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https://hao-ai-lab.github.io/cse234-w25/

MLSys Basics

Optimizations and Parallelization

LLMSys



Logistics

• If 80% of you finish the course eval, all get +2 points in final score!

• Currently: we are 50%

• TA will hold a recitation for exam:

• Watch for announcement

• Make sure to attend (there will be recordings though)



Recap: Next Token Prediction

Probability(”SanDiegohasveryniceweather”)
=P(“SanDiego”) P(“has”|”SanDiego”)P(“very”|”SanDiego

has”)P(“city”|…)…P(“weather”|…)

Max𝑃𝑟𝑜b 𝑥1:𝑇 =ෑ

𝑡=1

𝑇

𝑃(𝑥𝑡+1|𝑥1…𝑡)

Thisismodelwegot–capableof

“predicting thenext token”.
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Inference process of LLMs

Layer 1

Layer N

Artificial

the

the

future

Layer 1

Layer N

Layer 1

Layer N

future

of

Intelligence isInput

Output

… … …

Repeat until the sequence

● Reaches its pre-defined maximum length (e.g., 2048 tokens)

● Generates certain tokens (e.g., “<|end of sequence|>”)



Generative LLM Inference: Autoregressive Decoding

•Pre-filling phase (0-th iteration):
•Process all input tokens at once

•Decoding phase (all other iterations):
•Process a single token generated from previous 

iteration

•Key-value cache:
•Save attention keys and values for the following 

iterations to avoid recomputation
•what is KV cache essentially?



w/ KV Cache vs. w/o KV Cache



w/ KV Cache vs. w/o KV Cache

Q1:whathappensonKVcacheinprefillphase?

Q2:DoweneedtocacheQ?



Potential Bottleneck of LLM Inference?

• Compute:

• Prefill: largely same with training

• Decode: s = 1

• Memory

• New: KV cache
• Communication

• mostly same with training

Q?howaboutbatchsizeb?



Serving vs. Inference

Serving: many requests, online 

traffic, emphasize cost-per-query.

s.t. some mild latency constraints

emphasize throughput

Inference: fewer request, 

low or offline traffic,

emphasize latency

largeb b=1



Potential Bottleneck of LLM Inference in Serving

• Compute:
• Prefill:

• Different prompts have different length: how to batch?
• Decode

• Different prompts have different, unknown #generated tokens
• s = 1, b is large

• Memory
• New: KV cache
• b is large -> KV is linear with b -> will KVs be large to store?

• Communication
• mostly same with training

largeb



Potential Bottleneck of LLM Inference in Serving

• Compute:
• Prefill:

• Different prompts have different length: how to batch?
• Decode

• Different prompts have different, unknown #generated tokens
• s = 1, b=1

• Memory
• New: KV cache
• b =1 -> KV is linear with b -> will KVs be large?

• Communication
• mostly same with training

b=1



GPUs are not very good at bs = 1 and s = 1

max AI = #ops / #bytes
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Recap: Inference process of LLMs

Layer 1

Layer N

Artificial

the

the

future

Layer 1

Layer N

Layer 1

Layer N

future

of

Intelligence isInput

Output

… … …

Repeat until the sequence

● Reaches its pre-defined maximum length (e.g., 2048 tokens)

● Generates certain tokens (e.g., “<|end of sequence|>”)



Problem of bs = 1

Latency = step latency * # steps 

b=1

Speculativedecodingreducesthis,henceamortizethe

memorymovingcost(butitmayincreasecomputecost)



Large Language Models

• Transformers, Attentions

• Scaling Law

• MoE

• Connecting the dots: Training Optimizations

• Flash attention ← come back to this later next week

• Serving and inference optimization

• Continuous batching and Paged attention

• Speculative decoding (Covered by Guest Lecture)

• Connecting the dots: Deepseek-v3

• Hot topics

b=1
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Potential Bottleneck of LLM Inference in Serving

• Compute:
• Prefill:

• Different prompts have different length: how to batch?
• Decode

• Different prompts have different, unknown #generated tokens
• s = 1, b is large

• Memory
• New: KV cache
• b is large -> KV is linear with b -> will KVs be large to store?

