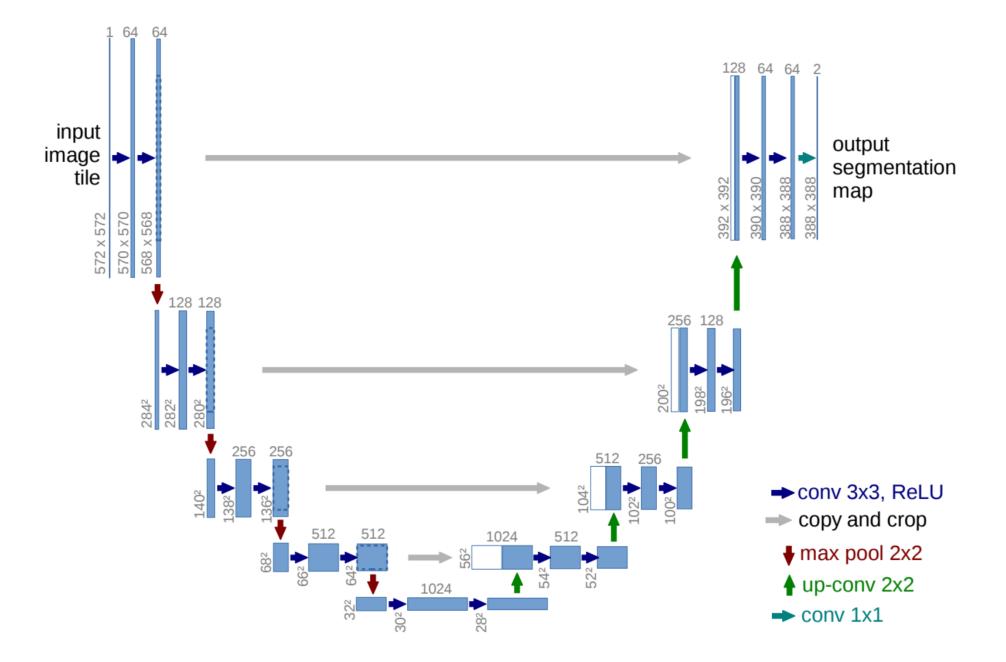


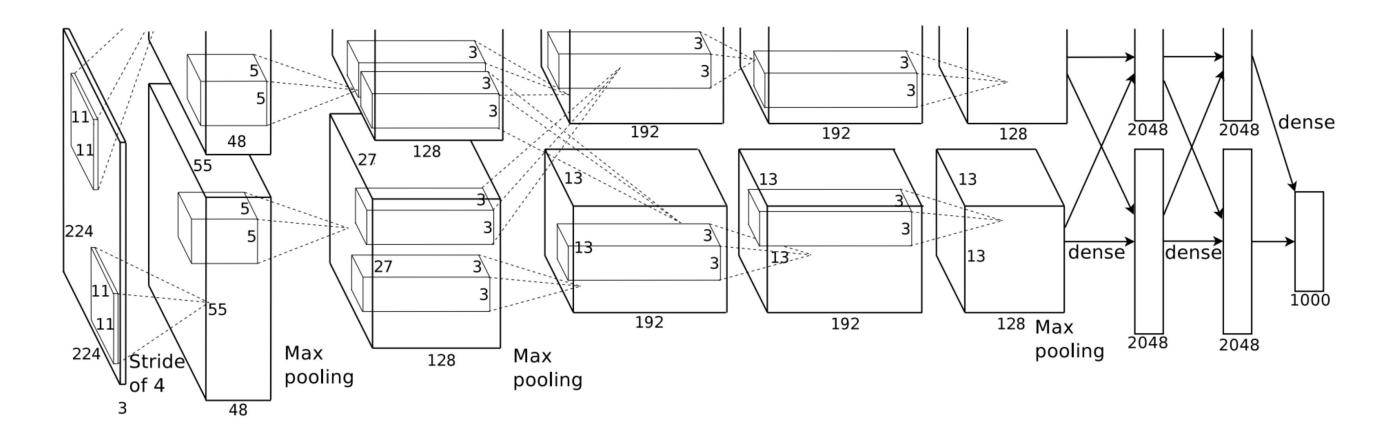
Principle: Stacking Conv layers

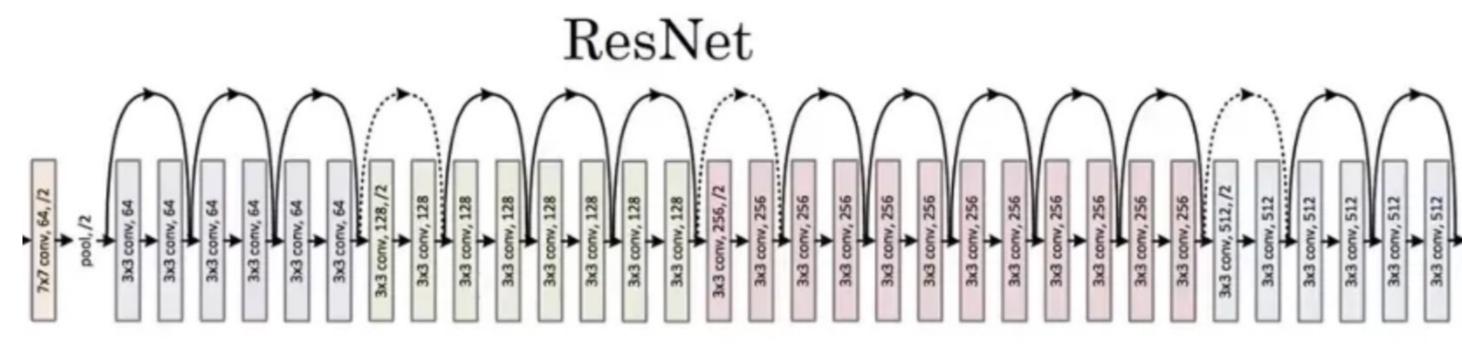


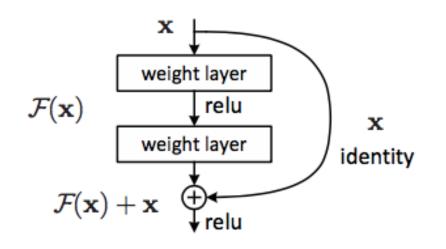
CNN: Top3 models

- AlexNet [Alex/Iliya/Hinton]
- ResNet [Kaiming etc.]
- U-Net [Olaf etc.]

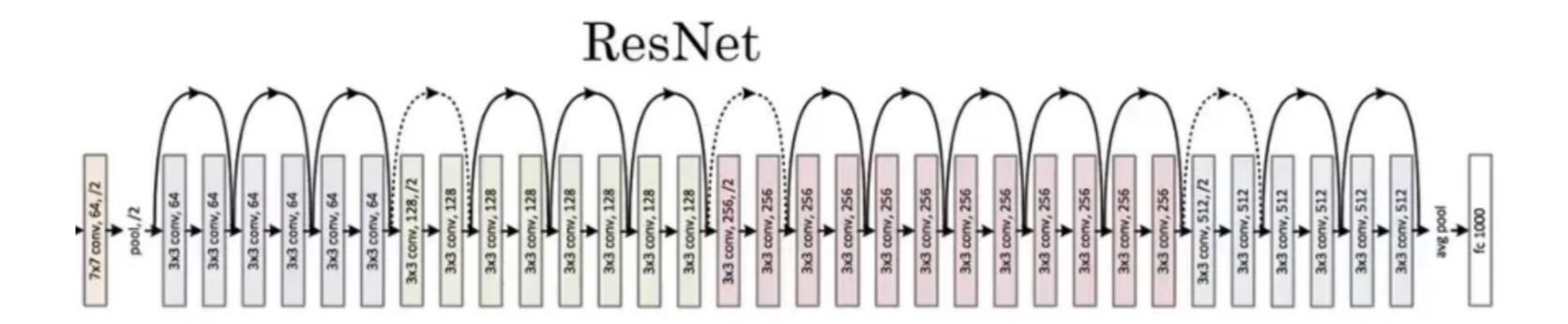






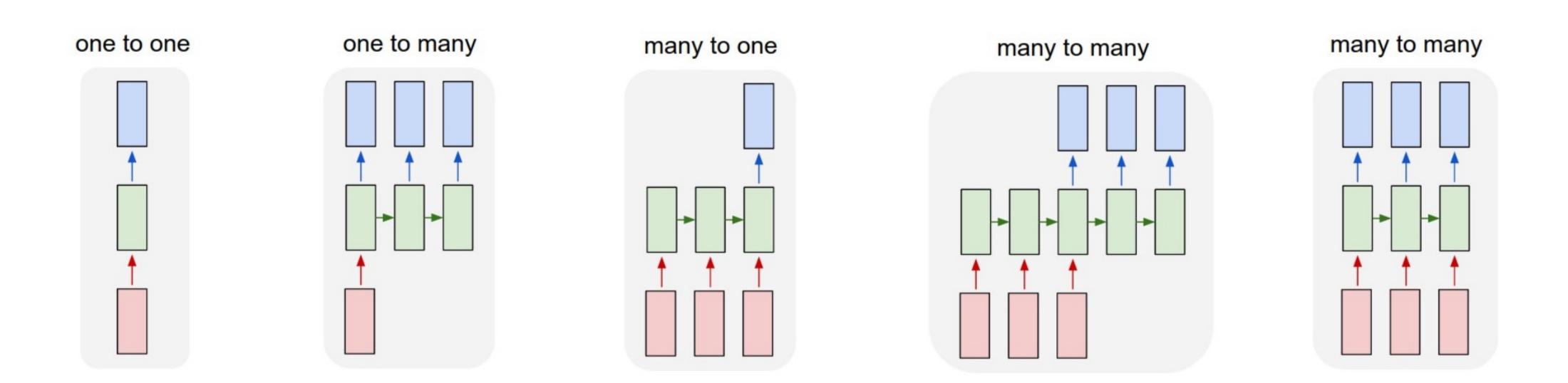


Most important components in CNNs?

