

CSE 234: Data Systems for Machine Learning Winter 2025

LLMSys

Optimizations and Parallelization

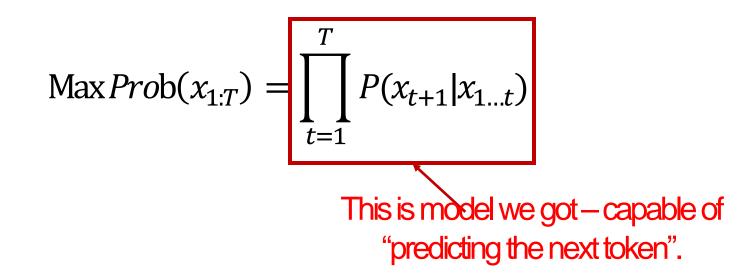
MLSys Basics

Logistics

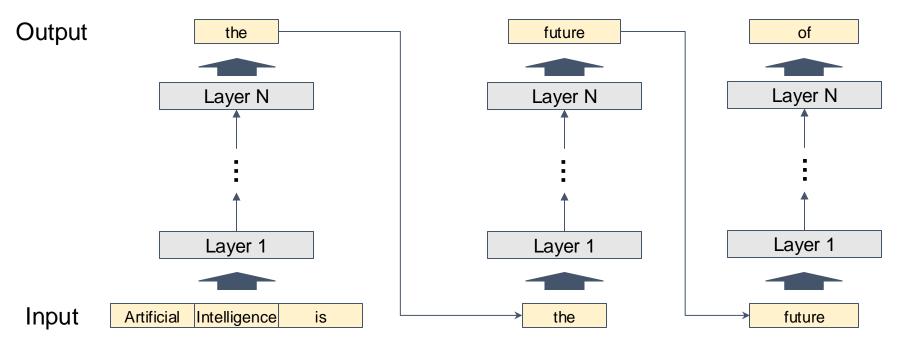
- If 80% of you finish the course eval, all get +2 points in final score!
 - Currently: we are 50%
- TA will hold a recitation for exam:
 - Watch for announcement
 - Make sure to attend (there will be recordings though)

Recap: Next Token Prediction

Probability("San Diego has very nice weather") = P("San Diego") P("has" | "San Diego") P("very" | "San Diego has") P("aty" | ...)... P("weather" | ...)



Inference process of LLMs



Repeat until the sequence

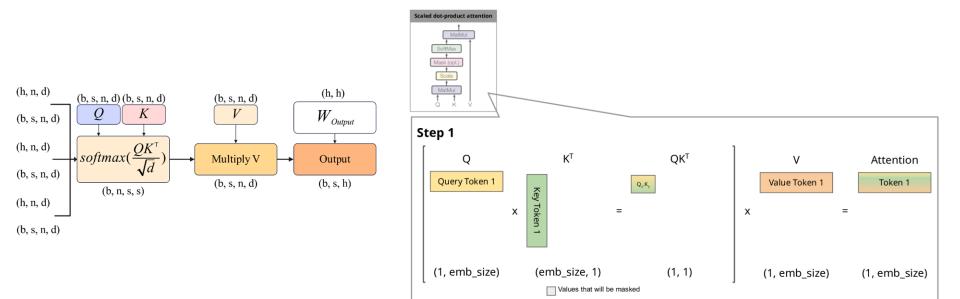
4

- Reaches its pre-defined maximum length (e.g., 2048 tokens)
- Generates certain tokens (e.g., "<|*end of sequence*|>")

Generative LLM Inference: Autoregressive Decoding

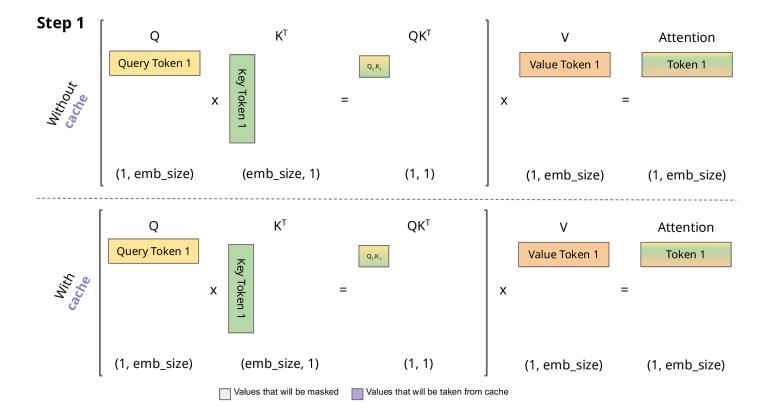
- Pre-filling phase (0-th iteration):
 - Process all input tokens at once
- Decoding phase (all other iterations):
 - Process a single token generated from previous iteration
- Key-value cache:
 - Save attention keys and values for the following iterations to avoid recomputation
 - what is KV cache essentially?

w/ KV Cache vs. w/o KV Cache

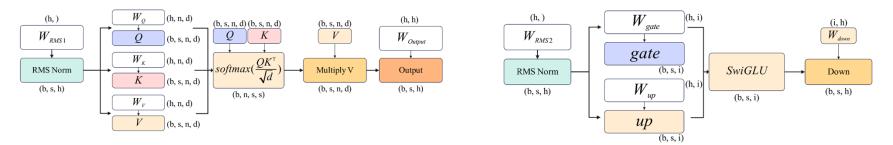


Zoom-in! (simplified without Scale and Softmax)

Q1: what happens on KV cache in prefill phase? w/ KV Cache vs. w/o KV Cache



Potential Bottleneck of LLM Inference?



- Compute:
 - Prefill: largely same with training
 - Decode: s = 1
- Memory
 - New: KV cache
- Communication
 - mostly same with training

Q? how about batch size b?

Serving vs. Inference

large b

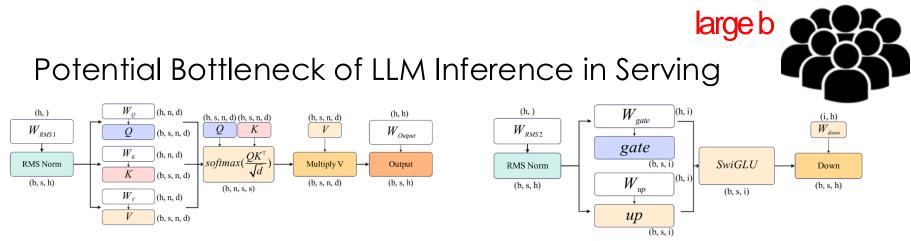
Serving: many requests, online traffic, emphasize cost-per-query.

s.t. some mild latency constraints

emphasize throughput

Inference: fewer request, low or offline traffic,

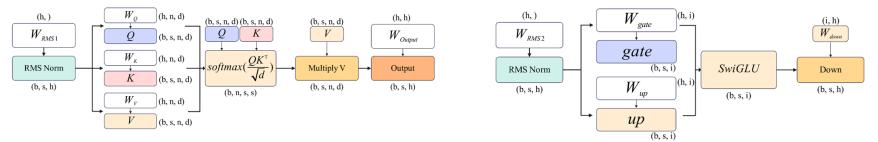
emphasize latency



- Compute:
 - Prefill:
 - Different prompts have different length: how to batch?
 - Decode
 - Different prompts have different, unknown #generated tokens
 - s = 1, b is large
- Memory
 - New: KV cache
 - b is large -> KV is linear with b -> will KVs be large to store?
- Communication
 - mostly same with training

b=1

Potential Bottleneck of LLM Inference in Serving



- Compute:
 - Prefill:

Different prompts have different length: how to batch?