• Communication
• mostly same with training

largeb



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

LLM Decoding Timeline
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Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Batching Requests to Improve GPU Performance

Issues with static batching:

• Requests may complete at different iterations

• Idle GPU cycles

• New requests cannot start immediately

19



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching

Benefits:

• Higher GPU utilization

• New requests can start immediately

20Orca: A Distributed Serving System for Transformer-Based Generative Models. OSDI’22



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching Step-by-Step

• Receives two new requests R1 and R2

21

Request Pool

(CPU)

Execution Engine

(GPU)

R1: optimizing ML 
systems

R2: LLM serving is

Maximum serving batch 
size = 3



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching Step-by-Step

• Iteration 0: Compute the prefill of R1 and R2

22

R1: optimizing ML 
systems

R2: LLM serving is

Iteration 0

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 
size = 3



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching Step-by-Step

• Iteration 0: Compute the prefill of R1 and R2

23

R1: optimizing ML 
systems

R2: LLM serving is

Iteration 0

Execution Engine

(GPU)

Maximum serving batch 
size = 3

Q:Howtobatchthese?



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching Step-by-Step

• Receive a new request R3; finish decoding R1 and R2

24

R1: optimizing ML 
systems requires

R2: LLM serving is 
critical.

Iteration 1

R3: A man

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 
size = 3



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching Step-by-Step

• Receive a new request R3; finish decoding R1 and R2

25

R1: optimizing ML 
systems requires

R2: LLM serving is 
critical.

Iteration 1

Execution Engine

(GPU)

Maximum serving batch 
size = 3

Q:Howtobatchthese?



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Iteration 2: Traditional Batching

• Receive new requests R4, R5; Decode more steps for R1 and R2

26

R2: LLM serving is 
critical. <EOS>

Iteration 2

R3: A man

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 
size = 3

R1: optimizing ML 
systems requires ML

R4: A dog is

R5: How are



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Iteration 3: Traditional Batching

• R3, R4, R5 waiting; Decode more steps for R1 and R2 (though R2
finished)

27

R2: LLM serving is 
critical. <EOS>

Iteration 3

R3: A man

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 
size = 3

R1: optimizing ML 
systems requires ML

and

R4: A dog is

R5: How are

Q:Howtobatchthese?
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Summary: Traditional Batching

• A batch is issued and run until completion

• Request in the queue cannot enter

• Request finished early cannot exit

• GPUs can become idle due to different (and unknown) number

of generated tokens



Continuous Batching Step-by-Step

• Receive a new request R3; finish decoding R1 and R2

29

R1: optimizing ML 
systems requires

R2: LLM serving is 
critical.

Iteration 1

R3: A man

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 
size = 3



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching

• Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes 

30

R1: optimizing ML 
systems requires ML

R2: LLM serving is 
critical. <EOS>

Iteration 2

R3: A man

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 
size = 3

R4: A dog is

R5: How are



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching

• Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes 

31

R1: optimizing ML 
systems requires ML

R2: LLM serving is 
critical. <EOS>

Iteration 2

R3: A man

Execution Engine

(GPU)

Maximum serving batch 
size = 3

Q:Howtobatchthese?



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Traditional vs. Continuous Batching

• Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes 

32

R1: optimizing ML 
systems requires ML

R2: LLM serving is 
critical. <EOS>

Iteration 2

R3: A man

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 
size = 3

R4: A dog is

R5: How are

R2: LLM serving is 
critical. <EOS>

Execution Engine

(GPU)

Maximum serving batch 
size = 3

R1: optimizing ML 
systems requires ML

R3: A man



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching

• Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes 
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R1: optimizing ML 
systems requires ML

R2: LLM serving is 
critical. <EOS>

Iteration 2

R3: A man

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 
size = 3

R4: A dog is

R5: How are



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching Step-by-Step

• Iteration 3: decode R1, R3, R4

34

Iteration 3

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 
size = 3

R1: optimizing ML 
systems requires ML

R3: A man is

R4: A dog is

R5: How are
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Summary: Continuous Batching

• Handle early-finished and late-arrived requests more efficiently

• Improve GPU utilization

• Key insight

• Attentions consume small percentage of flops (at short-

medium context length)

• MLP kernels are agnostic to the sequence dimension



KV Cache

Layer 1

Layer N
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the

the

future
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KV Cache

Layer 1
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future
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…