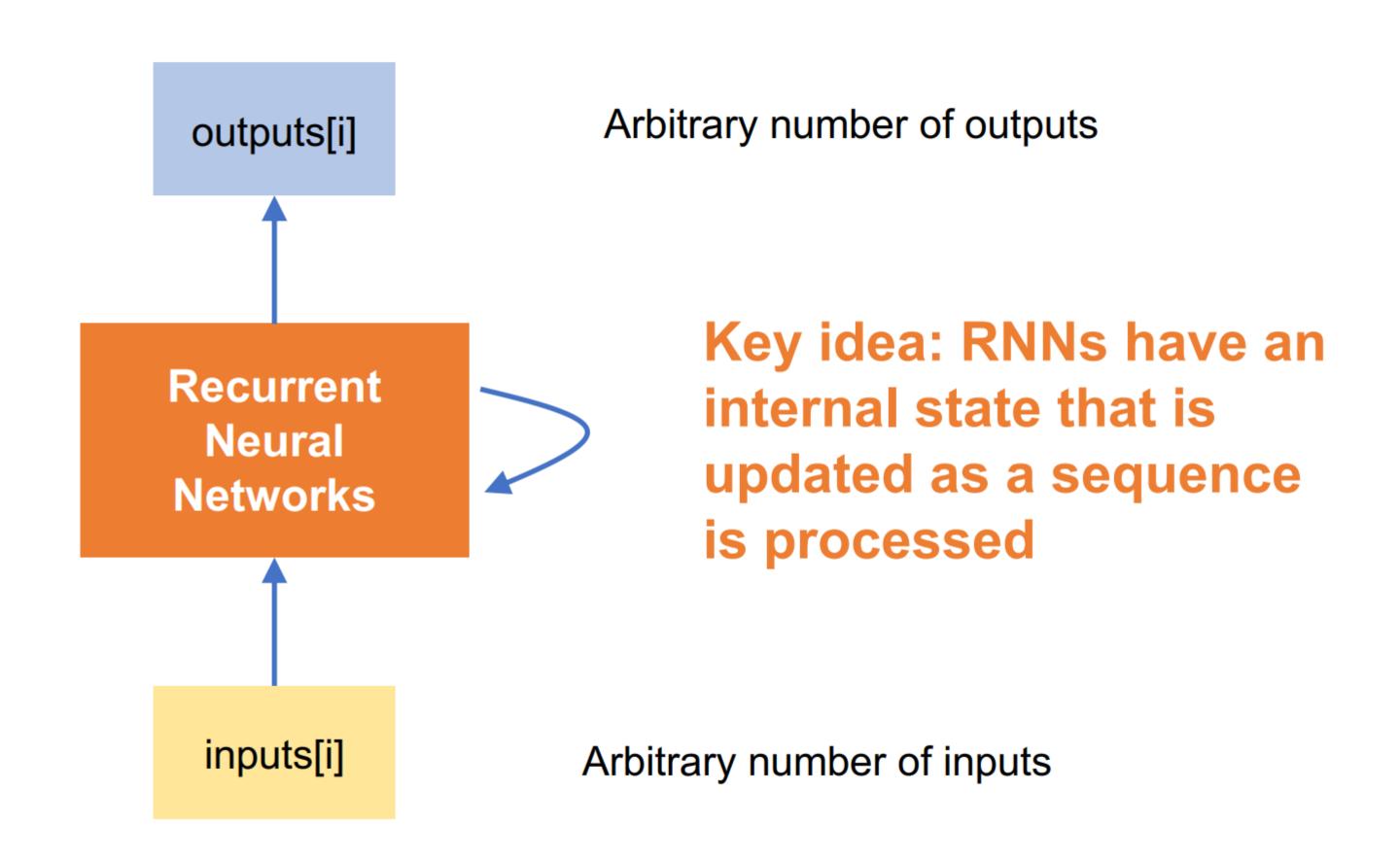


- Conv
 - Conv1d, Conv2d, conv3d, esp. 3x3-conv2d
- Matmul (linear):
 - C = A * B
- Softmax
- Elementwise operations:
 - ReLU, add, sub
 - Pooling, normalization, etc.

Recurrent Neural Networks

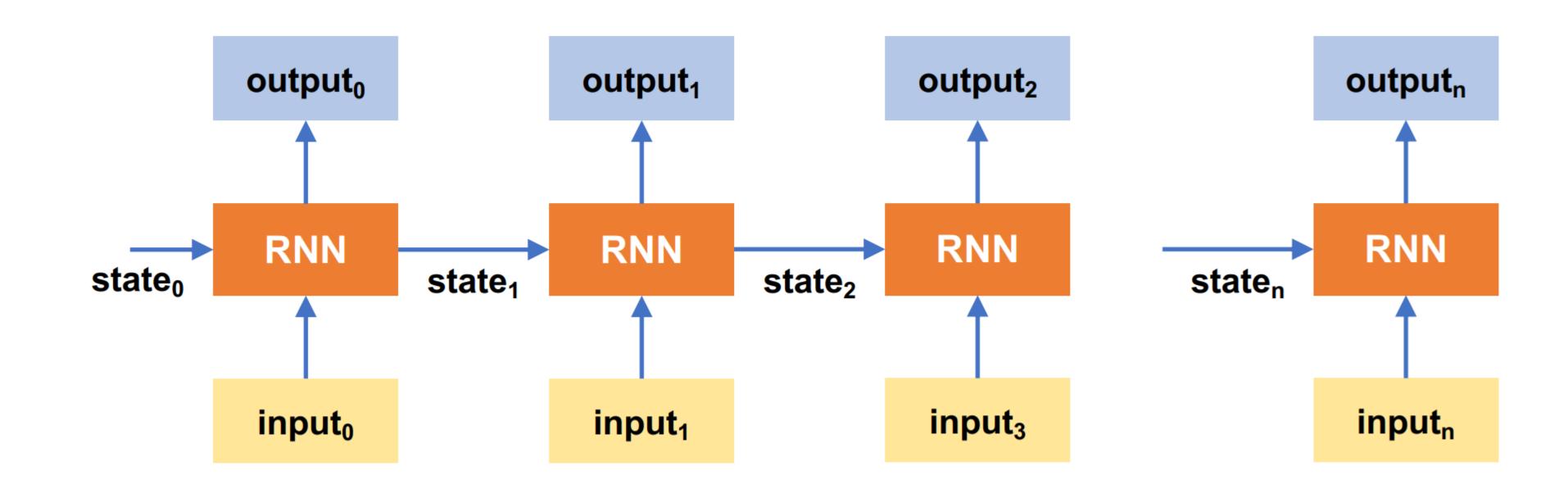


Recurrent Neural Networks



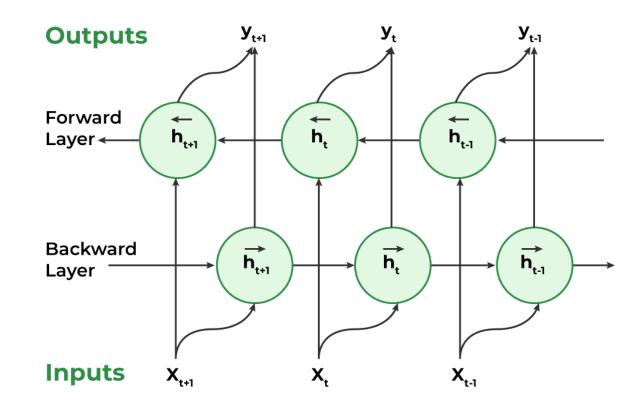
Recurrent Neural Networks: unrolling the computation

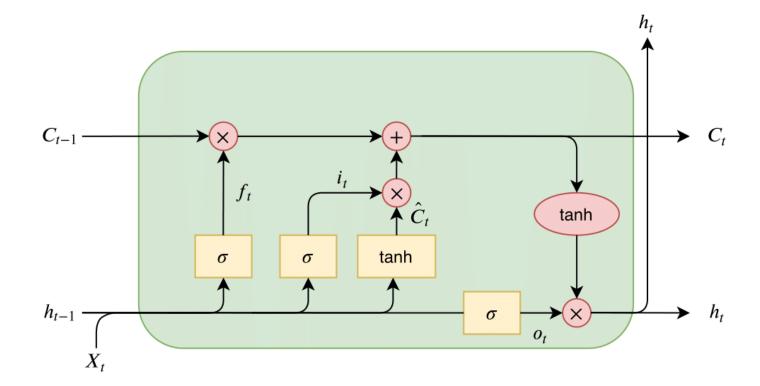
One can make any NN recurrent

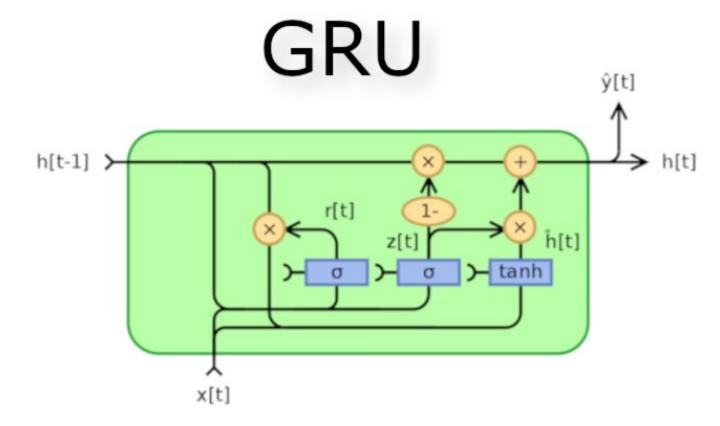


RNN: top3 models

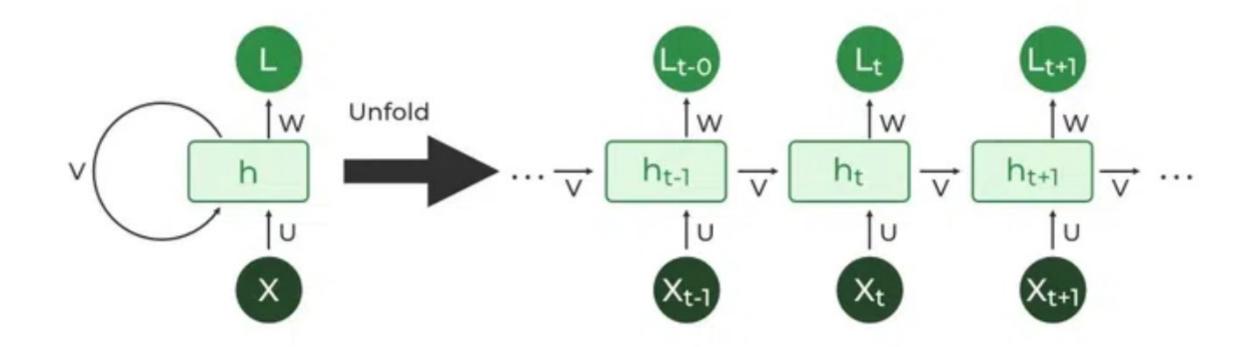
- Bidirectional RNNs
- LSTM
- GRU







Most Important Components in RNNs



- Matmul
- Elementwise nonlinear
 - ReLU, Tanh, sigmoid, etc.