• Decode

• Different prompts have different, unknown #generated tokens

- s = 1, b=1
- Memory
 - New: KV cache

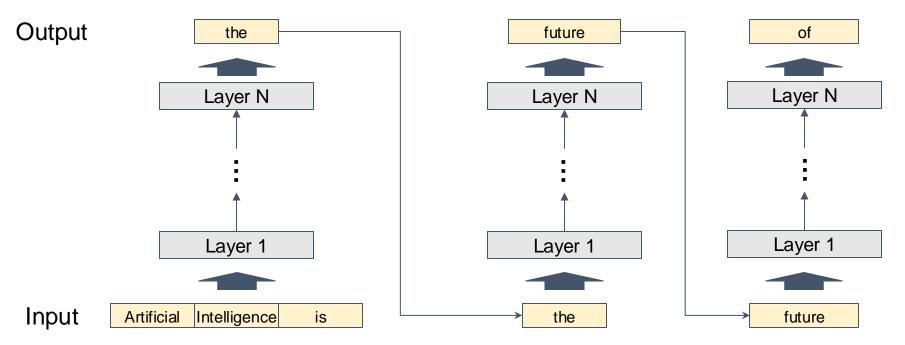
• b =1 -> KV is linear with b -> will KVs be large?

- Communication
 - mostly same with training

GPUs are not very good at bs = 1 and s = 1

t ↓ max AI = #ops / #bytes

Recap: Inference process of LLMs



Repeat until the sequence

13

- Reaches its pre-defined maximum length (e.g., 2048 tokens)
- Generates certain tokens (e.g., "<|end of sequence|>")

Latency = step latency * # steps

Speculative decoding reduces this, hence amortize the memory moving cost (but it may increase compute cost)

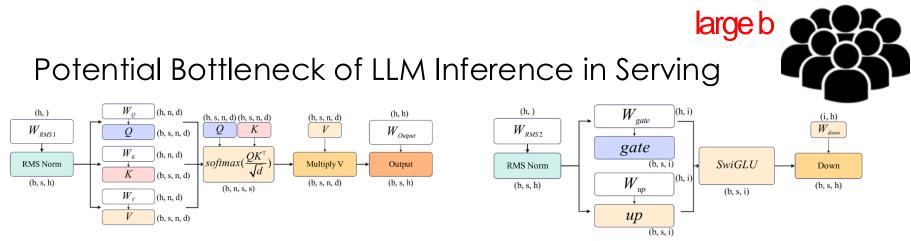
b=1

Large Language Models

- Transformers, Attentions
- Scaling Law
 - MoE
- Connecting the dots: Training Optimizations
 - Flash attention \leftarrow come back to this later next week
- Serving and inference optimization
 - Continuous batching and Paged attention
 - Speculative decoding (Covered by Guest Lecture)
- Connecting the dots: Deepseek-v3
- Hot topics

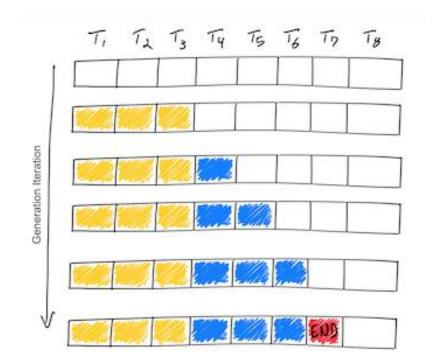
Large Language Models

- Transformers, Attentions
- Scaling Law
 - MoE
- Connecting the dots: Training Optimizations
 - Flash attention \leftarrow come back to this later next week
- Serving and inference optimization
 - Continuous batching and Paged attention
 - Speculative decoding (Guest Lecture)
- Connecting the dots: Deepseek-v3
- Hot topics

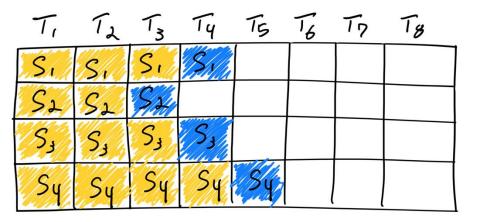


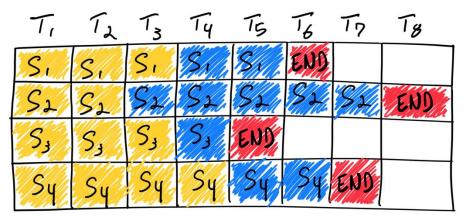
- Compute:
 - Prefill:
 - Different prompts have different length: how to batch?
 - Decode
 - Different prompts have different, unknown #generated tokens
 - s = 1, b is large
- Memory
 - New: KV cache
 - b is large -> KV is linear with b -> will KVs be large to store?
- Communication
 - mostly same with training

LLM Decoding Timeline



Batching Requests to Improve GPU Performance

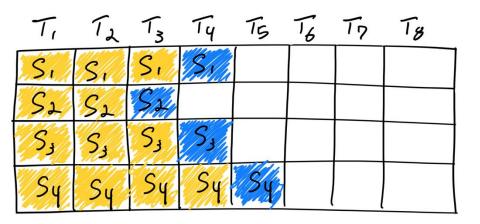


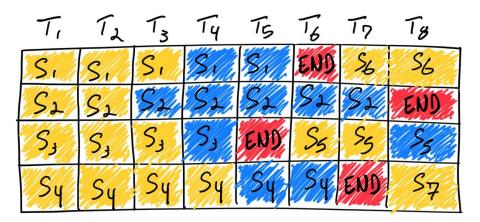


Issues with static batching:

- Requests may complete at different iterations
- Idle GPU cycles
- New requests cannot start immediately

Continuous Batching

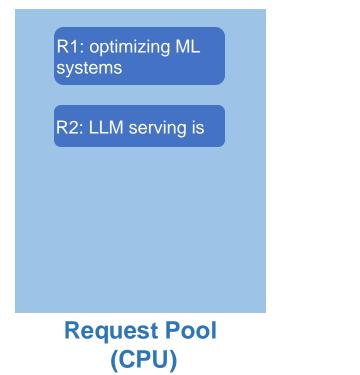




Benefits:

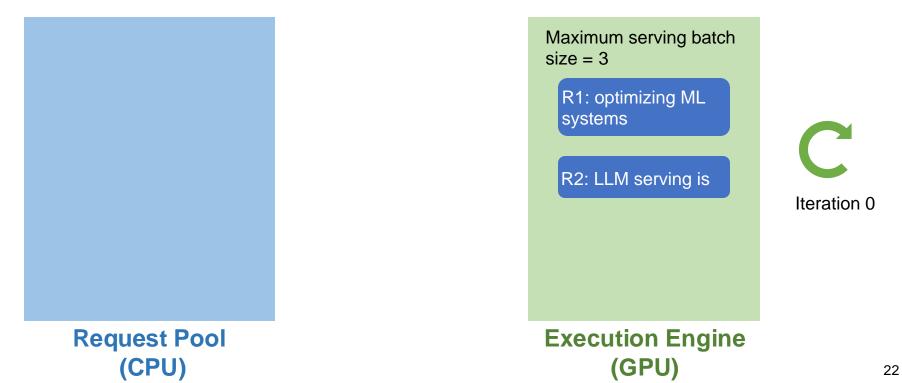
- Higher GPU utilization
- New requests can start immediately