-0.1 0.3 1.2

0.7 -0.4 0.8

0.2 -0.1 1.1

Input

Output

Artificial

Intelligence

is

-0.7 0.1 -0.2the

-0.6 0.0 0.9future

-0.2 0.1 -1.1

0.9 0.7 0.2

-0.1 -0.3 0.1

Artificial

Intelligence

is

-1.1 0.5 0.4the

0.1 -2.1 0.5future

KV Cache
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KV Cache

• Memory space to store intermediate vector representations of tokens

• Working set rather than a “cache”

• The size of KV Cache dynamically grows and shrinks

• A new token is appended in each step

• Tokens are deleted once the sequence finishes
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Key insight

Efficient management of KV cache is crucial for high-throughput 

LLM serving

13B LLM on A100-40GB

Parameters 

(26GB, 65%)

KV Cache
(13GB, 33%)

Others

40

26

Existing systems vLLM

8 40



40

Key insight

Efficient management of KV cache is crucial for high-throughput LLM 

serving

13B LLM on A100-40GB

Parameters 

(26GB, 65%)

KV Cache
(13GB, 33%)

Others

40

26

Existing systems vLLM

8 40

0.8

3.2
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Memory waste in KV Cache

• Reservation: not used at the current step, but used in the future

• Internal fragmentation: over-allocated due to the unknown 

output length.

Artificial
Intellige

nce
is the future of

technol

ogy
<eos> <resv> … <resv> … …

2040 slots never used 

(internal fragmentation)

3 slots future used

(reserved)

External 

fragmentation

3 token states for 

request A’s prompt
Request A

current step

2 slots for

generated tokens

LLM is …

Request B
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Memory waste in KV Cache

Only 20–40% of KV cache is utilized to store token states

Ours

* Yu, G. I., Jeong, J. S., Kim, G. W., Kim, S., Chun, B. G. “Orca: A Distributed Serving System for Transformer -Based 

Generative Models” (OSDI 22).



vLLM: Efficient memory management for LLM inference

Inspired by virtual memory and paging
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Token block

• A fixed-size contiguous chunk of 

memory that can store token states 

from left to right

Token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Block size = 4

KV Cache
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Token block

• A fixed-size contiguous chunk of memory that can store token 

states from left to right

Artificial Intelligence is the

Token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Block size = 4

-0.2 0.1 -1.1

0.9 0.7 0.2

-0.1 -0.3 0.1

Artificial

Intelligence

is

-1.1 0.5 0.4the

Block 4

820 KB / token

(LLaMA-13B) 
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Paged Attention

• An attention algorithm that allows for storing continuous keys 

and values in non-contiguous memory space
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Logical & physical token blocks

Request

A

Alan Turing is a

computer scientist

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

Physical token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical token blocks
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Logical & physical token blocks

Request

A

Alan Turing is a

computer scientist

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist

Alan Turing is a

Physical token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical token blocks

Physical

block number
# Filled

7 4

1 2

– –

– –

Block table
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Logical & physical token blocks

Request

A

Alan Turing is a

computer scientist

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist

Alan Turing is a

Physical token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical token blocks

Physical

block number
# Filled

7 4

1 2

– –

– –

Block table

Completion: “and”
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Logical & physical token blocks

Request

A

Alan Turing is a

computer scientist and

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist

Alan Turing is a

Physical token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical token blocks

Physical

block number
# Filled

7 4

1 2

– –

– –

Block table

Completion: “and”
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Logical & physical token blocks

Request

A

Alan Turing is a

computer scientist and

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist and

Alan Turing is a

Physical token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical token blocks

Physical

block number
# Filled

7 4

1 3

– –

– –

Block table

Completion: “and”
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Logical & physical token blocks

Request

A

Alan Turing is a

computer scientist and
mathema

tician

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist and
mathem

atician

Alan Turing is a

Physical token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical token blocks

Physical

block number
# Filled

7 4

1 4

– –

– –

Block table

Completion: “and mathematician”
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Logical & physical token blocks

Request

A

Alan Turing is a

computer scientist and
mathema

tician

renowned

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist and
mathem

atician

renowned

Alan Turing is a

Physical token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical token blocks

Physical

block number
# Filled

7 4

1 4

5 1

– –

Block table

Completion: “and mathematician renowned”