MCQ Example (A difficult one)

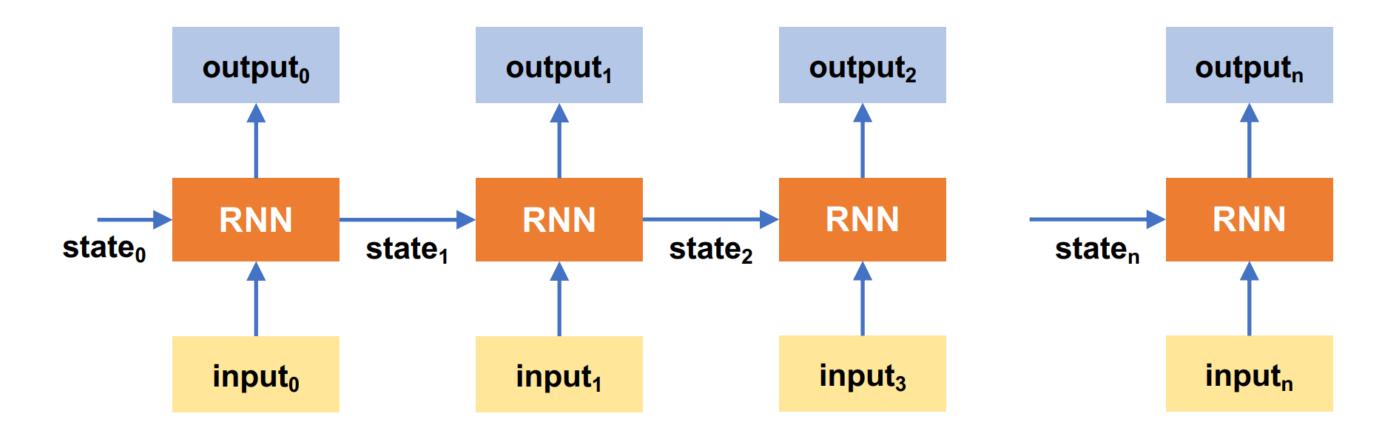
Who Invented LSTMs?

Jürgen Schmidhuber

Jürgen Schmidhuber (born 17 January 1963) is a German computer scientist noted for his work in the field of artificial intelligence, specifically artificial neural networks.

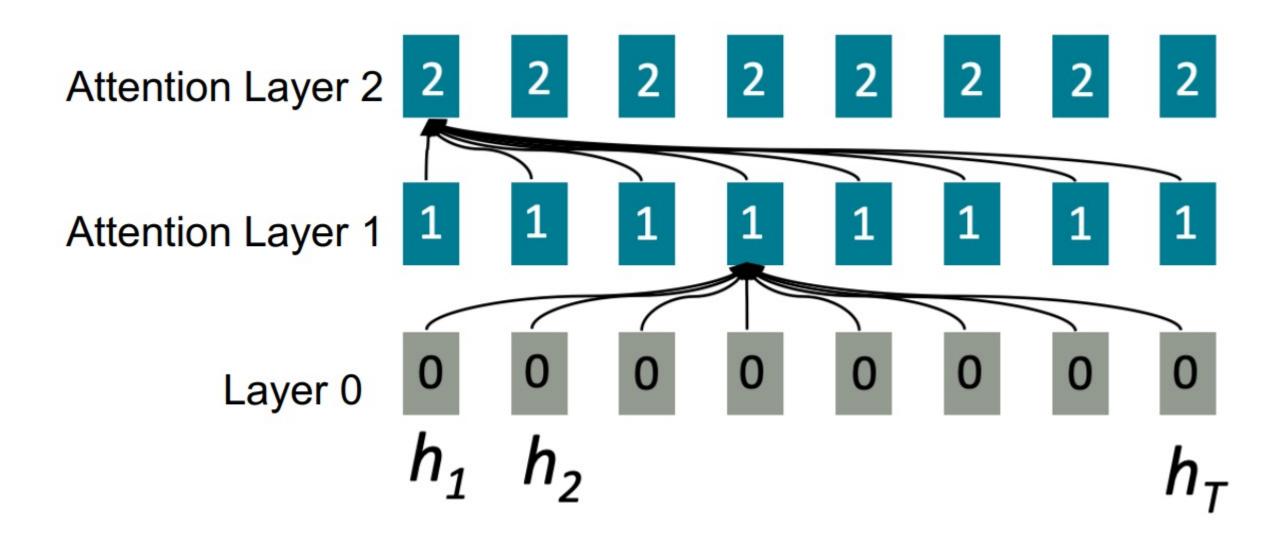
Why ChatGPT was not built using RNNs?

- Problem 1: forgetting.
 - h * 0.9 * 0.9 * ... -> 0
- Problem 2: lack of parallelizability.
 - Both forward and backward passes have O(sequence length) unparallelizable operators. i.e., a state cannot be computed before all previous states have been computed Inhibits training on very long sequence



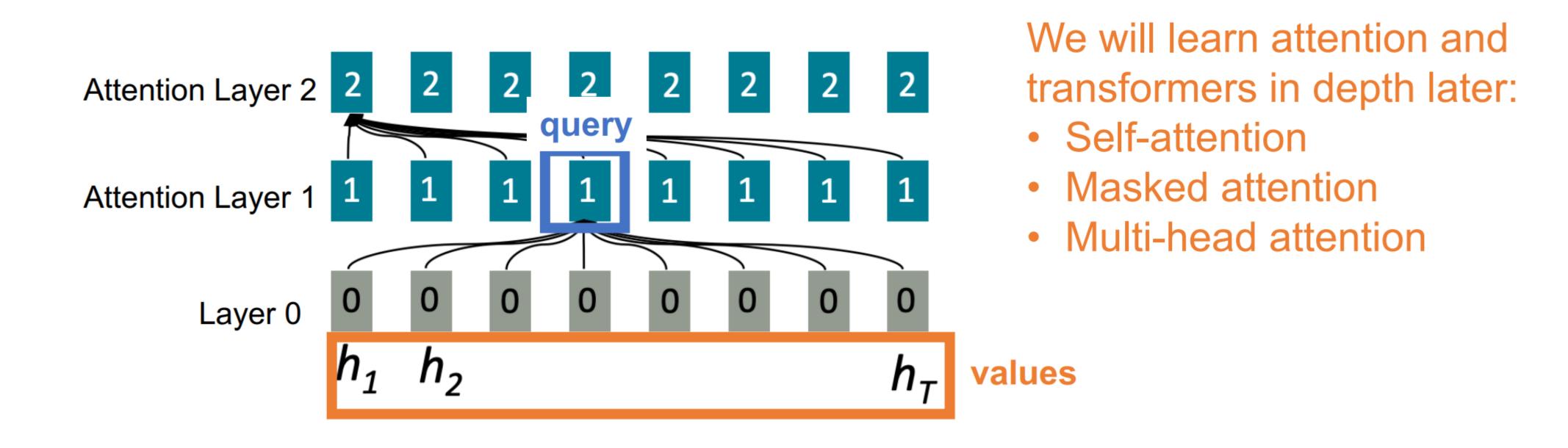
Attention: Enable parallelism

• Idea: treat each position's representation as a query to access and incorporate information from a set of values



Attention

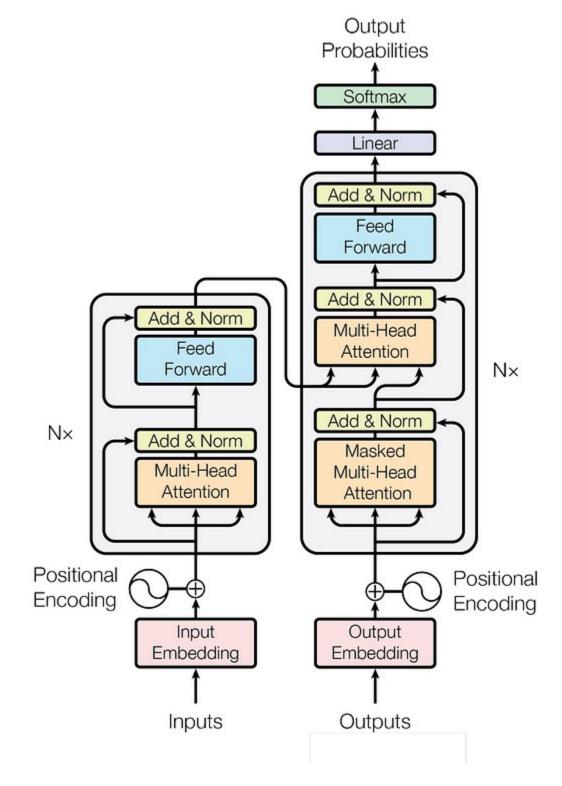
 Massively parallelizable: number of unparallelizable operations does not increase sequence length



Transformers: Attention + MLP

BERT

Encoder



GPT

Decoder

Transformers: Top3 models?

