
1

MLSys Basics

Optimizations and Parallelization

LLMSys

CSE 234: Data Systems for Machine Learning
Winter 2025

https://hao-ai-lab.github.io/cse234-w25/

Forms worth your attention

•Beginning of quarter survey
• Please fill the survey by end of week 2
• If >=80% of you filled the survey, all of you get 1%

• If <80%, all of you do not get 1%
•Scribe sign-up:
•Do it as a team.

•Do it as detailed as possible.
•Most efficient way to get 8%!

• There is a slack for your convenience:
• https://join.slack.com/t/cse234-w25/shared_invite/zt-2xc1bsmxz-xFXiufPMM8Fv8eCsiaT2Rg

https://join.slack.com/t/cse234-w25/shared_invite/zt-2xc1bsmxz-xFXiufPMM8Fv8eCsiaT2Rg

Today

•Understand our workloads

•Dataflow graph representation

•Flavors of different ML frameworks

Background: DL Computation

Input

Backward Propagation

Dog

Forward Propagation

Layer 1 Layer 2 Layer n…

Prediction

Cat

•Idea: Composable Layers

Dive in to Models: Three parts

• Model: A parameterized function that describes how do we map inputs to

predictions

• Parameters: to be optimized

• Loss function: How “well” are we doing for a given set of parameters

• L2 loss, hinge loss, softmax loss, ranking loss

• Optimization method: A procedure to find a set of parameters that minimizes the loss

• SGD, Newton methods,

parameter model
(CNN, GPT, etc.) dataweight update

(sgd, adam, etc.)

Three important components

Data Model Compute

• Images
• Text
• Audio
• Table
• etc.

• CPUs
• GPUs/TPUs/LPUs
• M1/M2/M3/M4
• FPGA/etc.

• CNNs
• RNNs
• Transformers
• MoEs
• Etc.

Today

•Understand our Workloads: Deep Learning
•Dataflow graph representation

How we prioritize in a fast-evolving world?

•There are many great models developed in history

•We will not be able to build systems that can support all models

•What are the most important workloads that solve 80% of the

problems?

•System building is the process to reveal the most important factors

What are the most important models and optimization algos

Most important models?

•Convolutional neural networks

•Recurrent neural networks

•Transformers

•Mixture-of-Experts

Most important optimization algorithms?

•SDG and its variants, e.g., Adam

Understand Our Workload (a.k.a. DL course in 20 mins)

• In this class, we review the most important 4 model families
•Convolutional Neural Networks
•Recurrent neural networks

• Transformers
•Mixture-of-Experts

•We will keep asking ourselves: what are the most important X in Y (X⊂ Y) to

spec out system building abstraction
•E.g., X = ResNet, Y = CNNs

• If you have trouble following this session, spend time reading deep learning

book or learn https://sites.google.com/view/cse251b

CNNs: Applications

CNN: Key components

•Convolve the filter with the image: slide over the image spatially and

compute dot products

Principle: Stacking Conv layers

CNN: Top3 models

•AlexNet [Alex/Iliya/Hinton]

•ResNet [Kaiming etc.]

•U-Net [Olaf etc.]

Most important components in CNNs?

• Conv
• Conv1d, Conv2d, conv3d, esp. 3x3-conv2d

• Matmul (linear) :
• C = A * B

• Softmax
• Elementwise operations:

• ReLU, add, sub
• Pooling, normalization, etc.

Recurrent Neural Networks

Recurrent Neural Networks

Recurrent Neural Networks: unrolling the computation

•One can make any NN recurrent

RNN: top3 models

•Bidirectional RNNs

•LSTM

•GRU

Most Important Components in RNNs

•Matmul

•Elementwise nonlinear

•ReLU, Tanh, sigmoid, etc.

MCQ Example (A difficult one)

Who Invented LSTMs?

Why ChatGPT was not built using RNNs?

• Problem 1: forgetting.

• h * 0.9 * 0.9 * … -> 0

• Problem 2: lack of parallelizability.

• Both forward and backward passes have O(sequence length) unparallelizable

operators. i.e., a state cannot be computed before all previous states have been

computed Inhibits training on very long sequence

Attention: Enable parallelism

•Idea: treat each position’s representation as a query to access and

incorporate information from a set of values

Attention

•Massively parallelizable: number of unparallelizable operations does

not increase sequence length

Transformers: Attention + MLP

Transformers: Top3 models?

•Bert

•GPT/LLMs

•DiT: diffusion

Transformer becomes the chosen one… (for a reason)

https://www.youtube.com/watch?v=9l9xGoyDhMM

Most Important Components in Transformers?

•Transformers = Attention + MLP + something else

•Attention:

•Matmul
•Softmax

•Normalization

•MLP：
•Matmul

•Something else:

•Layernorm, GeLU, etc.

MoE: mixture of experts

•Ideas: Voting from many experts could be better than one expert

Novel Component in MoE?

•Latest LLMs are mostly MoEs

•Grok, Mixtral, GPT4, Deepseek-v3

•Novel Components in MoE:

•Router

•What constitutes Router?

•Matmul, Softmax

•After-class Q:

•Why router makes it hard

Rundown from a compute perspective

•CNNs: Conv, Matmul, Softmax, ReLU, batchnorm.