Allocated on demand



Serving multiple requests

Alan Turing is a

computer scientist and
mathema

tician

renowned

Logical token blocks

Request

A

Block Table

computer scientist and
mathem

atician

Artificial
Intellige

nce
is the

renowned

future of
technolog

y

Alan Turing is a

Physical token blocks

(KV Cache)

Artificial Intelligence is the

future of technology

Logical token blocks

Request

B

Block Table



Memory efficiency of vLLM 

• Minimal internal fragmentation

• Only happens at the last block of a sequence

• # wasted tokens / seq < block size

• Sequence: O(100) – O(1000) tokens

• Block size: 16 or 32 tokens

• No external fragmentation
Alan Turing is a

computer scientist and
mathemati

cian

renowned

Internal fragmentation



Effectiveness of PagedAttention

96.3% KV cache utilization

Ours



Large Language Models

• Transformers, Attentions

• Scaling Law

• MoE

• Connecting the dots: Training Optimizations

• Flash attention ← come back to this later next week

• Serving and inference optimization

• Continuous batching and Paged attention

• Speculative decoding (Guest Lecture)

• Connecting the dots: Deepseek-v3

• Hot topics

• Prefill-decode disaggregation

largeb



LLM System Today Optimize Throughput



Motivation: Applications have Diverse SLO

TTFT TPOT
Time to first token Time per output token
Initial response time Average time between two subsequent generated tokens

Human reading speed (P99 latency = 250ms)

Data output generation (P99 latency = 35ms)

Fast initial response

User can tolerate longer initial 

response

Summarization

Chatbot



High Throughput ≠ High Goodput

= completed request / time

Throughput = 10 rps

…

High Throughput
System



High Throughput ≠ High Goodput

= completed request / time

Throughput = 10 rps

= completed request within SLO / time

Goodput  = 3 rps

under SLO 
criteria

can have
Low Goodput!

High Throughput
System

…



High Throughput ≠ High Goodput

= completed request / time

Throughput = 10 rps

= completed request within SLO / time

Goodput  = 3 rps

under SLO 
criteria

can have
Low Goodput!

High Throughput
System

…High Throughput can 

still have Low Goodput
⇒ Poor UX 



Background: Continuous Batching



Prefill and Decode have Distinct Characteristics

Prefill

Decode

Compute-bound

Memory-bound

One prefill saturates compute.

Must batch a lot of requests together to saturate compute



wasted time 

Continuous Batching Cause Interference

R1

R2

R2 arrivesRequest
arrival

Separate prefill / decode
R1 and R2 in separate GPUs

time

No Interference

R1

R2
time

R2 arrivesRequest
arrival

Time wasted for decode

Time wasted for prefill

Continuous Batching
Batch R1 and R2 together in 1 GPU



R1

R2
time

R2 arrivesRequest
arrival

Time wasted for decode

Time wasted for prefill

R1

R2

timeRequest
arrival R2 R3 R4

R3

R4

wasted time 

Continuous Batching Cause Interference

Continuous Batching
Batch R1 and R2 together in 1 GPU

Continuous Batching
Batch R1~R4 together in 1 GPU



Higher cost 

x1

add more GPU

x4

Colocation → Overprovision Resource to meet SLO

Poor UX Good UX 

lower cost 



Summary: Problems caused by Colocation

Continuous Batching Cause 
Interference

Is there a better way to achieve 

better

Goodput per GPU?

Coupled Parallelism Strategy



Disaggregating Prefill and Decode



Colocate
1 GPU for both Prefill and Decode

Disaggregation achieves better goodput



Colocate Disaggregate (2P1D)
2 GPU for Prefill + 1 GPU for Decode1 GPU for both Prefill and Decode

Disaggregation achieves better goodput

goodput



Colocate Disaggregate (2P1D)
2 GPU for Prefill + 1 GPU for Decode1 GPU for both Prefill and Decode

Simple Disaggregation

achieves 2x goodput 

(per GPU)

Disaggregation achieves better goodput

goodput



Disaggregation

• Published in 2024 at UCSD (yes, Hao’s lab)

• Soon become the chosen architecture replacing continuous

batching at large scale

• Deepseek-v3 uses prefill-decode disaggregation combined with

different parallelisms.
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