Receives two new requests R1 and R2

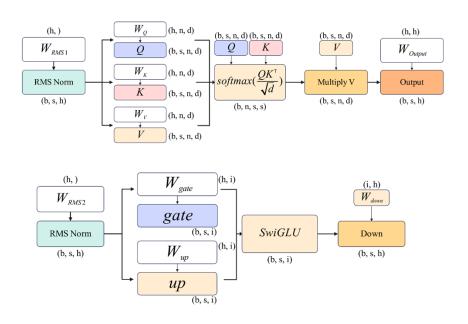


Maximum serving batch size = 3

Iteration 0: Compute the prefill of R1 and R2

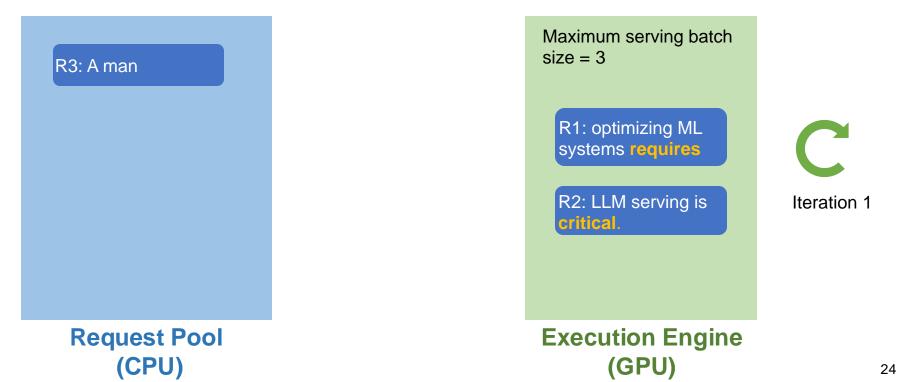


Iteration 0: Compute the prefill of R1 and R2



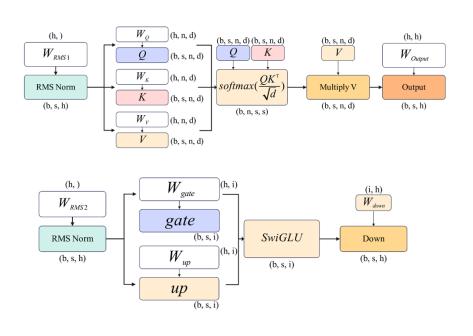


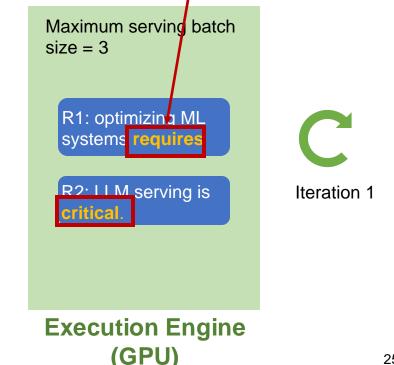
• Receive a new request R3; finish decoding R1 and R2



Q: How to batch these?

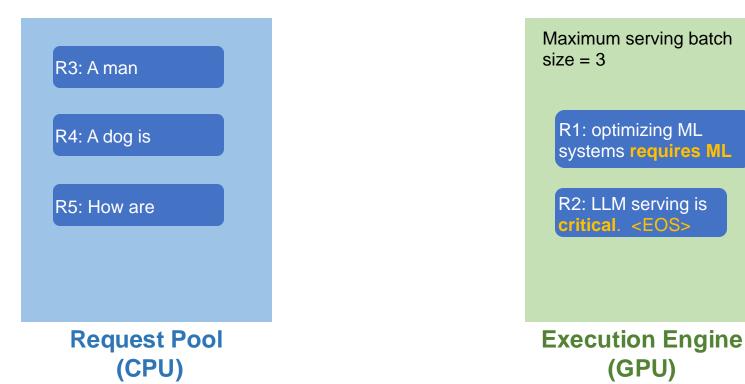
Receive a new request R3; finish decoding R1 and R2



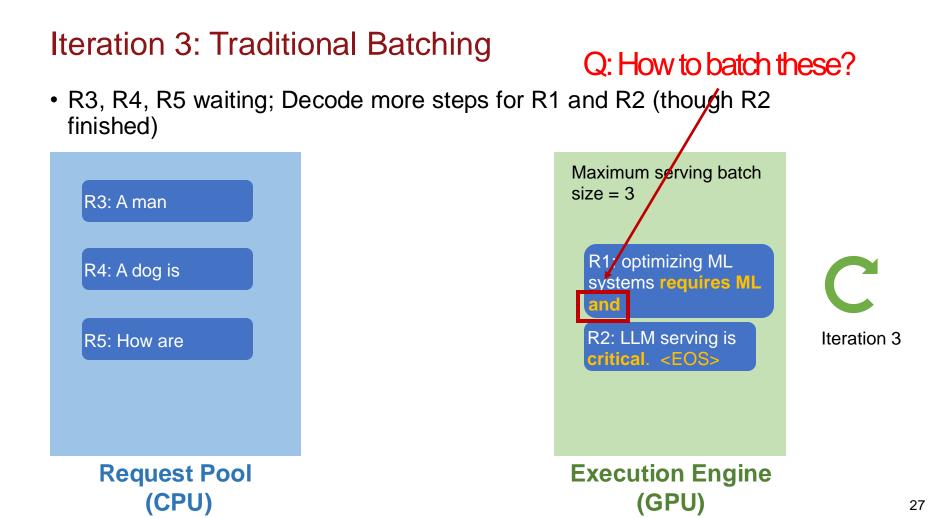


Iteration 2: Traditional Batching

• Receive new requests R4, R5; Decode more steps for R1 and R2



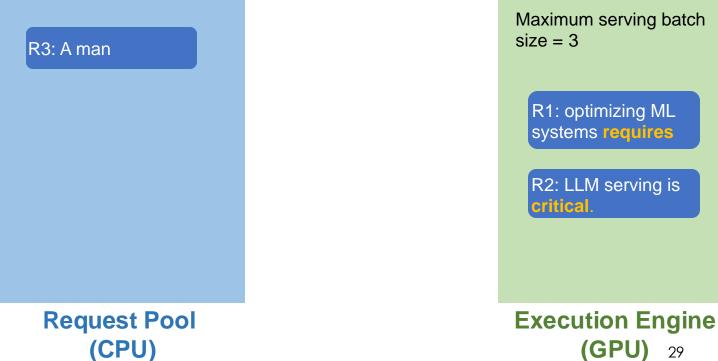
Iteration 2



Summary: Traditional Batching

- A batch is issued and run until completion
 - Request in the queue cannot enter
 - Request finished early cannot exit
- GPUs can become idle due to different (and unknown) number of generated tokens

