@ https://hao-ai-lab.github.io/cse234-w25/

CSE 234: Data Systems for Machine Learning
Winter 2025

LLMSys

Optimizations and Parallelization

MLSys Basics

Logistics

® | 80% of you finish the course eval, all get +2 points in final score!l
® Currently: we are 50%

* TA will hold a recitation for exam:
®* Watch for announcement

* Make sure to attend (there will be recordings though)

Recap: Next Token Prediction

Probalbility("Scin Diego has very nice wecather”)
— P(“Scn Diegou) P(“hCIS” | ”Sdn DiegO")P(“Very" | "Sdn Diego
has")P(“dty”|...).. .P(“weather’|...)

T
Max Prob(x;.;) = HP (el 1)
t=1

This is'%del we got—capable of
“predicting the next token”.

Output

Input

Repeat until the sequence

the

Inference process of LLMs

Layer N

|

Layer 1

—r—

future

—r—

of

Layer N

Layer N

|

Layer 1

Layer 1

Artificial

Intelligence

is

Y

the

Y

future

e Reaches its pre-defined maximum length (e.g., 2048 tokens)

e Generates certain tokens (e.g., “<|end of sequence|>")

Generative LLM Inference: Autoregressive Decoding

* Pre-filling phase (O-th iteration):
®* Process all input tokens at once
®* Decoding phase (all other iterations):
® Process a single token generated from previous
iteration

*Key-value cache:
® Save attention keys and values for the following
iterations to avoid recomputation
* what is KV cache essentiallye

w/ KV Cache vs. w/o KV Cache

E=)
B0 D b s nd) (b, 5m,d) (b,5,1,d) (h, b) # T |
(b’ S’ n’ d)
Step 1
(h, n, d)
— Multiply V H Output ’ Q KT QKT v Attention
bi ¢l Y d
(b, s,n, d) T (b,s,n, d) (b, s, h) ~ QK Value Token 1 | | Token 1
(h,n, d) o 5
p— X % = X =
[}
(b,s,n,d) =,
(1, emb_size) (emb_size, 1) (1,1 (1, emb_size) (1, emb_size)
DVaIues that will be masked

Zoom-in! (simplified without Scale and Softmax)

Q1: what happens on KV cache in prefill phase?
w/ KV Cache vs. w/o KV CadRig Do We neediocache Q7

Step 1
Q KT QKT Vv Attention
Query Token 1 = Value Token 1 Token 1
N Y
S x| g = X -
S3 >
(1, emb_size) (emb_size, 1) (1,1 (1, emb_size) (1, emb_size)
Q KT QK™ v Attention
Query Token 1 ~ Value Token 1 Token 1
S o %
Ss x |8 - x -
& z
(1, emb_size) (emb_size, 1) (1, 1) (1, emb_size) (1, emb_size)

D Values that will be masked D Values that will be taken from cache

Potential Bottleneck of LLM Inference?¢
() Wo Jhnd @ dbsnd (b5 0.d) (h,h) (h,) - (h, i))
' n

(b, s, n,d) [v J WOurpm

We o o d l
Multiply V H Output]

(b, s, n, d) (b, s, h)
Wr h, n, d)
v (b,s,n,d)

* Compute:
® Prefill: largely same with training

® Decode:s =1
* Memory

* New: KV cache Q? how about batch size b?
® Communication

®* mostly same with training

Serving vs. Inference

Serving: many requests, online Inference: fewer request,
traffic, emphasize cost-per-query. low or offline traffic,
s.t. some mild latency constraints emphasize latency

emphasize throughput

largeb @ .
Potential Bottleneck of LLM Inference in Serving ".“

.1, d)

(b5, 0, d) (b, s, 0. d) (b,s. 1, d) (h, b)

L Il/] W o
Multiply V H Output J
. S, 1, d

(h,)

* Compute:
® Prefill:

* Different prompts have different length: how to batche
®* Decode

* Different prompts have different, unknown #generated tokens
*s=1,bislarge
* Memory

* New: KV cache

* bislarge -> KV is linear with b -> will KVs be large to store?
* Communication

® mostly same with training

b=1
Potential Bottleneck of LLM Inference in Serving

(h,)) , 1, s.n, s n, (b, 5,1, d) (h, h)
ua W o

Multiply V H Output

(b, s, n, d) (b,s,h)