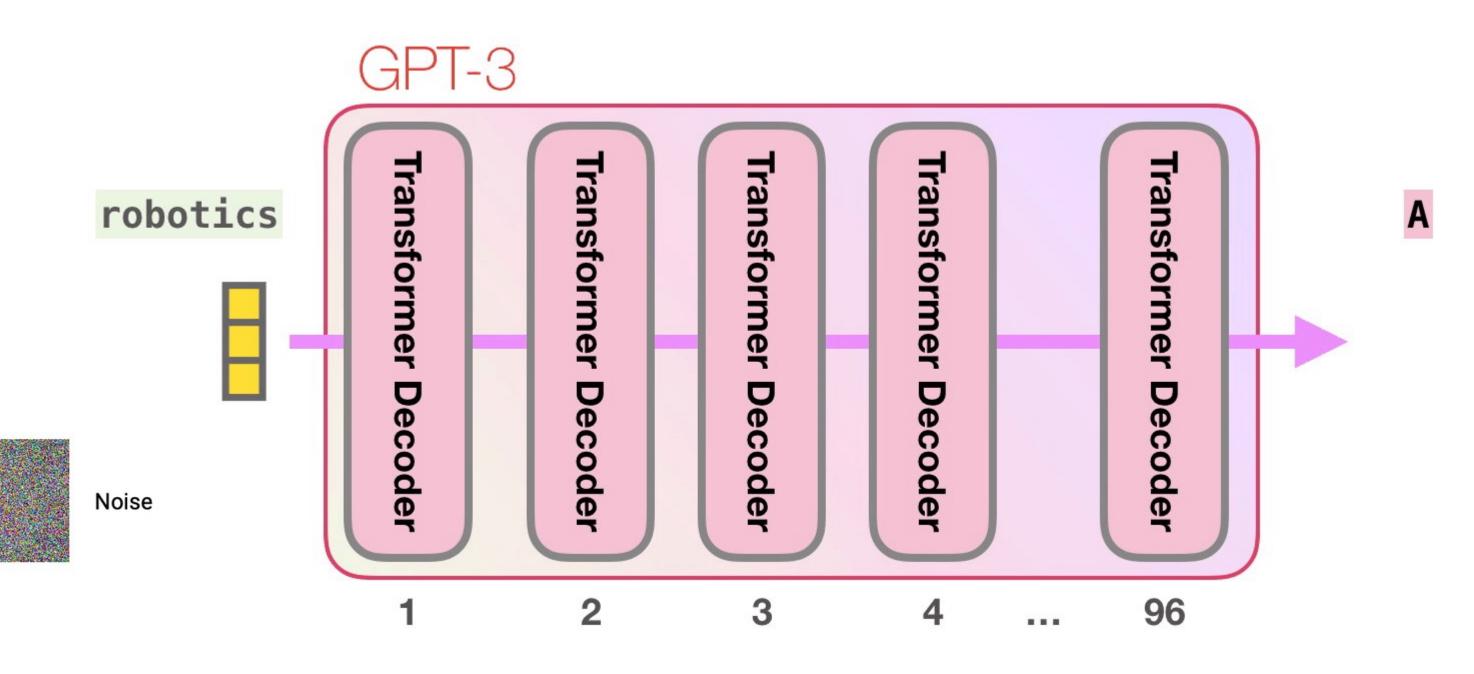
Fixed forward diffusion process

Generative reverse denoising process

Bert

Data

- GPT/LLMs
- DiT: diffusion



Mask LM

Masked Sentence A

Mask LM

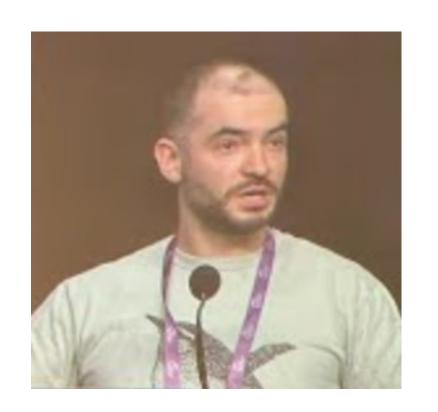
Masked Sentence B

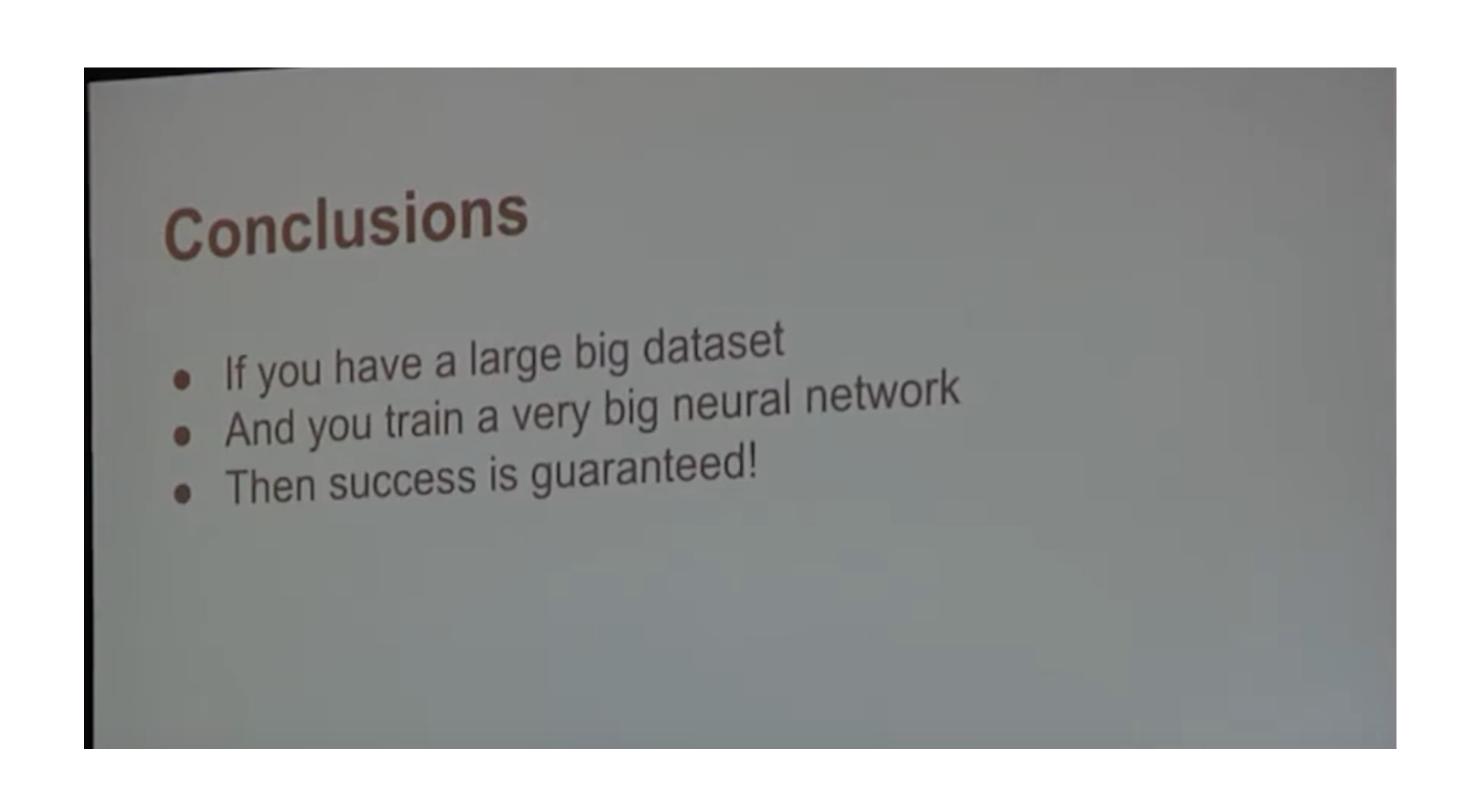
 T_{N} $T_{[SEP]}$ T_{1}

BERT

Unlabeled Sentence A and B Pair

Transformer becomes the chosen one... (for a reason)





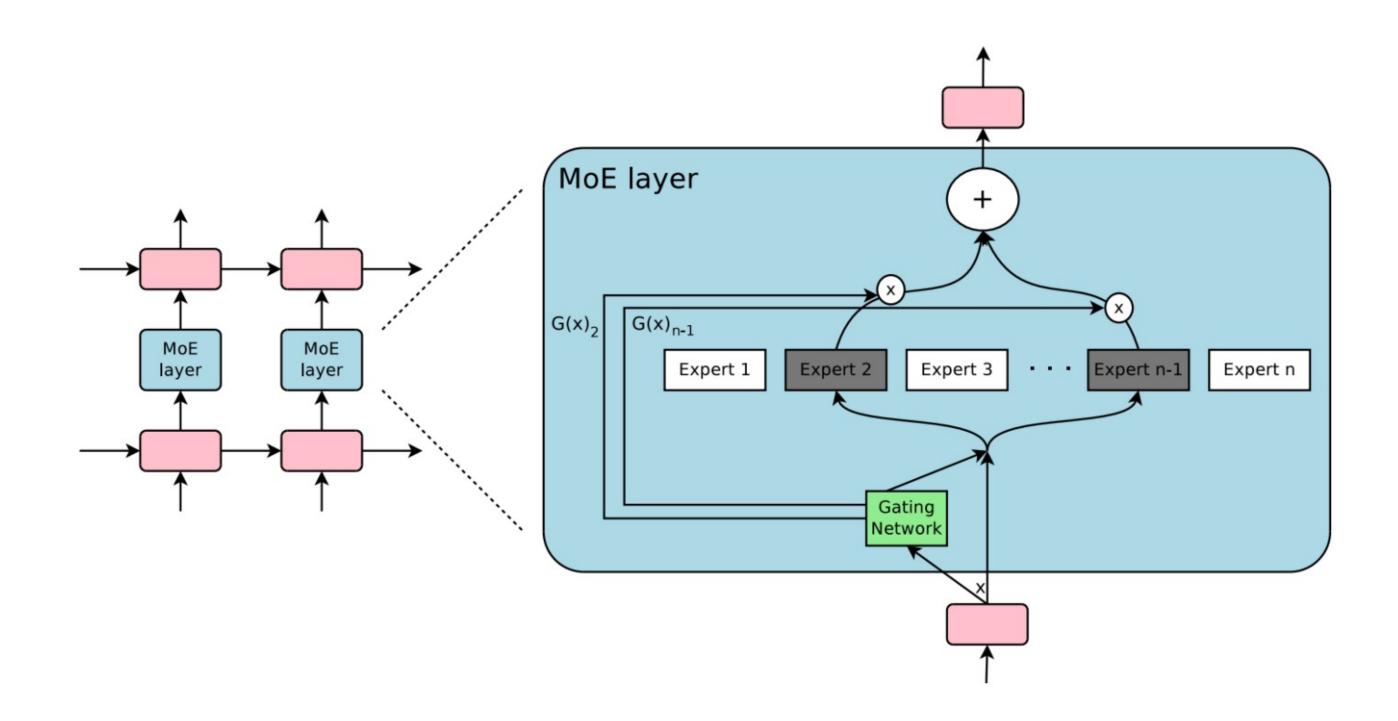
https://www.youtube.com/watch?v=9l9xGoyDhMM

Most Important Components in Transformers?

- Transformers = Attention + MLP + something else
- Attention:
 - Matmul
 - Softmax
 - Normalization
- MLP :
 - Matmul
- Something else:
 - Layernorm, GeLU, etc.

MoE: mixture of experts

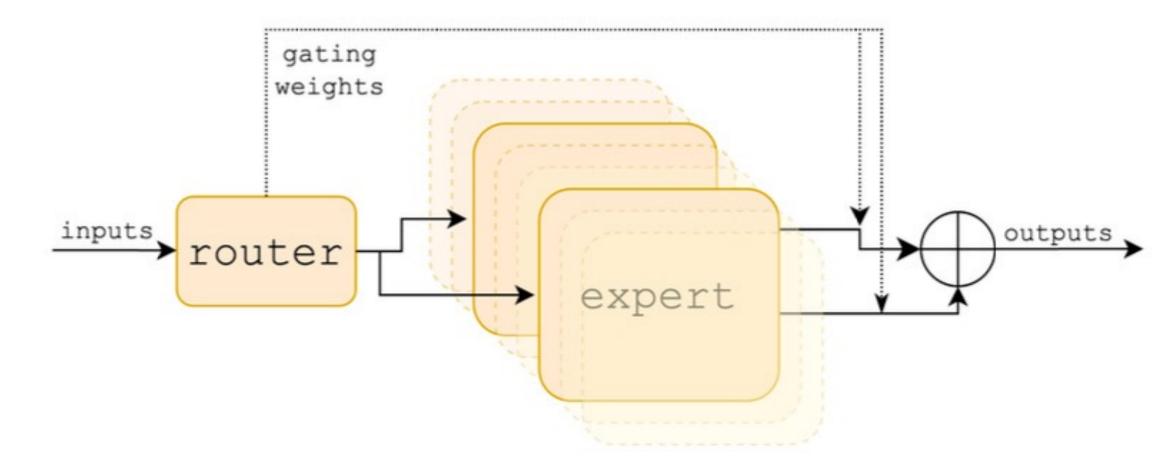
• Ideas: Voting from many experts could be better than one expert



Novel Component in MoE?

- Latest LLMs are mostly MoEs
 - Grok, Mixtral, GPT4, Deepseek-v3
- Novel Components in MoE:
 - Router
- What constitutes Router?
 - Matmul, Softmax
- After-class Q:
 - Why router makes it hard

Mixture of Experts Layer



Rundown from a compute perspective

- CNNs: Conv, Matmul, Softmax, ReLU, batchnorm.
- RNNs: Matmul, sigmoid, tanh
- Transformers: Matmul, Softmax, GeLU, layernorm
- MoE: Matmul, softmax

Or:

Matmul: 4 times

Softmax: 3 times

Others...