Receive a new request R3; finish decoding R1 and R2



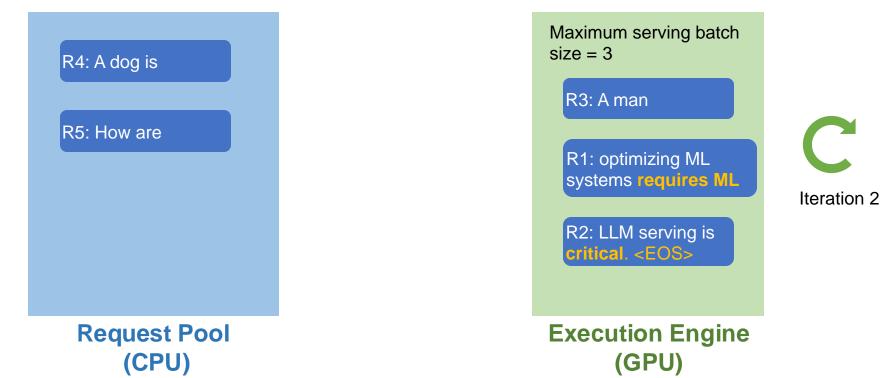
Maximum serving batch

R1: optimizing ML systems requires

R2: LLM serving is

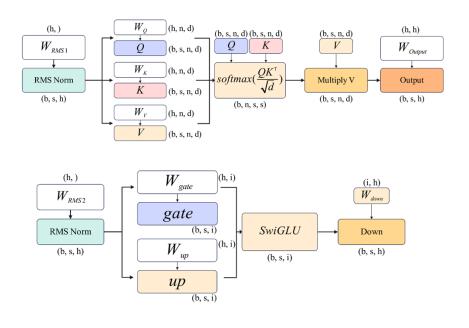
29

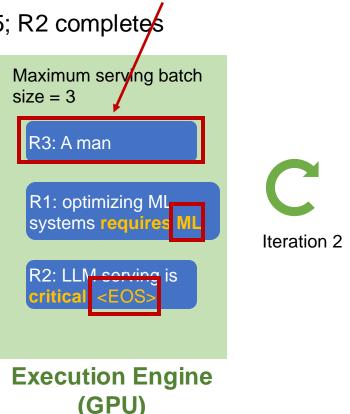
Continuous Batching



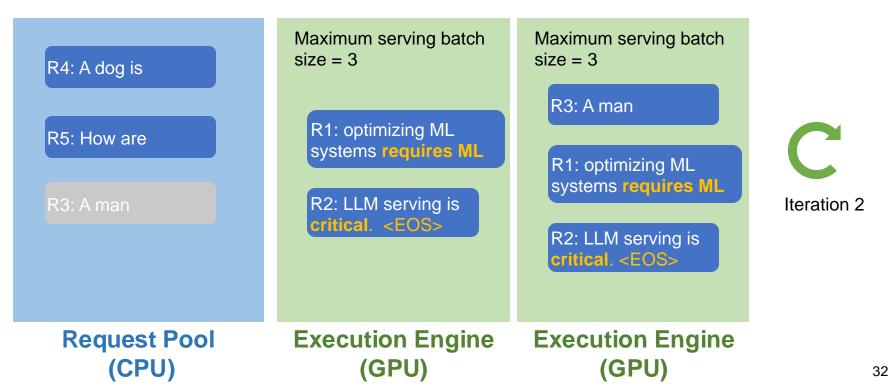
Continuous Batching

Q: How to batch these?

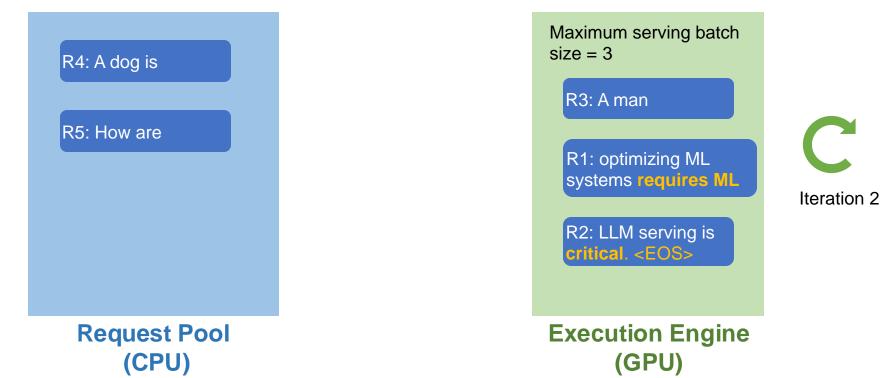




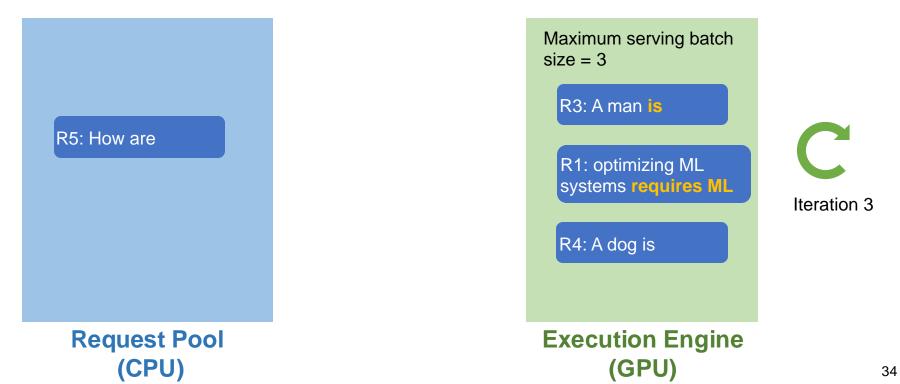
Traditional vs. Continuous Batching



Continuous Batching

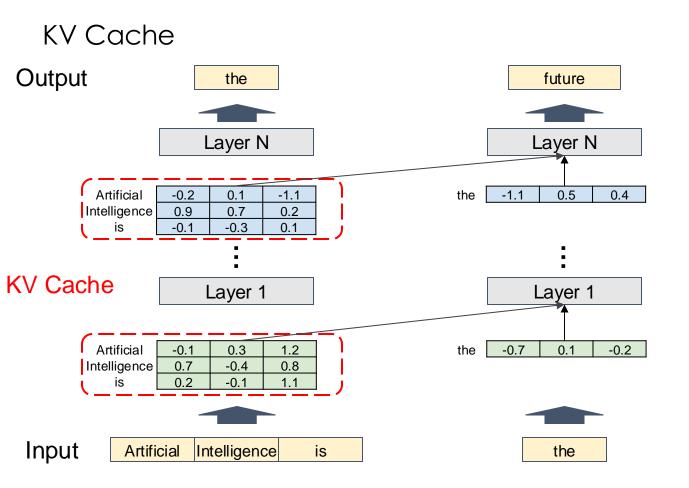


Iteration 3: decode R1, R3, R4



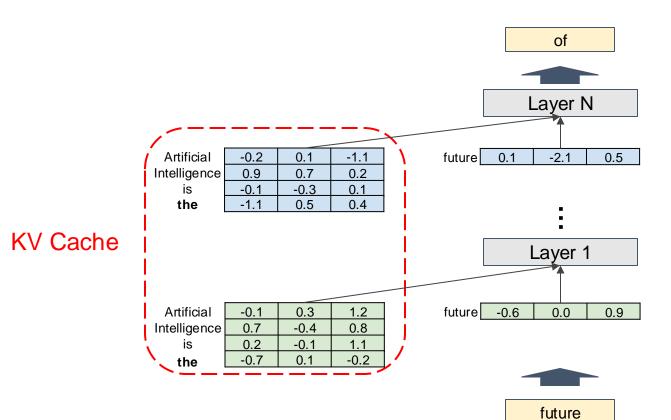
Summary: Continuous Batching

- Handle early-finished and late-arrived requests more efficiently
- Improve GPU utilization
- Key insight
 - Attentions consume small percentage of flops (at shortmedium context length)
 - MLP kernels are agnostic to the sequence dimension