* Compute:
* Prefill:
®* Decode
' Differ%n’r prompts have different, unknown #generated tokens
®*s=1, b=l
* Memory
* New: KV cache
* Communication o
®* mostly same with fraining

GPUs are not very good atbs=1and s =1

v
max Al = #Hops / #bytes

Recap: Inference process of LLMs

Output the future of
—lr— —lr— —lr—
Layer N Layer N Layer N

| =
| | |

Layer 1 Layer 1 Layer 1

—r— —r— —r—

Y

Y

Input Artificial |Intelligence is the future

Repeat until the sequence
e Reaches its pre-defined maximum length (e.g., 2048 tokens)
13 e Generates certain tokens (e.g., “<|end of sequence|>")

Problem of bs = 1 b=1

Latency = step latency * # steps

/

Speculative decoding reduces this, hence amortize the
memory moving cost (but it may increase compute Cost)

Large Language Models

® Connecting the dots: Training Optimizations
* Fash attention « come back to this later next week

® Connecting the dofts: Deepseek-v3
* Hoft topics

Large Language Models

® Connecting the dots: Training Optimizations
* Fash attention « come back to this later next week

* Continuous batching and Paged attention

® Connecting the dofts: Deepseek-v3
* Hot topics

largeb @ .
Potential Bottleneck of LLM Inference in Serving ".“

.1, d)

(b5, 0, d) (b, s, 0. d) (b,s. 1, d) (h, b)

L Il/] W o
Multiply V H Output J
. S, 1, d

(h,)

* Compute:
® Prefill:

* Different prompts have different length: how to batche
®* Decode

* Different prompts have different, unknown #generated tokens
*s=1,bislarge
* Memory

* New: KV cache

* bislarge -> KV is linear with b -> will KVs be large to store?
* Communication

® mostly same with training

LLM Decoding Timeline

Generation Iteration

ey

18

Batching Requests to Improve GPU Performance

-~ - — - -

T Ta T3 Tq T Ty Tp Ty T T T Tq T3 Tg Tp Ty
S, [s, |S: % S, [s. | B

S: ¢, 8K S: [, |9 Vol

Sj 93 S'J Slj 3) 9.5

SUIsy A S‘i% [A A

Issues with static batching:

« Requests may complete at different iterations
* |dle GPU cycles

* New requests cannot start immediately

19

Continuous Batching

T Ty T3 Tq To Ty Tp Tg

gr IS, S' %

Sx|8,y

S'j s’) 33

Sy sy 1Sy sy B8l | |
Benefits:

* Higher GPU utilization
« New requests can start immediately

Orca: A Distributed Serving System for Transformer-Based Generative Models. OSD/ 22 20

Continuous Batching Step-by-Step

* Receives two new requests R1 and R2

R1: optimizing ML
systems

R2: LLM serving is

Request Pool
(CPU)

Execution Engine
(GPU)

21

Continuous Batching Step-by-Step

* Iteration 0: Compute the prefill of R1 and R2

R1: optimizing ML

systems C

R2: LLM serving is

Iteration O

Request Pool Execution Engine
(CPU) (GPU) 22

Continuous Batching Step-by-Step

'H 2
« Iteration 0: Compute the prefill of R1 and R2 Q: Howto baich these

Maximum sgrving batch
b,y size =3

[i](h‘“'d) (b, 5,1, d) (b, 5,1, d) (b, 5,1, d)
m @ - H o } thoptlmlzmg ML
(K Josn . — — systems
W Jone o
LV Jesng
R2: LLM serving is
i Iteration O

Execution Engine
(GPU) 23

Continuous Batching Step-by-Step

* Receive a new request R3; finish decoding R1 and R2

Maximum serving batch
size =3

R1: optimizing ML
systems

R2: LLM serving is

Request Pool Execution Engine
(CPU) (GPU)

C

Iteration 1

24

Continuous Batching Step-by-Step
Q: How to batch these?

* Receive a new request R3; finish decoding R1 and R2

Maximum serving batch

—) size =3

Multiply V H Output }

(b s.n.d) o) R1: optimizina ML
systems requires

R?:1'l M serving is Iteration 1
critical.

Execution Engine
(GPU) 25

Iteration 2: Traditional Batching

* Receive new requests R4, R5; Decode more steps for R1 and R2

Maximum serving batch
size =3

R4: Adog is R1: optimizing ML

systems requires ML
R2: LLM serving is Iteration 2
critical. <EOS>

R5: How are

Request Pool Execution Engine
(CPU) (GPU)

Iteration 3: Traditional Batching O: How to baich these?