•RNNs: Matmul, sigmoid, tanh

•Transformers: Matmul, Softmax, GeLU, layernorm
•MoE: Matmul, softmax

Or:
Matmul: 4 times

Softmax: 3 times

Others…

Summary of DL class in 30 mins

Matmul (plus softmax) are all you need

MLSys ~= Matmul Sys

High-level Picture

Data Model Compute

𝑥! "!#$

Math primitives
(mostly matmul)

✅

✅

❓A repr that expresses
the computation using

primitives

❓Make them run on
(clusters of) different

kinds of hardware

Today

•Understand our Workloads: Deep Learning

•Dataflow graph representation

•Flavors of different ML frameworks

Recall our Goal

•Goal: we want to express as many as model as possible using one set

of programming interface by connecting math primitives

•What constitutes a model from math primitives?

•Model and architecture: connecting math primitives

•Objective function

•Optimizer

•Data

Discussion: how we express computation in history
Applications <-> System Design

Application

Systems

Data management
(OLTP)

SQL
Query planner

Relational database
Storage

Big data processing
(OLAP)

Spark/mapreduce
Dataflow, lineage
Data warehousing
Column storage

Computational Dataflow Graph

•Node: represents the computation (operator)

•Edge: represents the data dependency (data flowing direction)

•Node: also represents the output tensor of the operator

•Node: also represents an input constant tensor (if it is not a compute

operator)

x MSE

y

relu matmul

w2

matmul

w1

a x b + 3

Case Study: TensorFlow Program

•In the next few slides, we will do a case study of a deep learning

program using TensorFlow v1 style API (classic Flavor).

•Note that today most deep learning frameworks now use a different

style, but share the same mechanism under the hood

•Think about abstraction and implementation when going through these

examples

One linear NN: Logistic Regression

Whole Program

Loss Function

Auto-diff

SGD Update

Trigger the Execution

What happens behind the Scene

What happens behind the Scene (Cond.)

What happens behind the Scene (Cond.)

What happens behind the Scene (Cond.)

Discussion

•What are the benefits for computational graph abstraction?

•What are possible implementations and optimizations on this graph?

•What are the cons for computational graph abstraction?

A different flavor: PyTorch

Topic: Symbolic vs. Imperative

•Symbolic vs. imperative programming

•Define-then-run vs. Define-and-run

ImperativeSymbolic

52

Discussion: Symbolic vs. Imperative

• Symbolic
• Good

• easy to optimize (e.g. distributed, batching, parallelization) for developers
• Much more efficient: can be 10x more efficient

• Bad
• The way of programming might be counter-intuitive
• Hard to debug for user programs
• Less flexible: you need to write symbols before actually doing anything

• Imperative:
• Good

• More flexible: write one line, evaluate one line (that’s why we all like Python)
• Easy to program and easy to debug

• Bad
• Less efficient
• More difficult to optimize

MCQ Time

•Which category, symbolic vs. imperative, is the following PL belonging

to?

•C++

•Python

•SQL

Something Interesting Here?

•Python is a define-and-run PL

•Tensorflow is define-then-run ML framework

•Tensorflow has Python as the primary interface language

•You are indeed using a DSL built on top of Python

•But PyTorch DSL is more pythonic than Tensorflow DSL.

55

Symbolic vs. Imperative (2016)

Imperative Symbolic

56

Symbolic vs. Imperative (2024)

Imperative Symbolic

Market size of frameworks

After-class Question

Why PyTorch wins the market even if it was a later framework?

59

Symbolic vs. Imperative (2024)

Imperative Symbolic

Just-in-time (JIT) Compilation

•Ideally, we want define-and-run during ______

•We want define-then-run during _____

•Q: how can combine the best of both worlds?

@torch.compile()

Dev mode Deploy mode:
Decorate torch.compile()

What happens behind the scene

@torch.compile()

What is the problem of JIT?
Requirements for static graphs

Q: What is the problem of JIT?
A: Requirements for static graphs

LSTM LSTM

LSTMLSTM

LSTMLSTM

LSTM

Static Models vs. Dynamic Models

63

conv2d pool conv2dx yxx yy

S

VP

VD N

NP

NP

D N

The girl picked

the coin

S

John

N VP

V NP

D N

hit the ball John hit the ball

LSTM

LSTM LSTM

LSTM

LSTM LSTM

LSTM

LSTM LSTM

The girl picked the coin

Dataflow graph

64

Static vs. Dynamic Dataflow Graphs

•Static Dataflow graphs

•Define once, optimized once, execute many times

•Execution: Once defined, all following computation will follow the

defined computation

65

Static vs. Dynamic Dataflow Graphs

•Dynamic Dataflow Graphs

•Difficulty in expressing complex flow-control logic

•Complexity of the computation graph implementation

•Difficulty in debugging

Open Research: How to Handle Dynamics?

Three ways:

•Just do Define-and-run and forget about JIT

•As long as you do not care about performance…

•Introduce Control flow Ops

•Piecewise compilation and guards

Control flow primitives

•Example primitive: Switch and Merge

Control flow primitives

•Example compute: tf.cond(x < y, lambda: tf.add(x, z), lambda: tf.square(y))

Control flow primitives

Control flow is natural idea in all PLs:

•if…then…,

•for,

•while

What is the potential problem of using control flow in dataflow graphs?

Piecewise Compilation

•Case 1: a graph accepting input shapes of [x, c1, c2]

•c1, c2: constants

•x: variable

•Q: how to statically JIT this graph?

•Case 2: a graph with is static, then dynamic, then static.

•Q: how to statically JIT this graph?

High-level Picture

Data Model Compute

𝑥! "!#$

Math primitives
(mostly matmul)

✅
✅

❓A repr that expresses
the computation using

primitives

❓Make them run on
(clusters of) different

kinds of hardware

Next class

A repr that expresses the
computation using

primitives

✅ A repr that expresses
the forward computation

using primitives

❓ A repr that expresses the
backward computation

using primitives