Summary of DL class in 30 mins

Matmul (plus softmax) are all you need

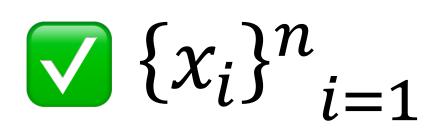
MLSys ~= Matmul Sys

High-level Picture

Data

Model

Compute



Math primitives (mostly matmul)

? A repr that expresses the computation using primitives

? Make them run on (clusters of) different kinds of hardware

Today

- Understand our Workloads: Deep Learning
- Dataflow graph representation
- Flavors of different ML frameworks

Recall our Goal

- Goal: we want to express as many as model as possible using one set of programming interface by connecting math primitives
- What constitutes a model from math primitives?
 - Model and architecture: connecting math primitives
 - Objective function
 - Optimizer
 - Data

Discussion: how we express computation in history Applications <-> System Design

Application

Data management (OLTP)

Big data processing (OLAP)

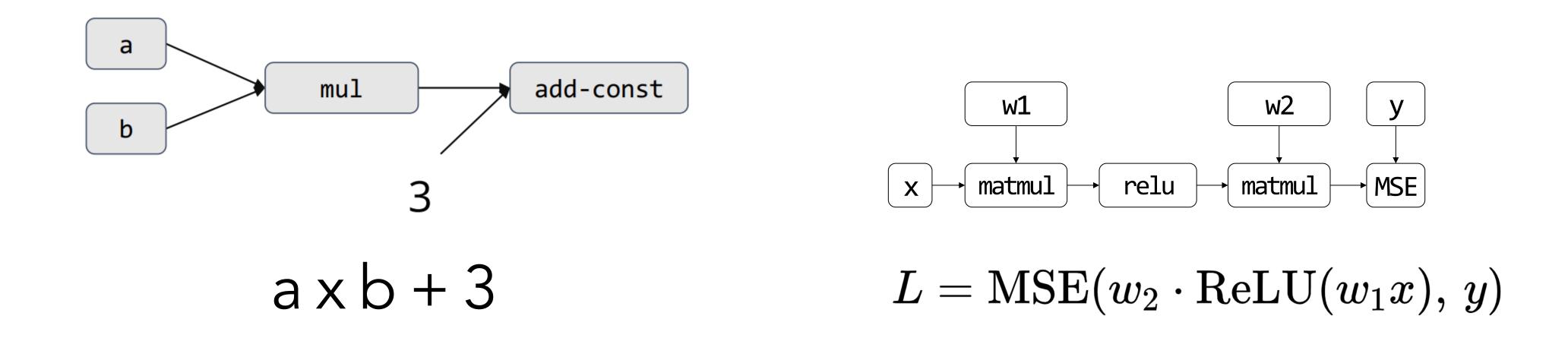
Systems

SQL Query planner Relational database Storage

Spark/mapreduce Dataflow, lineage Data warehousing Column storage

Computational Dataflow Graph

- Node: represents the computation (operator)
- Edge: represents the data dependency (data flowing direction)
- Node: also represents the output tensor of the operator
- Node: also represents an input constant tensor (if it is not a compute operator)



Case Study: TensorFlow Program

- In the next few slides, we will do a case study of a deep learning program using TensorFlow v1 style API (classic Flavor).
- Note that today most deep learning frameworks now use a different style, but share the same mechanism under the hood
- Think about abstraction and implementation when going through these examples

One linear NN: Logistic Regression

Input

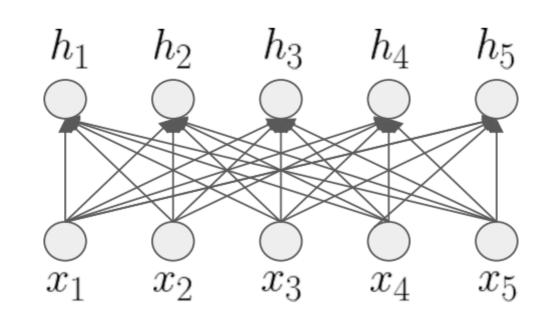
One Linear Layer

Softmax

$$x_i = \begin{bmatrix} \operatorname{pixel}_1 \\ \operatorname{pixel}_2 \\ \dots \\ \operatorname{pixel}_m \end{bmatrix} \quad h_k = w_k^T x_i \quad P(y_i = k | x_i) = \frac{\exp(h_k)}{\sum_{j=1}^{10} \exp(h_i)}$$

$$h_k = w_k^T x_i$$

$$P(y_i = k | x_i) = \frac{\exp(h_k)}{\sum_{j=1}^{10} \exp(h_i)}$$



Whole Program

```
import tinyflow as tf
from tinyflow.datasets import get_mnist
#_Create_the_model__
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W))
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
# Update rule
learning_rate = 0.5
W_grad = tf.gradients(cross_entropy, [W])[0]
train_step = tf.assign(W, W - learning_rate * W_grad)
# Training Loop
sess = tf.Session()
sess.run(tf.initialize_all_variables())
mnist = get_mnist(flatten=True, onehot=True)
for i in range(1000):
   batch_xs, batch_ys = mnist.train.next_batch(100)
   sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})
```

Forward Computation **Declaration**

Loss Function

```
import tinyflow as tf
from tinyflow.datasets import get_mnist
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W))
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
`\#-Update-rule-----------
learning_rate = 0.5
W_grad = tf.gradients(cross_entropy, [W])[0]
train_step = tf.assign(W, W - learning_rate * W_grad)
# Training Loop
sess = tf.Session()
sess.run(tf.initialize_all_variables())
mnist = get_mnist(flatten=True, onehot=True)
for i in range(1000):
   batch_xs, batch_ys = mnist.train.next_batch(100)
   sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})
```

Loss function **Declaration**

$$P(\text{label} = k) = y_k$$
$$L(y) = \sum_{k=1}^{10} I(\text{label} = k) \log(y_i)$$

Auto-diff

```
import tinyflow as tf
from tinyflow.datasets import get_mnist
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W))
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
# Update rule
learning_rate = 0.5
W_grad = tf.gradients(cross_entropy, [W])[0]
train_step = tf.assign(W, W - learning_rate * W_grad)
# Training Loop
sess = tf.Session()
sess.run(tf.initialize_all_variables())
mnist = get_mnist(flatten=True, onehot=True)
for i in range(1000):
   batch_xs, batch_ys = mnist.train.next_batch(100)
   sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})
```

Automatic Differentiation: Next incoming topic

SGD Update

```
import tinyflow as tf
 from tinyflow.datasets import get_mnist
 # Create the model
 x = tf.placeholder(tf.float32, [None, 784])
 W = tf.Variable(tf.zeros([784, 10]))
 y = tf.nn.softmax(tf.matmul(x, W))
 # Define loss and optimizer
 y_ = tf.placeholder(tf.float32, [None, 10])
 cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
 # Update rule
 learning_rate = 0.5
 W_grad = tf.gradients(cross_entropy, [W])[0]
 train_step = tf.assign(W, W - learning_rate * W_grad)
- # Traiming Loop -
 sess = tf.Session()
 sess.run(tf.initialize_all_variables())
 mnist = get_mnist(flatten=True, onehot=True)
 for i in range(1000):
    batch_xs, batch_ys = mnist.train.next_batch(100)
    sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})
```

SGD update rule

Trigger the Execution

```
import tinyflow as tf
from tinyflow.datasets import get_mnist
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W))
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
# Update rule
learning_rate = 0.5
W_grad = tf.gradients(cross_entropy, [W])[0]
train_step = tf.assign(W, W - learning_rate * W_grad)
# Training Loop
sess = tf.Session()
sess.run(tf.initialize_all_variables())
mnist = get_mnist(flatten=True, onehot=True)
for i in range(1000):
   batch_xs, batch_ys = mnist.train.next_batch(100)
   sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})
```

Real execution happens here!

What happens behind the Scene

```
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W))

www.matmult softmax
x
```

What happens behind the Scene (Cond.)

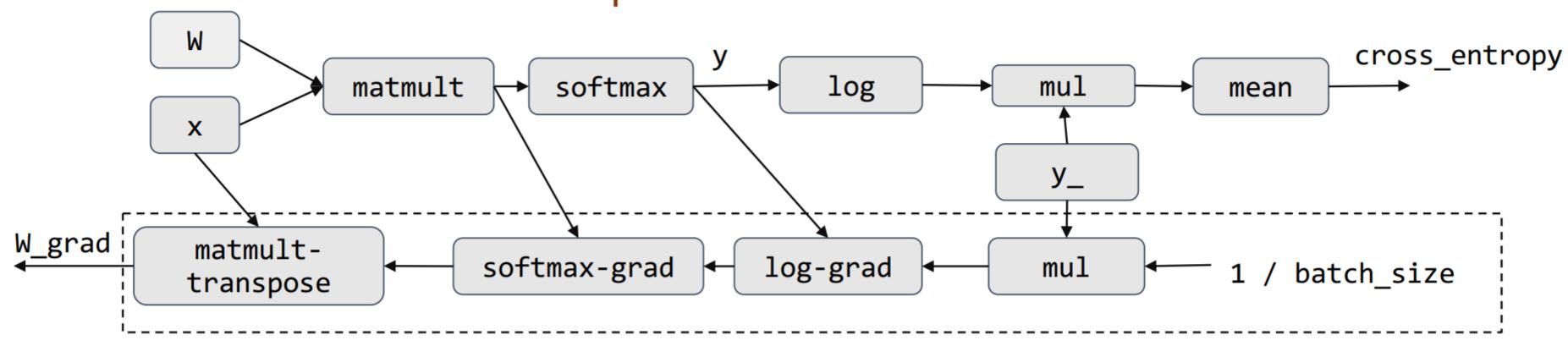
```
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
```



What happens behind the Scene (Cond.)