* R3, R4, R5 waiting; Decode more steps for R1 and R2 (though R2
finished)

Maximum sgrving batch
size =3

R1: optimizing ML
systems requires ML ‘
|and

R2: LLM serving is Iteration 3
critical. <EOS>

R4: Adog is

R5: How are

Request Pool Execution Engine
(CPU) (GPU)

27

28

Summary: Traditional Batching

®* A batch isissued and run until completion
® Request in the queue cannot enter
® Request finished early cannot exit
®* GPUs can become idle due to different (and unknown) number

of generated tokens

Confinuous Batching Step-by-Step

® Receive a new request R3; finish decoding R1 and R2

Maximum serving batch
size =3

R1: optimizing ML
systems

R2: LLM serving is

Request Pool Execution Engine
(CPU) (GPU) 29

C

Iteration 1

Continuous Batching

* |teration 2: decode R1, R2, R3; receive R4, R5; R2 completes

R4: Adog is

R5: How are

Request Pool
(CPU)

Maximum serving batch
size =3

R3: Aman

R1: optimizing ML C

systems

Iteration 2

R2: LLM serving is

Execution Engine
(GPU) 30

Continuous Batching
Q: How to batch these?

* Iteration 2: decode R1, R2, R3; receive R4, R5; R2 complet

Maximum serying batch

Wy Jomo 0 na ©snd)) size = 3

]
Multiply V H Output } R3 A man

e (b, s.n. d) (b, s, h)

(h,n, d) o

(b,5.0.0) R1: optimizing ML

systems requires ML

s F

Iteration 2

R2: LLM consing s

critical <EOS>

Execution Engine
(GPU)

31

Traditional vs. Continuous Batching

* |teration 2: decode R1, R2, R3; receive R4, R5; R2 completes

Maximum serving batch Maximum serving batch
R4: A dog is size=3 size =3

R1: optimizing ML
systems requires ML .
R1: optimizing ML

systems requires ML

R5: How are

R2: LLM serving is Iteration 2

critical. <EOS>

R2: LLM serving is
critical. <EOS>

Request Pool Execution Engine Execution Engine
(CPU) (GPU) (GPU) 32

Continuous Batching

* |teration 2: decode R1, R2, R3; receive R4, R5; R2 completes

R4: Adog is

R5: How are

Request Pool
(CPU)

Maximum serving batch
size =3

R3: Aman

R1: optimizing ML C

systems

Iteration 2

R2: LLM serving is

Execution Engine
(GPU) 33

Continuous Batching Step-by-Step

* |teration 3: decode R1, R3, R4

R5: How are

Request Pool
(CPU)

Maximum serving batch
size =3

R3: Aman

R1: optimizing ML
systems

R4: Adogis

Execution Engine
(GPU)

C

Iteration 3

34

35

Summary: Continuous Batching

®* Handle early-finished and late-arrived requests more efficiently
®* Improve GPU utilization
® Key insight
® Attentions consume small percentage of flops (at short-
medium context length)

®* MLP kernels are agnostic to the sequence dimension

KV Cache

Output the
—lr—
Layer N
(nitcal [0z T o1 [a1] |
Intelligence| 0.9 0.7 0.2 |
(s L0l 1031 01])
KV CaChe Layer 1
artiicial [01] 08 | 12] |
| Intelligence| 0.7 -0.4 0.8 |
L s 02 | -01 1.1)
—alr—
Input Artificial |Intelligence| s

future

—r—

Layer N

the |

-11 | 05 |

0.4 |

Layer 1
A

the |

07 | 01 |

0.2 |

—r—

the

36

Output

anut

KV Cache

KV Cache

Artificial
Intelligence
is
the

Artificial
Intelligence
is

[
I
I
I
I
I
I
I
I

of
Layer N
A
T —— — -
-0.2 0.1 1.1 |\ future] 01 | 212 | 05 |
0.9 0.7 0.2 |
01 | -03 0.1
11 | 05 | 04 | | .
I :
| Layer 1
/:/.
-0.1 0.3 1.2 | future[-06 | 0.0 | 09 |
0.7 -0.4 0.8 |
0.2 -0.1 Ll
-0.7 0.1 -0.2
future

38

KV Cache

* Memory space to store intfermediate vector representations of tokens
®* Working set rather than a “cache”

® The size of KV Cache dynamically grows and shrinks

future[_06 [T

: : of
* A new token is appended in each step -
—ur-
* Tokens are delefed once fthe sequence finishes L LayerN
[Aheisl [02_] 03]\ e EEEEREIEGES)
| motomcn 08 PO P02 |
| e 11] 05 | 04 | |
| | :
KV Cache | |
| [t
! ——
! !
| !