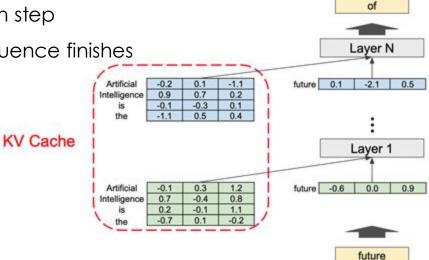
KV Cache

Output



KV Cache

- Memory space to store intermediate vector representations of tokens
 - Working set rather than a "cache"
- The size of KV Cache dynamically grows and shrinks
 - A new token is appended in each step
 - Tokens are deleted once the sequence finishes



Key insight

Efficient management of KV cache is crucial for high-throughput LLM serving

40

26

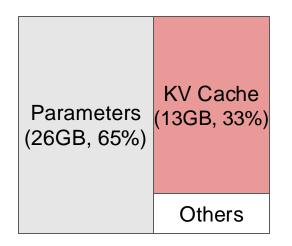
Param. size 8

Memory usage (GB)

Existing systems — vLLM

Batch size (# requests)

40

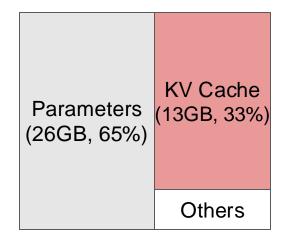


13B LLM on A100-40GB

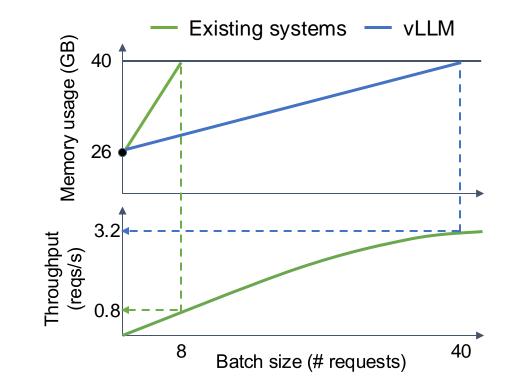
Key insight

Efficient management of KV cache is crucial for high-throughput LLM

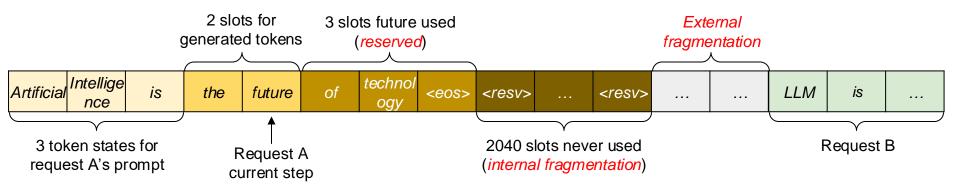
serving



13B LLM on A100-40GB

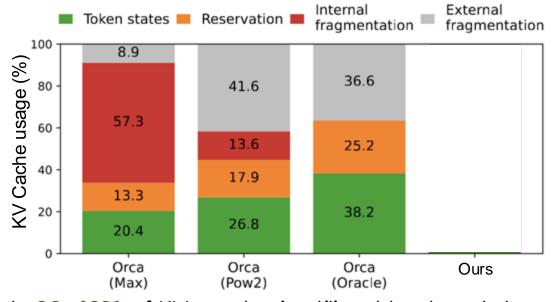


Memory waste in KV Cache



- Reservation: not used at the current step, but used in the future
- Internal fragmentation: over-allocated due to the unknown output length.

Memory waste in KV Cache

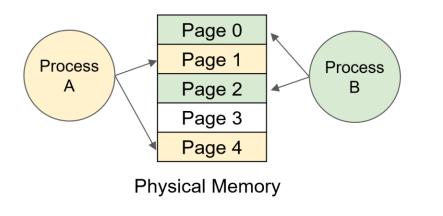


Only **20–40%** of KV cache is utilized to store token states

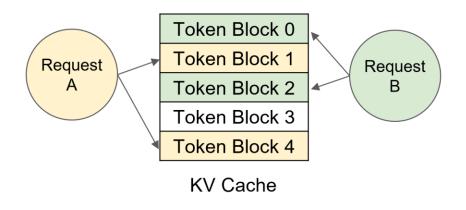
⁴² * Yu, G. I., Jeong, J. S., Kim, G. W., Kim, S., Chun, B. G. "Orca: A Distributed Serving System for Transformer-Based Generative Models" (OSDI 22).

vLLM: Efficient memory management for LLM inference

Inspired by virtual memory and paging

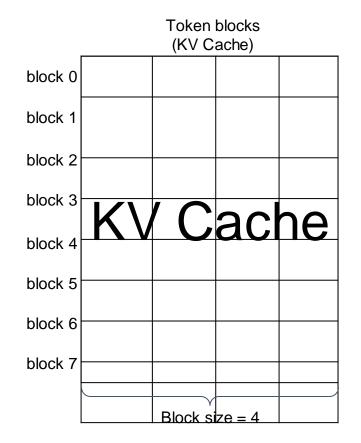


Memory management in vLLM



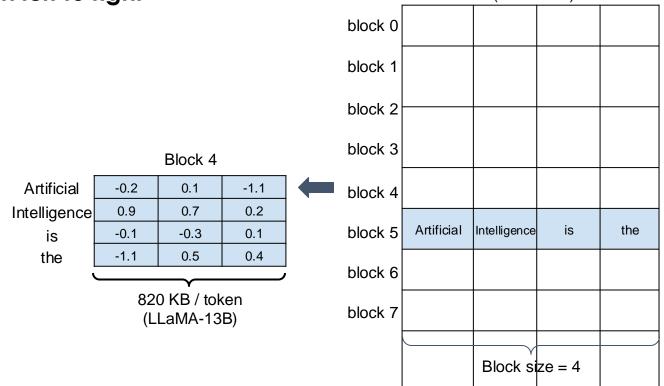
Token block

• A **fixed-size** contiguous chunk of memory that can store token states **from left to right**



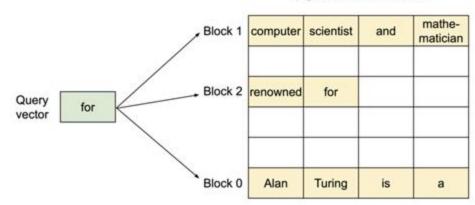
Token block

• A **fixed-size** contiguous chunk of memory that can store token states **from left to right**



Paged Attention

• An attention algorithm that allows for storing continuous keys and values in non-contiguous memory space