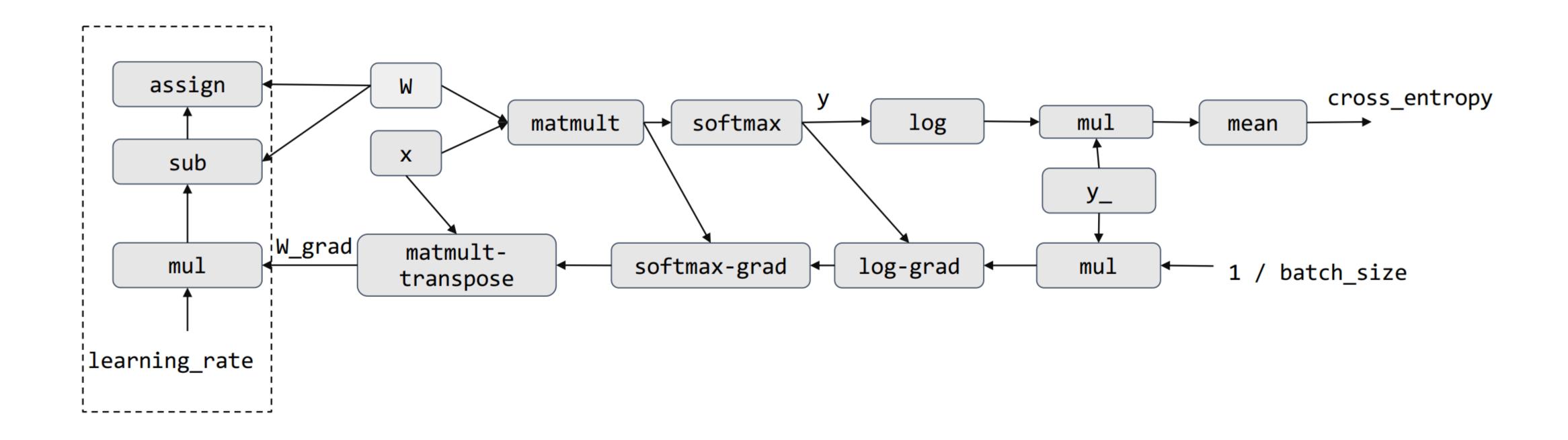
W_grad = tf.gradients(cross_entropy, [W])[0]

Automatic Differentiation, more details in follow up lectures



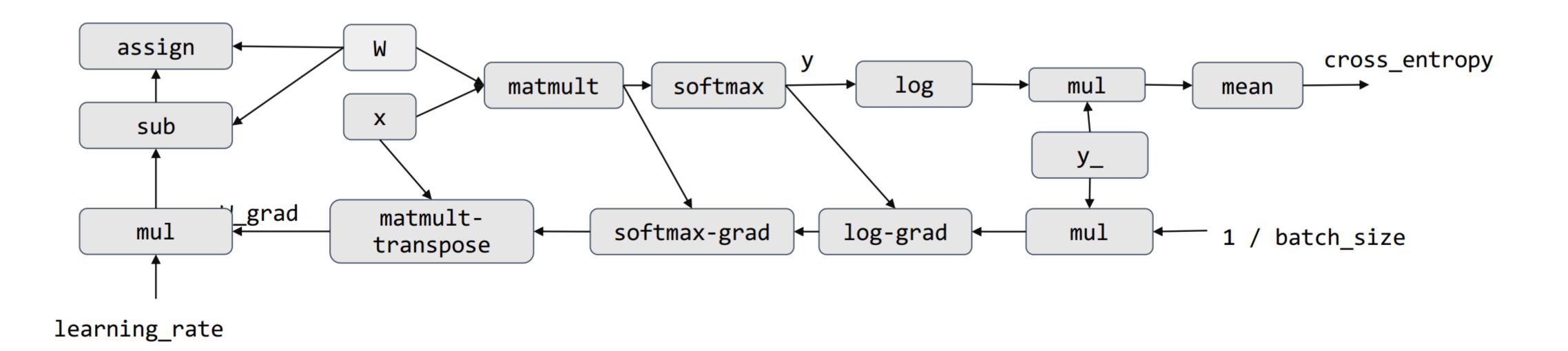
What happens behind the Scene (Cond.)

sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})



Discussion

- What are the benefits for computational graph abstraction?
- What are possible implementations and optimizations on this graph?
- What are the cons for computational graph abstraction?



A different flavor: PyTorch

A graph is created on the fly

```
W_h = torch.randn(20, 20, requires_grad=True)
W_x = torch.randn(20, 10, requires_grad=True)
x = torch.randn(1, 10)
prev_h = torch.randn(1, 20)
```


Topic: Symbolic vs. Imperative

- Symbolic vs. imperative programming
- Define-then-run vs. Define-and-run

```
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W))
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
```

Symbolic

```
x = torch.Tensor([3])
y = torch.Tensor([2])
z = x - y
loss = square(z)
loss.backward()
print(x.grad)
```

Imperative

Discussion: Symbolic vs. Imperative

- Symbolic
 - Good
 - easy to optimize (e.g. distributed, batching, parallelization) for developers
 - Much more efficient: can be 10x more efficient
 - Bad
 - The way of programming might be counter-intuitive
 - Hard to debug for user programs
 - Less flexible: you need to write symbols before actually doing anything
- Imperative:
 - Good
 - More flexible: write one line, evaluate one line (that's why we all like Python)
 - Easy to program and easy to debug
 - Bad
 - Less efficient
 - More difficult to optimize

MCQ Time

 Which category, symbolic vs. imperative, is the following PL belonging to?

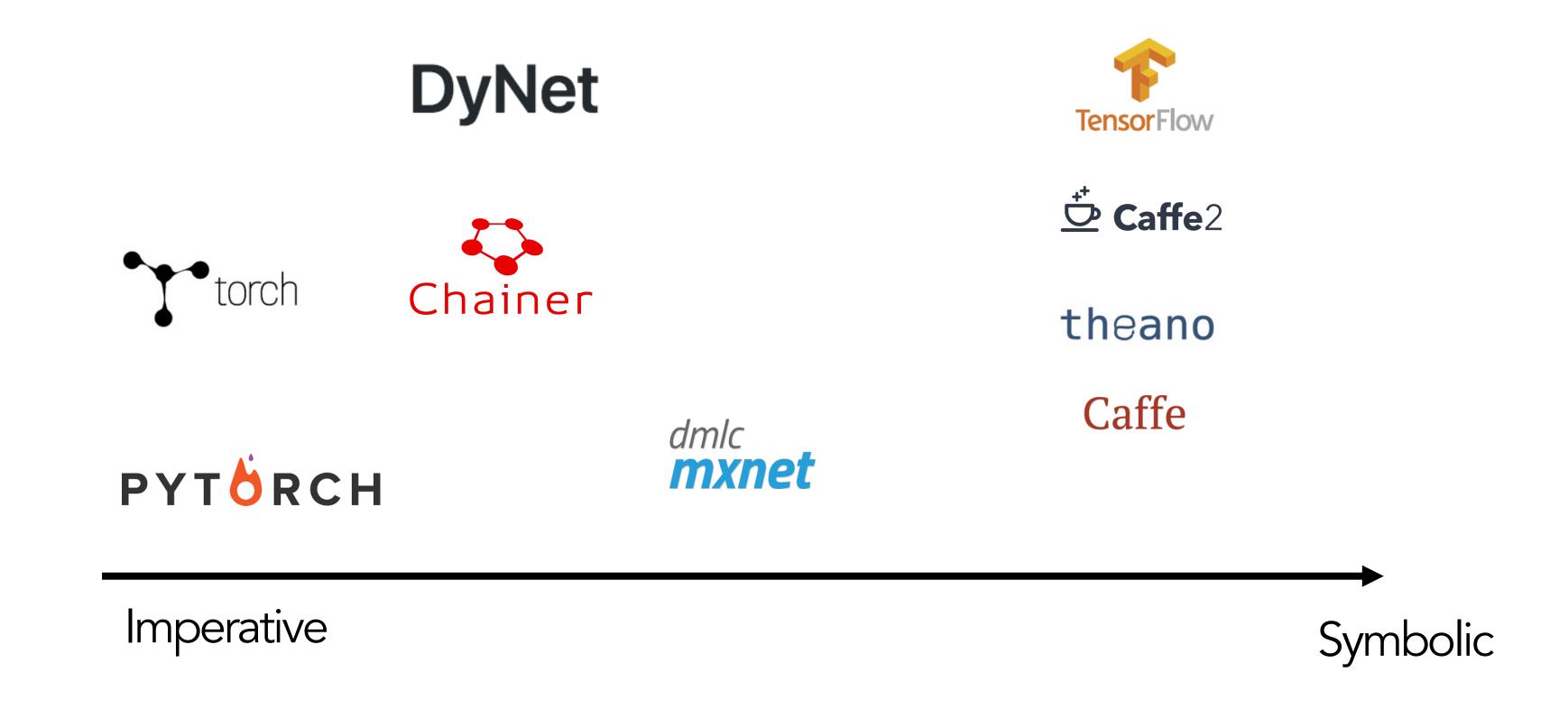
- C++
- Python
- SQL

Something Interesting Here?

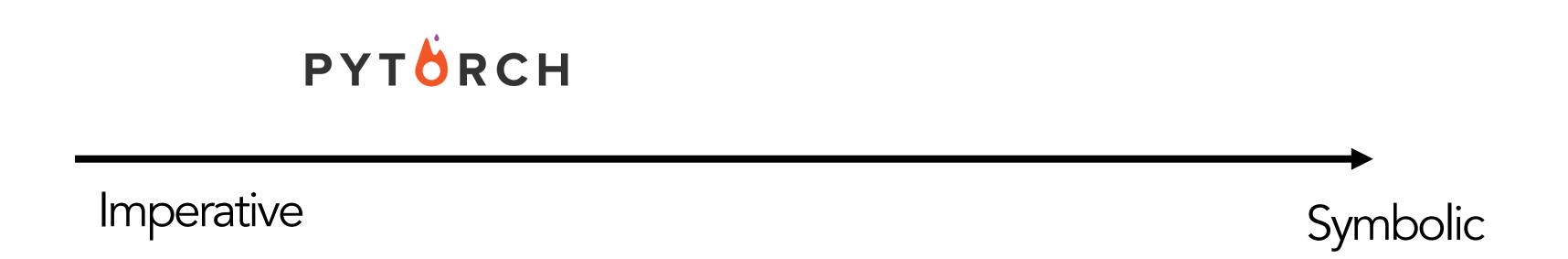
- Python is a define-and-run PL
- Tensorflow is define-then-run ML framework
- Tensorflow has Python as the primary interface language

- You are indeed using a DSL built on top of Python
 - But PyTorch DSL is more pythonic than Tensorflow DSL.

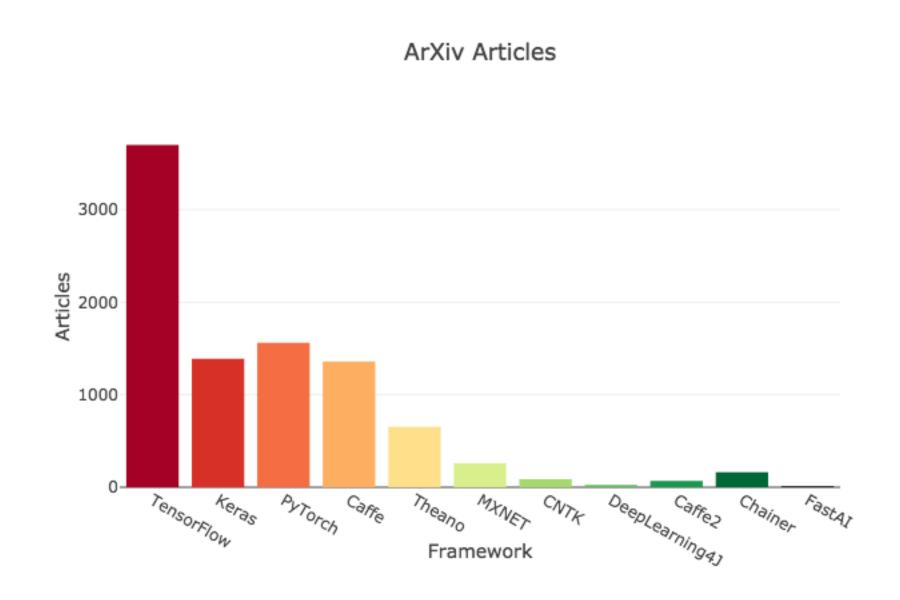
Symbolic vs. Imperative (2016)