Is ¥
Woor i 07 | 01 | 02 1/

T e —ar—
future

Key insight

Efficient management of KV cache is crucial for high-throughput

LLM serving
- - EXisting systems -— vLLM
)
e
)
(@)]
3
KV Cache =
Parameters |(13GB, 33%) g* |
(26GB, 65%) £ :
= !
Param. 8 40
size Batch size (# requests)

Others

13B LLM on A100-40GB

Key insight

Efficient management of KV cache is crucial for high-throughput LLM

serving -
. — EXisting systems — VLLM
m A
O 40
© ! :
Q | |
KV Cache g . :
Parameters |(13GB, 33%) g* 26 | |
(26GB, 65%) = ! :
|
= 1 : >
A I I
— — — —I ———————————————————
Others 3 32 |
c v I
S & !
13B LLM on A100-40GB <R !
£ = 0.8~ -=
l_ -
40 8 40

Batch size (# requests)

Memory waste in KV Cache

2 slots for
generated tokens

3 slots future used
(reserved)
Al

Intellige
nce

Artificial

~

3 token states for
request A's prompt

® Reservation: not used at the current step, but used in the future

® Internal fragmentation: over-allocated due to the unknown

41

Request A
current step

output length.

fragmentation
P

technol
<e0s> <resv> <resv>

ogy

~
2040 slots never used
(internal fragmentation)

Request B

Memory waste in KV Cache

. Internal External
M Token states ™ Reservation I8 fragmentation fragmentation

Amu 89

& 36.6

s 80 4 41.6 .

(@)

%

S 60+

(]

c

O 40 A

©

O

= 204

X

0 - -

Orca Orca Orca Ours
(Max) {Pow2) (Oracle)

Only 20-40% of KV cache is utilized to store token states

*Yu, G. I, Jeong, J. S., Kim, G. W., Kim, S., Chun, B. G. “Orca: A Distributed Serving System for Transformer-Based
Generative Models” (OSDI 22).

42

VLLM: Efficient memory management for LLM inference

Inspired by virtual memory and paging

Memory management in OS Memory management in vLLM
Page 0 Token Block 0
Process Page 1 Process Request Token Block 1 Request
A Page 2 B A Token Block 2 B
Page 3 Token Block 3
Page 4 Token Block 4

Physical Memory KV Cache

Token block

Token blocks
(KV Cache)

* A fixed-size configuous chunk of block 0

memory that can store tfoken states block 1

from left to right block 2

block 3

block 4

KV _Cache

block 5

block 6

block 7

44 Block size =4

Token block

* A fixed-size contiguous chunk of memory that can store token
Token blocks

states from left to right (KV Cache)
block O
block 1
block 2
Block 4 block 3
Artificial | -0.2 0.1 11 | € ek 4
Intelligence| 0.9 0.7 0.2
is -0.1 -0.3 0.1 block 5| Artificial [Intelligence] is the
the -1.1 0.5 0.4
[\ J block 6
Y
820 KB / token
(LLaMA-13B) block 7
N
45 Block size = 4

Paged Attention

®* An aftention algorithm that allows for storing continuous keys

and values in non-contiguous memory space

Key and value vectors

mathe-

Block 1 [computer| scientist and S ician

Block 2 renowned for
Query

vector

for

Block 0 | Alan Turing is a

Logical & physical tfoken blocks

Physical token blocks

(KV Cache)
Request block 0
A
block 1
Prompt: “Alan Turing is a computer scientist”
block 2
Logical token blocks block 3
block 0| Alan Turing is a block 4
block 1 | computer | scientist block 5
block 2 block 6
block 3 block 7

47

Logical & physical tfoken blocks

Physical token blocks
(KV Cache)