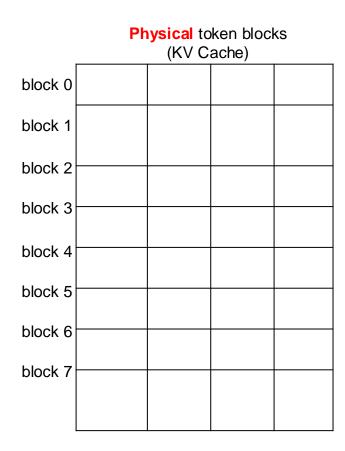


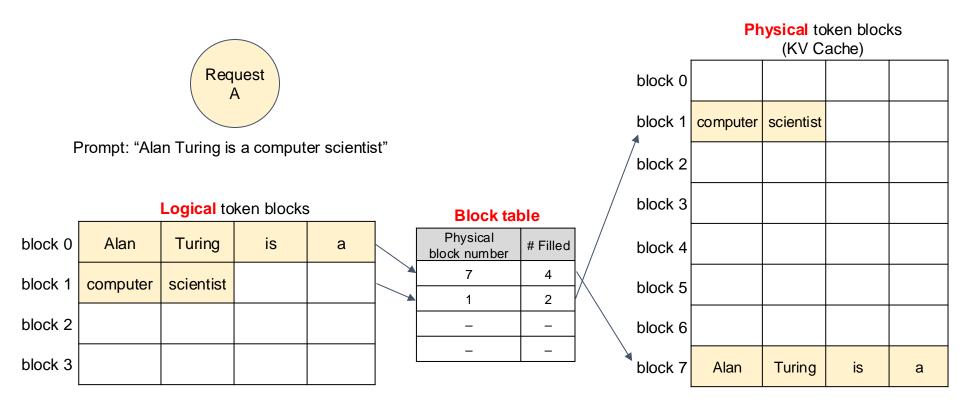
Key and value vectors

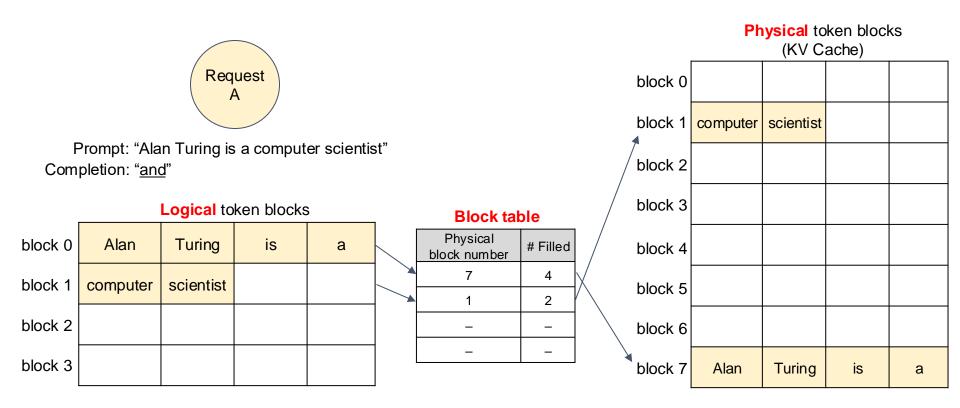
Request

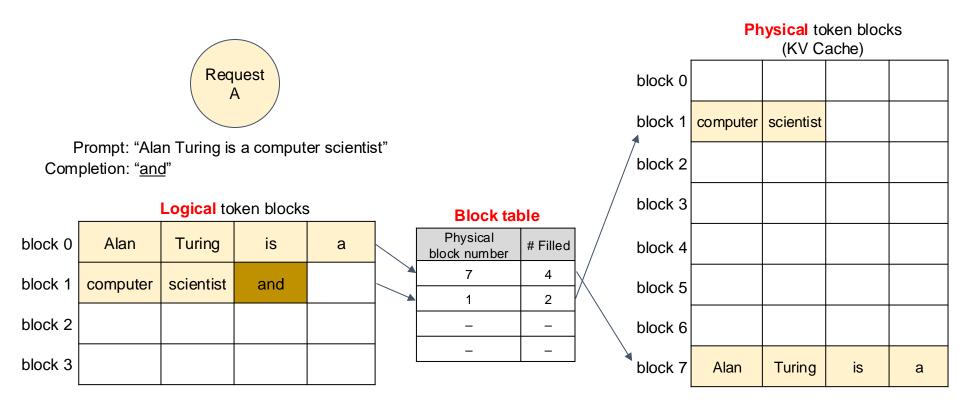
Prompt: "Alan Turing is a computer scientist"

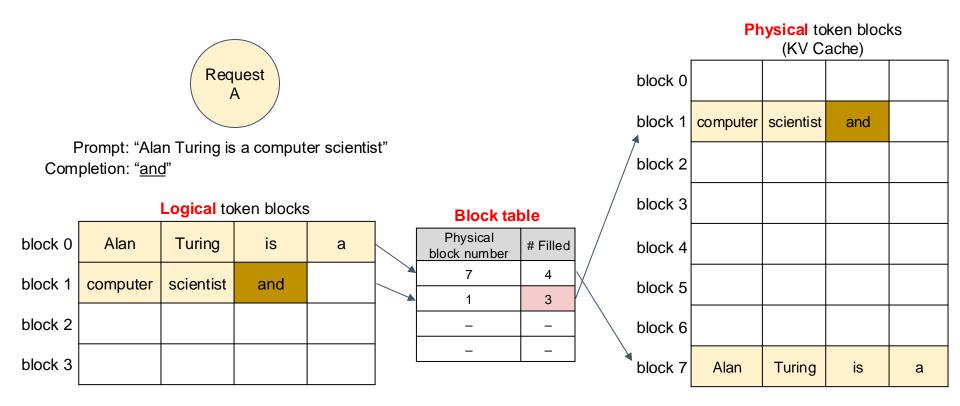
Logical token blocks				
block 0	Alan	Turing	is	а
block 1	computer	scientist		
block 2				
block 3				

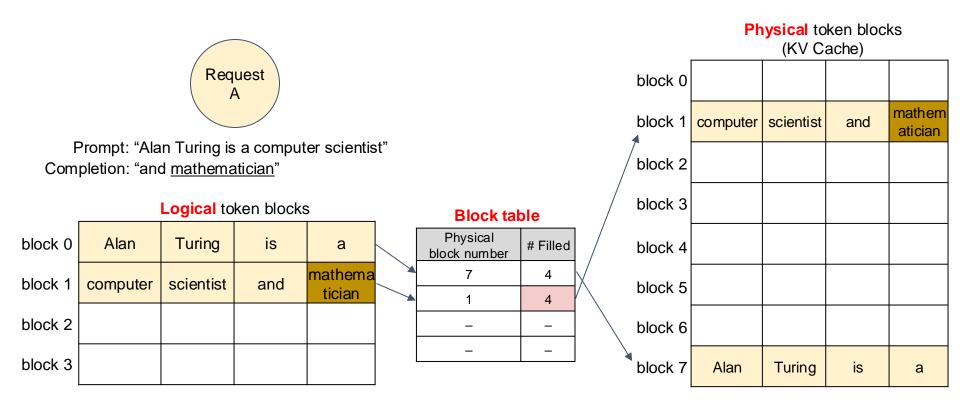


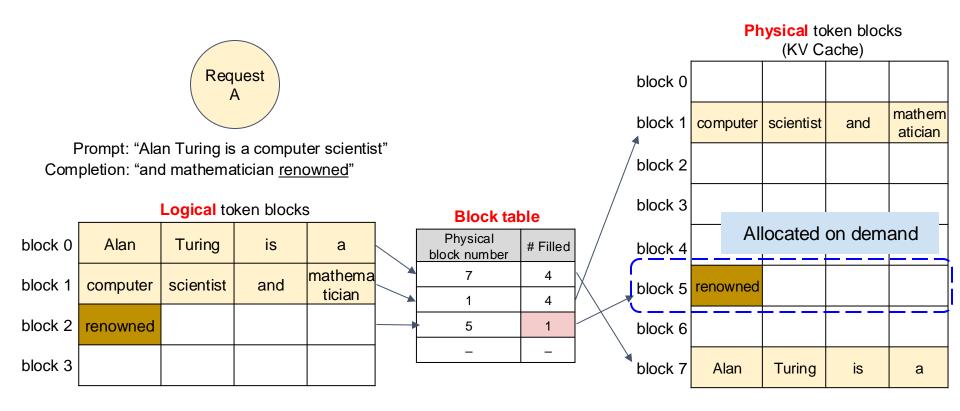




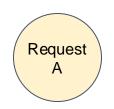








Serving multiple requests



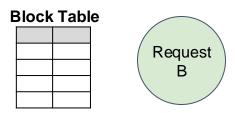
Block Table

Logical token blocks

Alan	Turing	is	а
computer	scientist	and	mathema tician
renowned			

(KV Cache)			
computer	scientist	and	mathem atician
Artificial	Intellige nce	is	the
renowned			
future	of	technolog y	
Alan	Turing	is	а