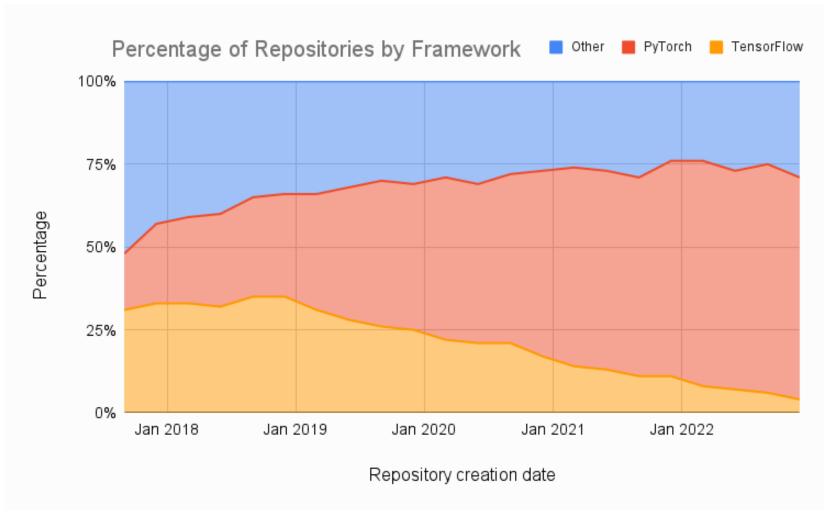


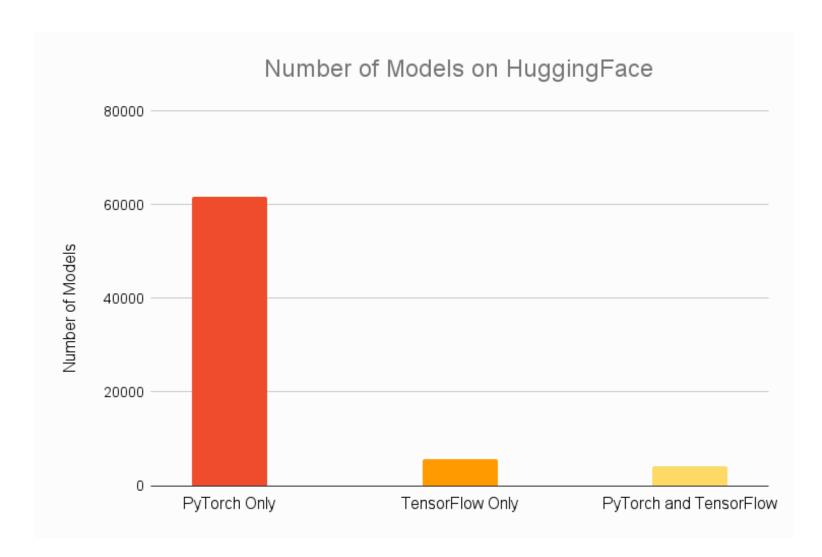
Symbolic vs. Imperative (2024)



Market size of frameworks



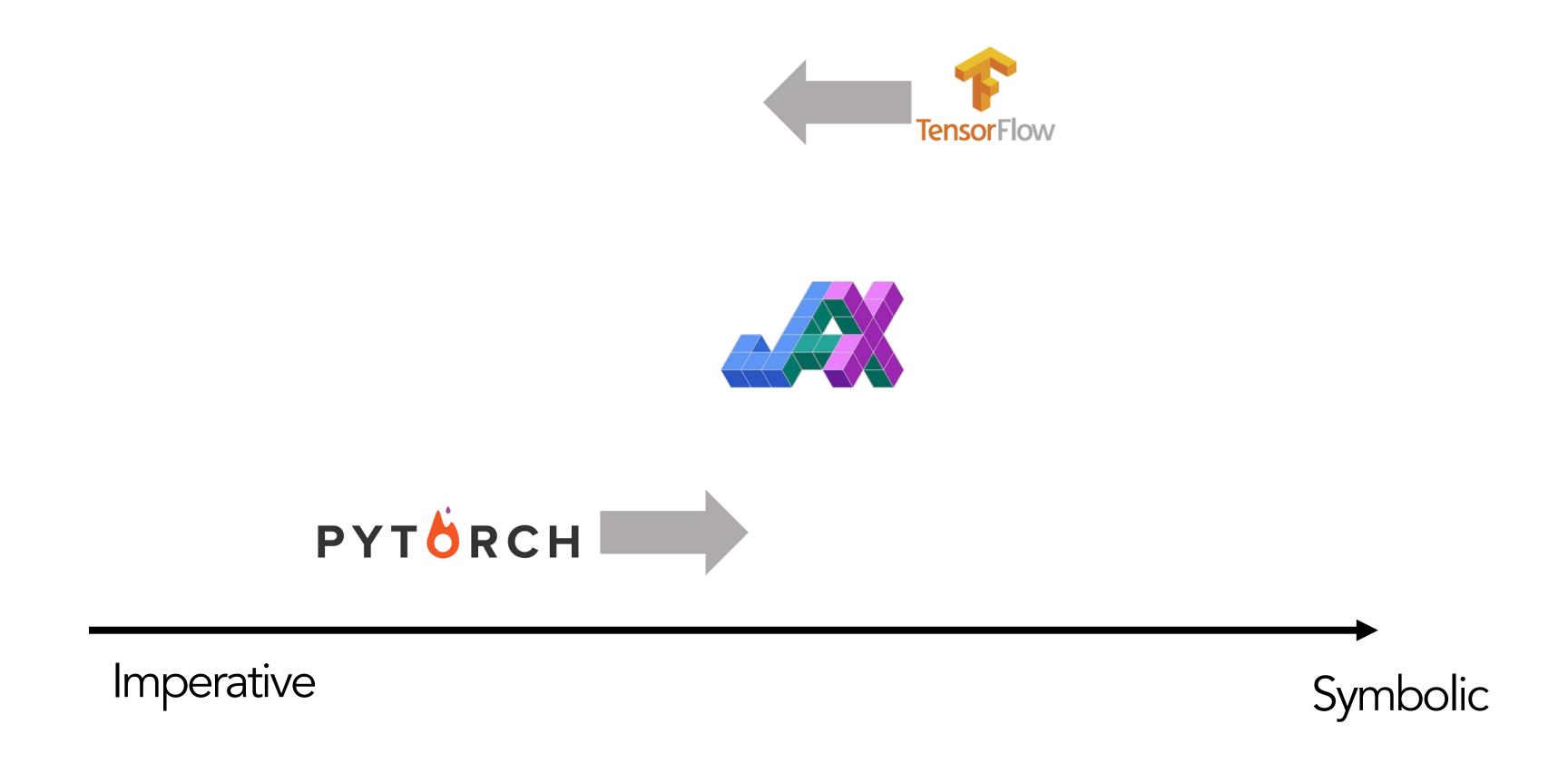




After-class Question

Why PyTorch wins the market even if it was a later framework?

Symbolic vs. Imperative (2024)



Just-in-time (JIT) Compilation

- Ideally, we want define-and-run during
- We want define-then-run during
- Q: how can combine the best of both worlds?

```
x = torch.Tensor([3])
y = torch.Tensor([2])
z = x - y
loss = square(z)
loss.backward()
print(x.grad)
```

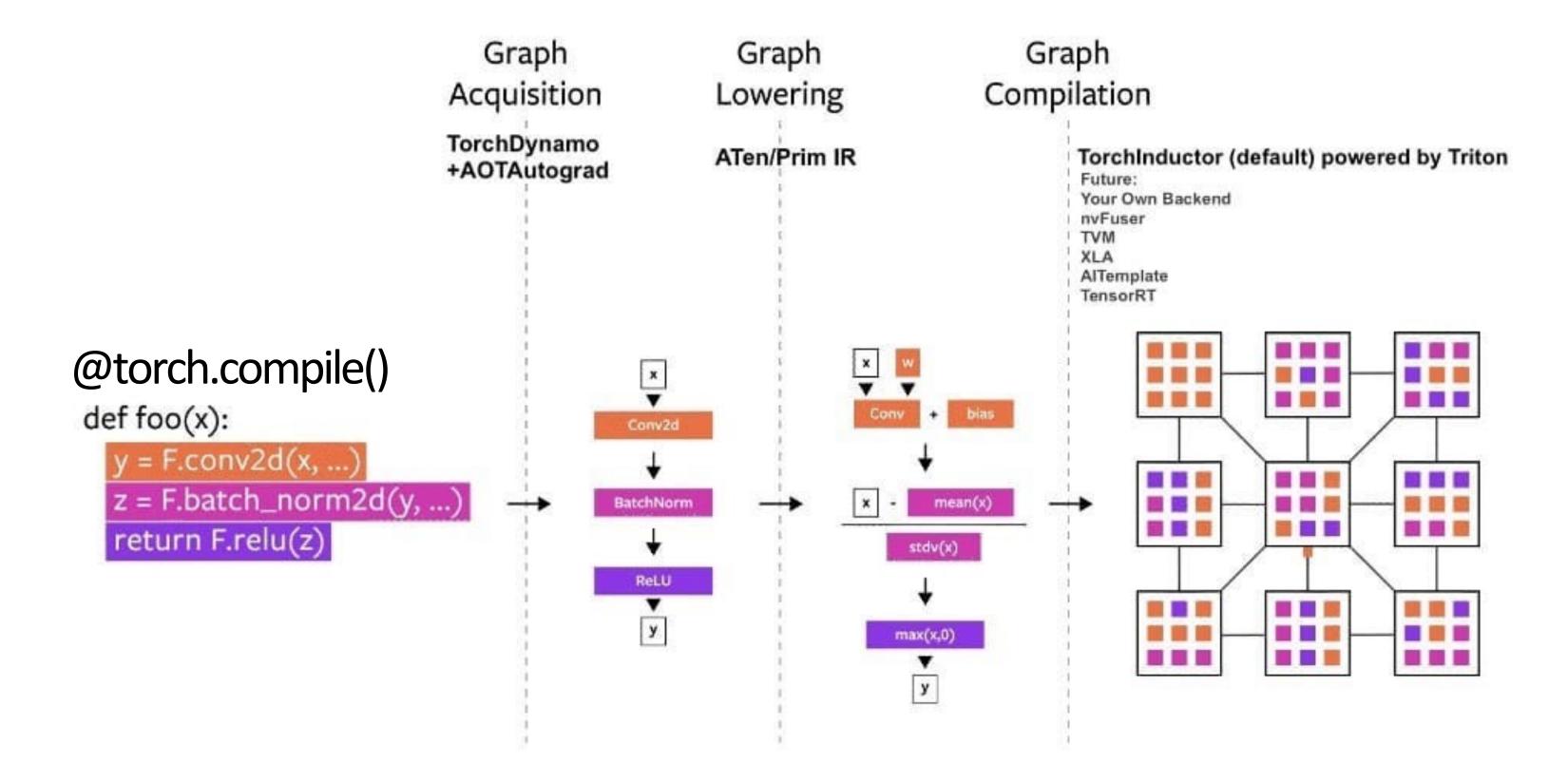
Dev mode

@torch.compile()

```
x = torch.Tensor([3])
y = torch.Tensor([2])
z = x - y
loss = square(z)
loss.backward()
print(x.grad)
```