ReckleSt block 0

block 1| computer | scientist

Prompt: “Alan Turing is a computer scientist”

block 2
Logical token blocks Block table block 3
block 0| Alan Turing is a \ blozzyrfdﬁi‘éer # Filled block 4
block 1 | computer | scientist ! 4 block 5
.,) N oc
block 2 - - block 6
block 3 block 7| Alan Turing is

48

Logical & physical tfoken blocks

Physical token blocks
(KV Cache)

ReckleSt block 0

block 1| computer | scientist

Prompt: “Alan Turing is a computer scientist”

Completion: “and” block 2
Logical token blocks Block table block 3
block 0| Alan Turing is a \ bloztysdﬁéer 4 Filled block 4
block 1 | computer | scientist ! : block 5
T~ 1 5 oc
block 2 - - block 6
block 3 block 7| Alan Turing is

49

Logical & physical tfoken blocks

Physical token blocks
(KV Cache)

Re‘kleﬁ block 0

block 1| computer | scientist

Prompt: “Alan Turing is a computer scientist”

Completion: “and” block 2
Logical token blocks Block table block 3
block 0| Alan Turing is a \ blozzyﬁdﬁi‘éer # Filled block 4
— 7 4
block 1 | computer | scientist and ~ . 5 block 5
block 2 - - block 6
block 3 - - block 7| Alan Turing is

50

Logical & physical tfoken blocks

Physical token blocks
(KV Cache)

Re‘kleﬁ block 0

block 1| computer | scientist | and

Prompt: “Alan Turing is a computer scientist”

Completion: “and” block 2
Logical token blocks Block table block 3
block 0| Alan Turing is a \ blozzyﬁdﬁi‘éer # Filled block 4
— 7 4
block 1 | computer | scientist and ~ . ; block 5
block 2 - - block 6
block 3 - - block 7| Alan Turing is

51

Logical & physical tfoken blocks

Request
A

Prompt: “Alan Turing is a computer scientist”

Completion: “and mathematician”

Logical token blocks

Block table
block 0| Alan Turing is a \ blozzyﬁd‘;?éer # Filled
block 1 | computer | scientist and mr:titcl;aenma\ I j
block 2 - —
block 3 - -

52

block O

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Physical token blocks

(KV Cache)
I mathem
computer | scientist| and L
atician
Alan Turing is a

Logical & physical tfoken blocks

Request
A

Prompt: “Alan Turing is a computer scientist”
Completion: “and mathematician renowned”

Logical token blocks

Block table
block 0| Alan Turing is a Physical # Filled
\ block number
. 7 4
block 1 | computer | scientist and ma_thema
tician | 1 4
block 3

53

block O
block 1

block 2

block 3

block 4
s

block 5
|

block 6

block 7

Physical token blocks

(KV Cache)
computer | scientist| and mqthem
atician
Allocated on demand
Alan Turing is a

Serving mulfiple requests

Request
A

Block Table

Logical token blocks

Physical token blocks

(KV Cache)

Block Table

Request
B

Logical token blocks

Alan Turing is a
S mathema

computer | scientist and -
tician

Acrtificial

Intelligence

L mathem
computer | scientist| and .
atician
Artificial | Melge et e
nce
future of
Alan Turing is a

future

of

is

the

Memory efficiency of vLLM

* Minimal internal fragmentation
* Only happens at the last block of a sequence
* # wasted tokens / seq < block size
® Sequence: O(100) — O(1000) tokens

® Block size: 16 or 32 tokens

. Alan Turing is a
®* No external fragmentation —
computer scientist and cian
renowned
[\ J
Y

Internal fragmentation

Effectiveness of PagedAttention

. Internal External
M Token states ™ Reservation I8 fragmentation fragmentation

Amu 89

S

© BO -

o

%

S 60+

()}

<

O 40

©

@)

= 204

X

,u_

Orca Orca Orca Ours
(Max) {Pow2) (Oracle)

96.3% KV cache utilization

Large Language Models

® Transformers, Attentions
® Scaling Law
* MoE
® Connecting the dots: Training Optimizations
® Flash attention « come back to this later next week
® Serving and inference optimization
* Continuous batching and Paged attention
® Speculative decoding (Guest Lecture)

Connecting the dots: Deepseek-v3

Hot topics
® Prefill-decode disaggregation

LLM System Today Optimize Throughput

g DeepSpeed M|

<3

NVIDIA.