Physical token blocks



Logical token blocks

Artificial	Intelligence	is	the
future	of	technology	

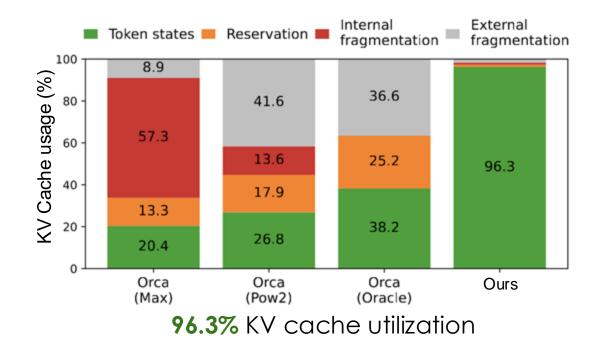
Memory efficiency of vLLM

- Minimal internal fragmentation
 - Only happens at the last block of a sequence
 - # wasted tokens / seq < block size
 - Sequence: O(100) O(1000) tokens
 - Block size: 16 or 32 tokens
- No external fragmentation

Alan	Turing	is	а
computer	scientist	and	mathemati cian
renowned			

Internal fragmentation

Effectiveness of PagedAttention

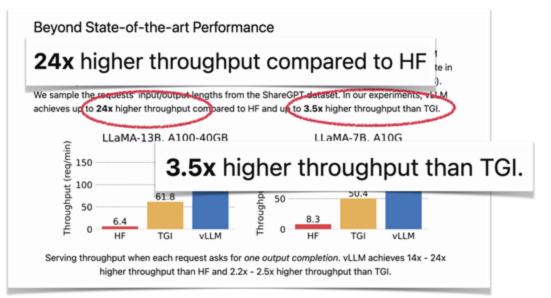


Large Language Models

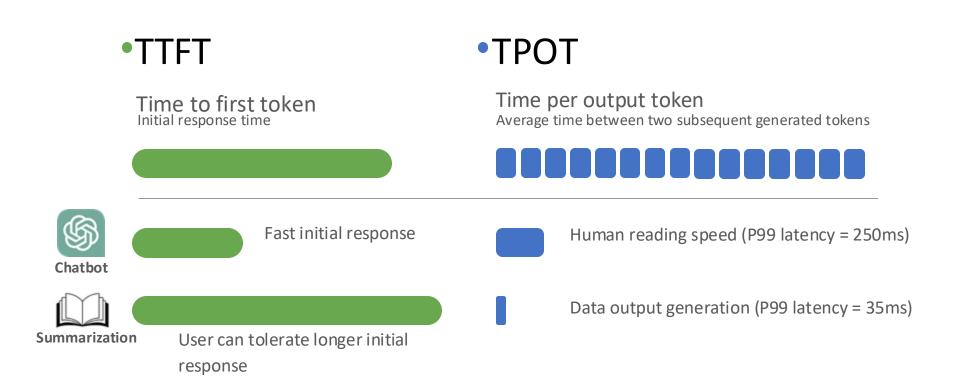
- Transformers, Attentions
- Scaling Law
 - MoE
- Connecting the dots: Training Optimizations
 - Flash attention ← come back to this later next week
- Serving and inference optimization
 - Continuous batching and Paged attention
 - Speculative decoding (Guest Lecture)
- Connecting the dots: Deepseek-v3
- Hot topics
 - Prefill-decode disaggregation

LLM System Today Optimize Throughput

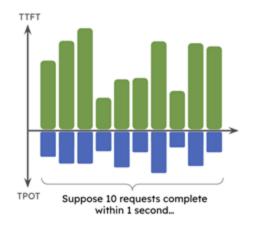
DeepSpeed MII



Motivation: Applications have Diverse SLO



High Throughput ≠ High Goodput



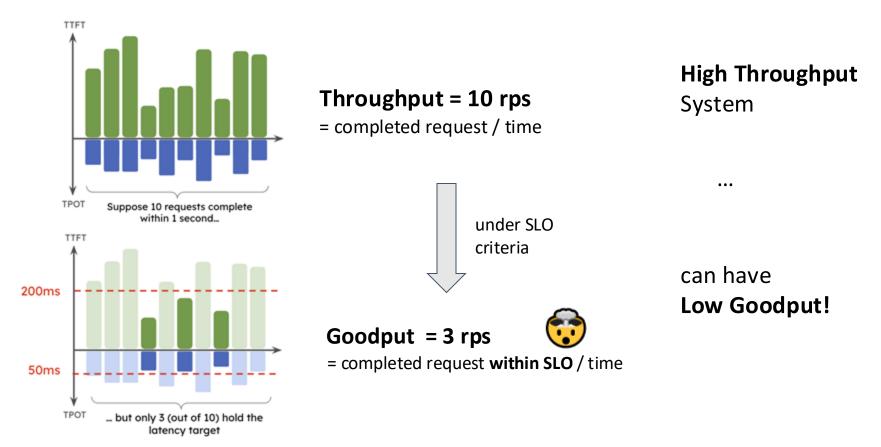
Throughput = 10 rps

= completed request / time

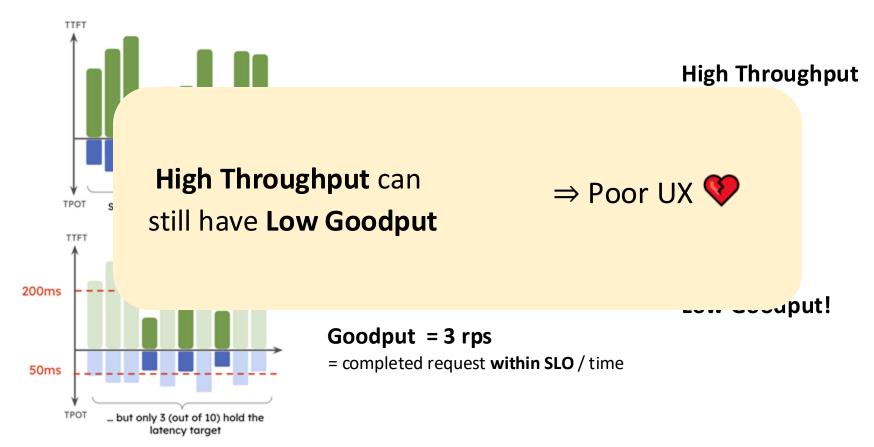
High Throughput System

...