Deploy mode: Decorate torch.compile()

What happens behind the scene

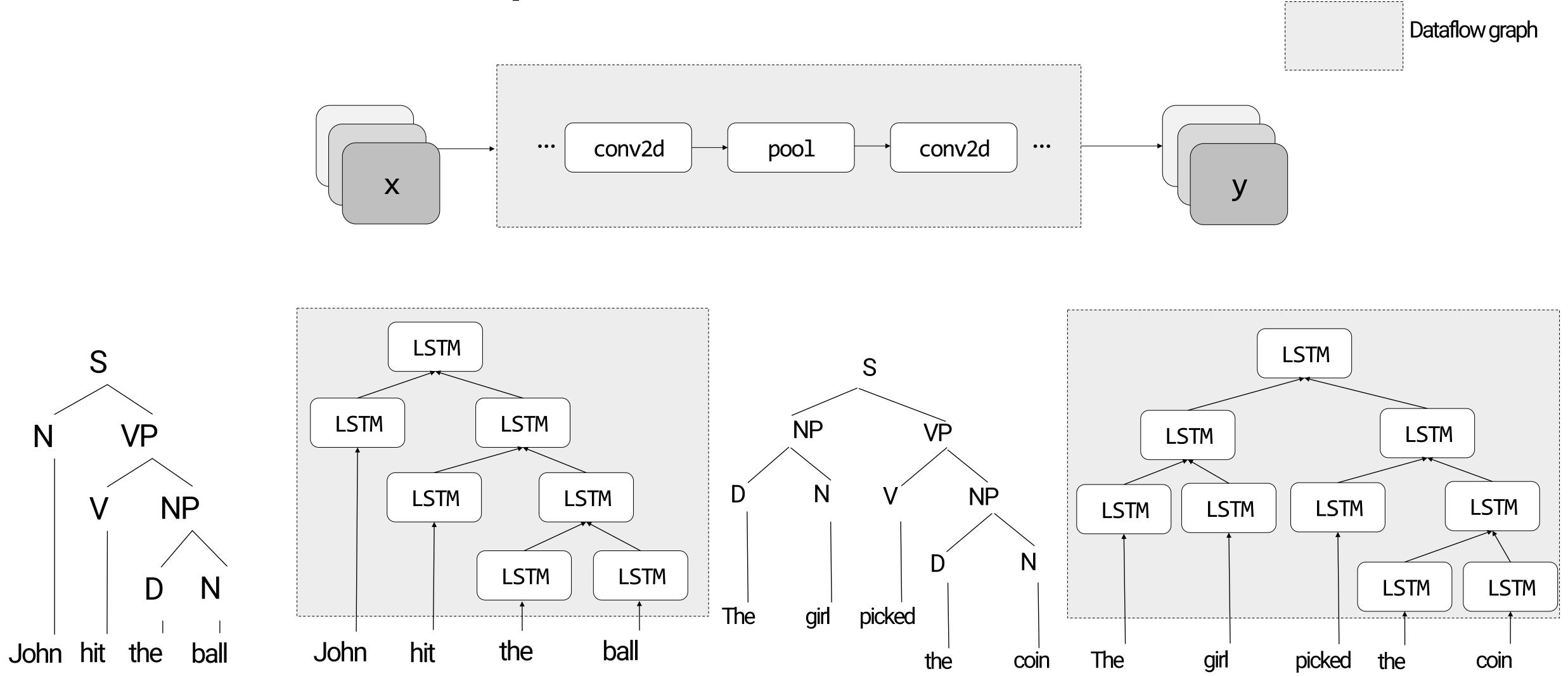


What is the problem of JIT?
Requirements for static graphs

Q: What is the problem of JIT?

A: Requirements for static graphs

Static Models vs. Dynamic Models



Static vs. Dynamic Dataflow Graphs

- Static Dataflow graphs
 - Define once, optimized once, execute many times
 - Execution: Once defined, all following computation will **follow** the defined computation

Static vs. Dynamic Dataflow Graphs

- Dynamic Dataflow Graphs
 - Difficulty in expressing complex flow-control logic
 - Complexity of the computation graph implementation
 - Difficulty in debugging

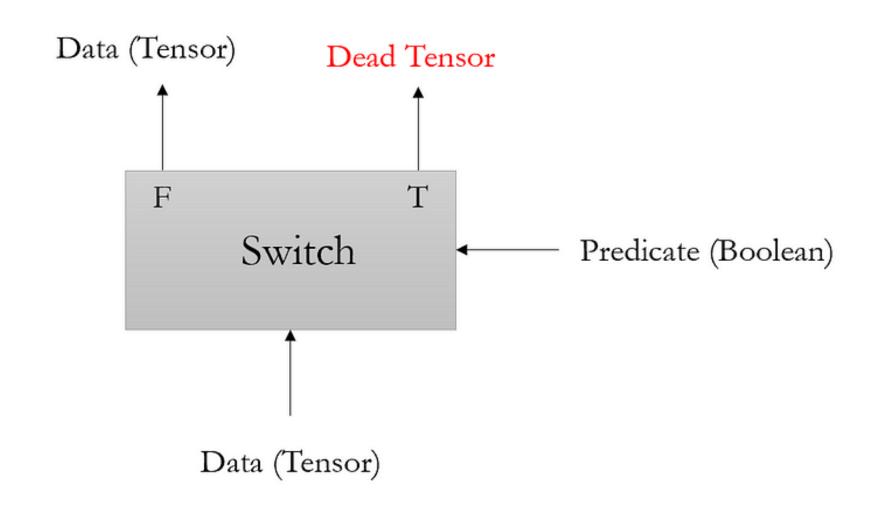
Open Research: How to Handle Dynamics?

Three ways:

- Just do Define-and-run and forget about JIT
 - As long as you do not care about performance...
- Introduce Control flow Ops
- Piecewise compilation and guards

Control flow primitives

Example primitive: Switch and Merge



Data (Tensor)

Merge

Data (Tensor)

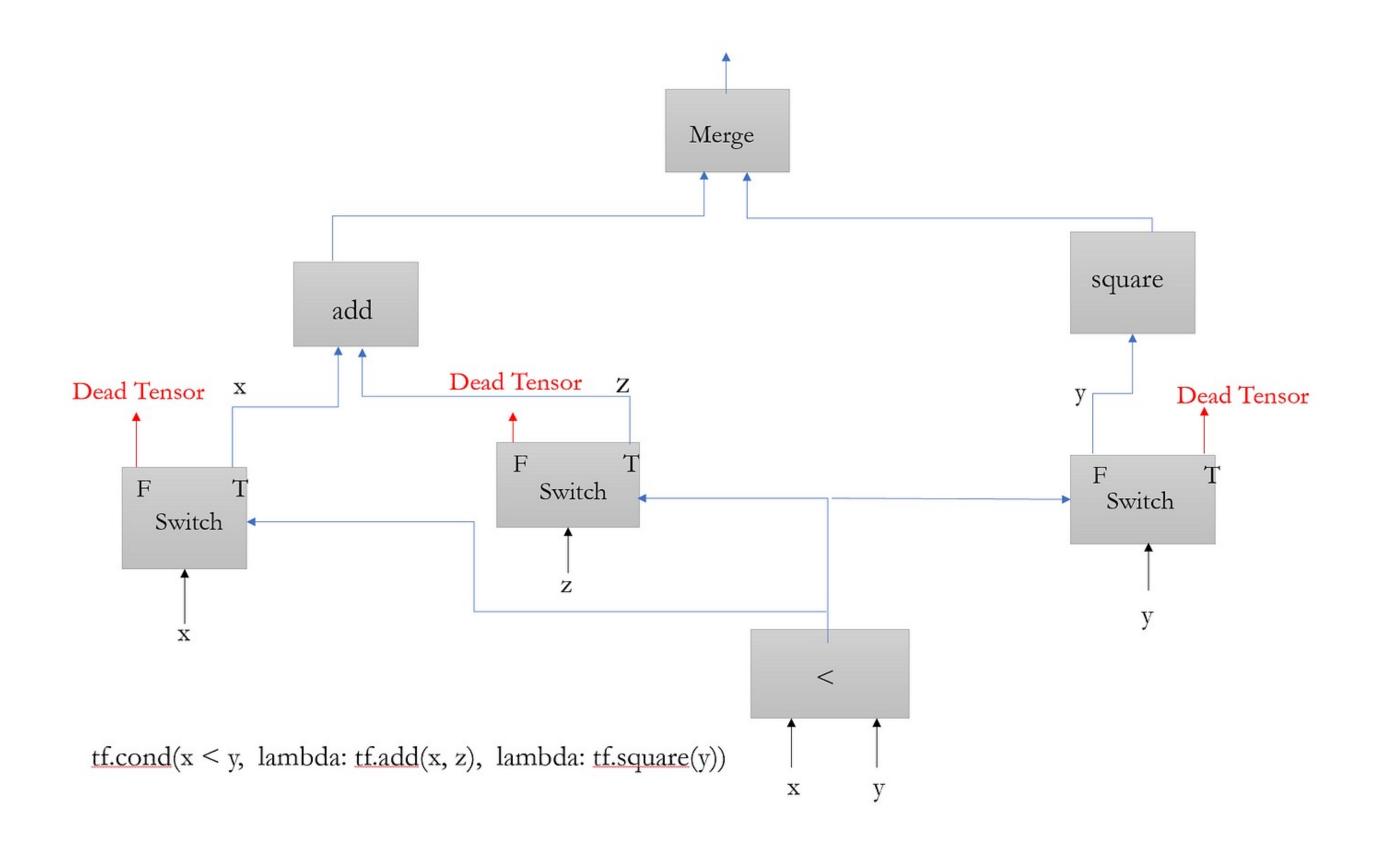
Dead Tensor

Switch receives two arguments: Data and predicate (boolean), and has two outputs: data and dead Tensor

Merge receives two arguments: Data and dead Tensor, and has one outputs: data

Control flow primitives

Example compute: tf.cond(x < y, lambda: tf.add(x, z), lambda: tf.square(y))



Control flow primitives

Control flow is natural idea in all PLs:

- if...then...,
- for,
- while

What is the potential problem of using control flow in dataflow graphs?

Piecewise Compilation

- Case 1: a graph accepting input shapes of [x, c1, c2]
 - c1, c2: constants
 - x: variable
 - Q: how to statically JIT this graph?

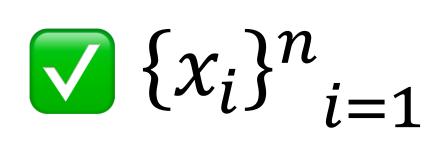
- Case 2: a graph with is static, then dynamic, then static.
 - Q: how to statically JIT this graph?

High-level Picture

Data

Model

Compute



? A repr that expresses the computation using primitives

? Make them run on (clusters of) different kinds of hardware

Next class

A repr that expresses the computation using primitives

A repr that expresses the forward computation using primitives

? A repr that expresses the backward computation using primitives