Beyond State-of-the-art Performance

24x higher thmughput cnmpared to HF o

— LLaMA-13R. A100-40GA LLaMA-TR. A10G

: .

g 3.5x higher throughput than TGl.
= 100

2 6.4 2 8.3

= = HF TGI wLLM = . HF TGI wLLM

Serving throughput when each request asks for ane output completion. vLLM achieves 1dx - 24x
higher throughput than HF and 2.2x - 2.5x higher throughput than TGIL

Motivation: Applications have Diverse SLO

*TTFT *TPOT

Time to first token Time per output token
Initial response time Average time between two subsequent generated tokens

G 58808500 GG000E0
- Fast initial response - Human reading speed (P99 latency = 250ms)

Chatbot
m — l Data output generation (P99 latency = 35ms)
Summarization User can tolerate longer initial

response

High Throughput # High Goodput

TTFT
-

High Throughput
Throughput =10 rps System

= completed request / time

v
TRGT Suppose 10 requests complete
within 1 second..

High Throughput # High Goodput

TTFT
o

L

Throughput =10 rps

= completed request / time

b "

TRGT Suppose 10 requests complete

200ms

50ms

within 1 second.. under‘ SLO
criteria

l I I Goodput =3 rps @
= completed request within SLO / time

L

-
TEOT _ but only 3 {out of 10) hold the

latency target

High Throughput
System

can have
Low Goodput!

High Throughput # High Goodput

200ms |

50ms

1T
A

TTFT

TROT

FT

L

L
TROT

High Throughput can

]

still have Low Goodput

— but anly 3 {mlﬂ of 10) hold the
latency target

Goodput =3 rps

= completed request within SLO / time

High Throughput

= Poor UX '

e ——-uput!

Background: Continuous Batching

Request Arrived

ar 2
i
Worker . .

Request

Timeline

Prefill and Decode have Distinct Characteristics

* Prefill

Compute-bound

One prefill saturates compute.

* Decode saaassnns

Memory-bound
Must batch a lot of requests together to saturate compute

Continuous Batching Cause Interference

Continuous Batching
Batch R1 and R2 together in 1 GPU

K_H
~ B 08

R2

Time wasted for decode

Request
arrival

Time wasted for prefill
R2 arrives

tlme

Separate prefill / decode
R1 and R2 in separate GPUs

il
5 -00008
il
. time

? »
Request R2 arrives
arrival

No Interference

wasted time

Continuous Batching Cause Interference

Continuous Batching
Batch R1 and R2 together in 1 GPU

Time wasted for decode

K_H
wn ~0080 0080
IE
v Illlll

Time wasted for prefill

Request R2 arrives
arrival

time

Continuous Batching
Batch R1~R4 together in 1 GPU

- 308 8 8 68
) 8 @8

° GED & 088
y ab i

|-
Request T T T time -
arriva

wasted time

Colocation - Overprovision Resource to meet SLO

TPOT
Poor UX @ @ Good UX @

lower cost &) Higher cost () ® & &

Summary: Problems caused by Colocation

Is there a better way to achieve
0 better
Goodput per GPU?

TP | DP

Coupled Parallelism Strategy

Continuous Batching Cause
Interference

Disaggregating Prefill and Decode

Disaggregation is a technigue that

Request Arrived

[|
1/6PU -
‘ Prefill Worker ‘ ‘ Decode Worker

Request ‘

Timeline

Disaggregation achieves better goodput

Colocate
1 GPU for both Prefill and Decode

P9
-
&
)
L]

E

Decode = 1.6 rps

Ia « &« + w»
quest rFate per second

0 | Max System goodput

= Min(Prefill, Decode)

= 1.6 rps / GPU @

P90 TPOT

Disaggregation achieves better goodput

Colocate
1 GPU for both Prefill and Decode

| Prefill = 3 rps

ige o+ 7w
RbZusst

PO TTFT

rate per second

h, Coscoote

& PRO TPOT <= 40 ms

Decode = 1.6 rps

Ia « &« + w»
Request rFate par sesond

P90 TPOT

51 | Max System goodput
= Min(Prefill, Decode)

= 1.6 rps / GPU @

Disaggregate (2P1D)

2 GPU for Prefill + 1 GPU for Decode

' Prefill = 5.6 rps |

FQOTTFT <= 400 ms

PRO TTFT

=

& «5.5hd F 0
Sequest rake per second

b, Decods-only

0 TPOT <= 40 ms

Decode = 10 rps -

L 7]