High Throughput ≠ High Goodput



High Throughput ≠ High Goodput



Background: Continuous Batching

Disaggregation is a technique that

Request Arrived

Timeline

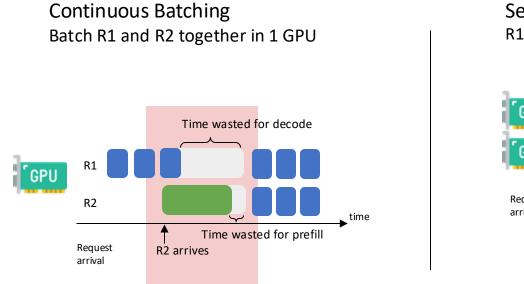
Prefill and Decode have Distinct Characteristics

• Prefill

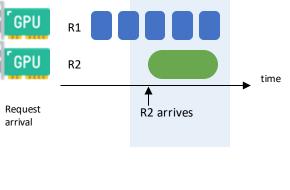
Compute-bound One prefill saturates compute.

Memory-bound Must batch a lot of requests together to saturate compute

Continuous Batching Cause Interference



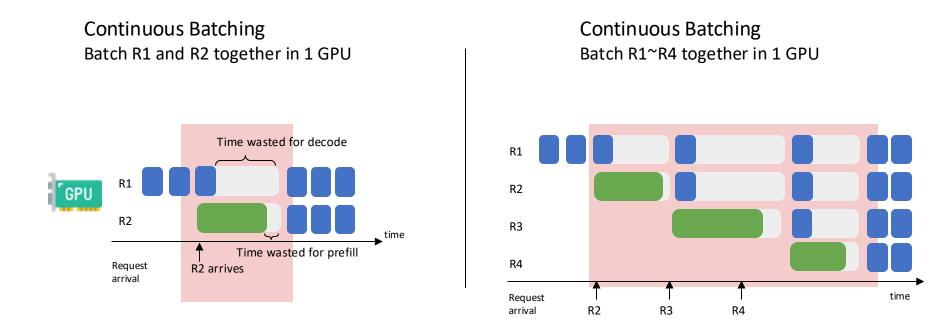
Separate prefill / decode R1 and R2 in separate GPUs



No Interference

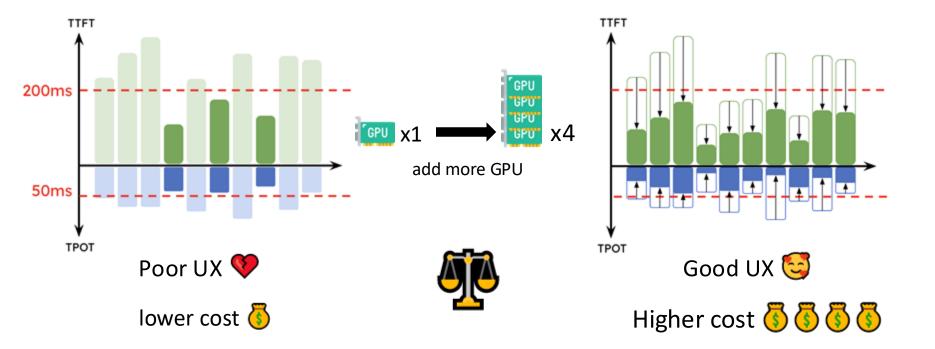
wasted time

Continuous Batching Cause Interference

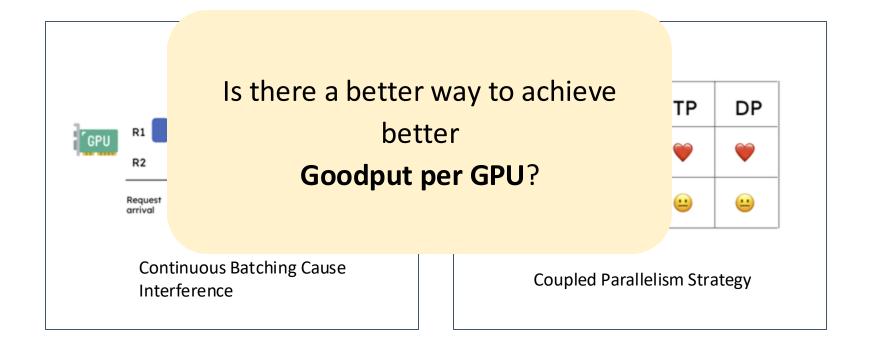


wasted time

Colocation \rightarrow Overprovision Resource to meet SLO



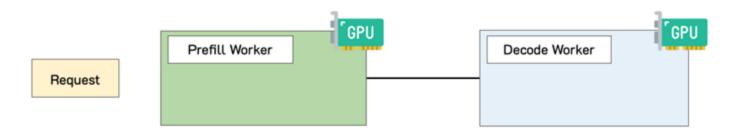
Summary: Problems caused by Colocation



Disaggregating Prefill and Decode

Disaggregation is a technique that

Request Arrived

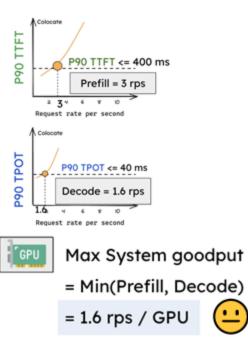


Timeline

Disaggregation achieves better goodput

Colocate

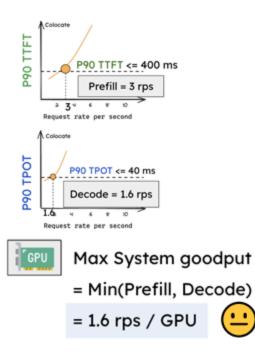
1 GPU for both Prefill and Decode



Disaggregation achieves better goodput

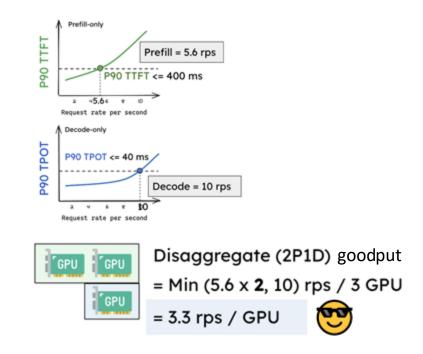
Colocate

1 GPU for both Prefill and Decode



Disaggregate (2P1D)

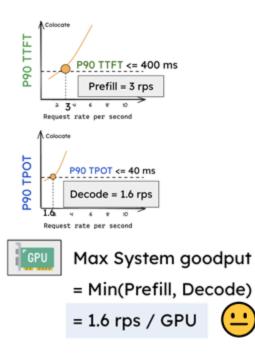
2 GPU for Prefill + 1 GPU for Decode



Disaggregation achieves better goodput

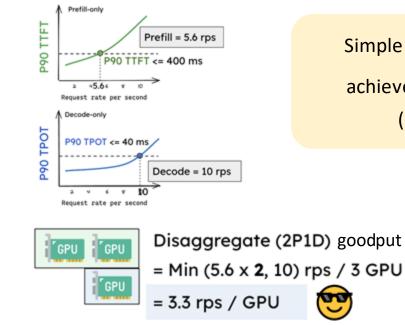
Colocate

1 GPU for both Prefill and Decode



Disaggregate (2P1D)

2 GPU for Prefill + 1 GPU for Decode



Simple Disaggregation achieves **2x** goodput (per GPU)

Disaggregation

- Published in 2024 at UCSD (yes, Hao's lab)
- Soon become the chosen architecture replacing continuous batching at large scale
- Deepseek-v3 uses prefill-decode disaggregation combined with different parallelisms.