Reguedt cate pac aecend

P30 TPOT

" 6ru JB 6Py Disaggregate (2P1D) goodput
: = Min (5.6 x 2, 10) rps / 3 GPU

| 3.3 rps / GPU @

Disaggregation achieves better goodput

Colocate
1 GPU for both Prefill and Decode

| Colotote

TTFT

@ PI0TTFT <= 400 ms

I | Prefill = 3 rps

ige o+ 7w
Request rate per second

P90

|, Colacate

- PRO TPOT <= 40 ms

P90 TPOT

Decode = 1.6 rps

Ia « &« + w»
Request rFate par sesond

0 | Max System goodput

= Min(Prefill, Decode)

= 1.6 rps / GPU @

Disaggregate (2P1D)

2 GPU for Prefill + 1 GPU for Decode

b Prefill-onty
Ll— !)
= Prefill = 5.6 . . .
Cl e R Simple Disaggregation
g - FAO TTFT <= 400 ms
o T achieves 2X goodput
I (per GPU)
E PO TPOT <= 40 ms
= T
E [D«ecude-mrps -
o — 1

"0 R GPU Disaggregate (2P1D) goodput

= Min (5.6 x 2, 10) rps / 3 GPU

| 3.3 rps / GPU @

Disaggregation

® Published in 2024 at UCSD (yes, Hao's lab)

® Soon become the chosen architecture replacing confinuous
batching at large scale

®* Deepseek-v3 uses prefill-decode disaggregation combined with

different parallelisms.

	Slide 1: CSE 234: Data Systems for Machine Learning Winter 2025
	Slide 2: Logistics
	Slide 3: Recap: Next Token Prediction
	Slide 4: Inference process of LLMs
	Slide 5: Generative LLM Inference: Autoregressive Decoding
	Slide 6: w/ KV Cache vs. w/o KV Cache
	Slide 7: w/ KV Cache vs. w/o KV Cache
	Slide 8: Potential Bottleneck of LLM Inference?
	Slide 9: Serving vs. Inference
	Slide 10: Potential Bottleneck of LLM Inference in Serving
	Slide 11: Potential Bottleneck of LLM Inference in Serving
	Slide 12: GPUs are not very good at bs = 1 and s = 1
	Slide 13: Recap: Inference process of LLMs
	Slide 14: Problem of bs = 1
	Slide 15: Large Language Models
	Slide 16: Large Language Models
	Slide 17: Potential Bottleneck of LLM Inference in Serving
	Slide 18: LLM Decoding Timeline
	Slide 19: Batching Requests to Improve GPU Performance
	Slide 20: Continuous Batching
	Slide 21: Continuous Batching Step-by-Step
	Slide 22: Continuous Batching Step-by-Step
	Slide 23: Continuous Batching Step-by-Step
	Slide 24: Continuous Batching Step-by-Step
	Slide 25: Continuous Batching Step-by-Step
	Slide 26: Iteration 2: Traditional Batching
	Slide 27: Iteration 3: Traditional Batching
	Slide 28: Summary: Traditional Batching
	Slide 29: Continuous Batching Step-by-Step
	Slide 30: Continuous Batching
	Slide 31: Continuous Batching
	Slide 32: Traditional vs. Continuous Batching
	Slide 33: Continuous Batching
	Slide 34: Continuous Batching Step-by-Step
	Slide 35: Summary: Continuous Batching
	Slide 36: KV Cache
	Slide 37: KV Cache
	Slide 38: KV Cache
	Slide 39: Key insight
	Slide 40: Key insight
	Slide 41: Memory waste in KV Cache
	Slide 42: Memory waste in KV Cache
	Slide 43: vLLM: Efficient memory management for LLM inference
	Slide 44: Token block
	Slide 45: Token block
	Slide 46: Paged Attention
	Slide 47: Logical & physical token blocks
	Slide 48: Logical & physical token blocks
	Slide 49: Logical & physical token blocks
	Slide 50: Logical & physical token blocks
	Slide 51: Logical & physical token blocks
	Slide 52: Logical & physical token blocks
	Slide 53: Logical & physical token blocks
	Slide 54: Serving multiple requests
	Slide 55: Memory efficiency of vLLM
	Slide 56: Effectiveness of PagedAttention
	Slide 57: Large Language Models
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73: Disaggregation

