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Logistics

® | 80% of you finish the course eval, all get +2 points in final score!l
® Currently: we are 50%

* TA will hold a recitation for exam:
®* Watch for announcement

* Make sure to attend (there will be recordings though)



Recap: Next Token Prediction

Probalbility("Scin Diego has very nice wecather”)
— P(“Scn Diegou) P(“hCIS” | ”Sdn DiegO")P(“Very" | "Sdn Diego
has")P(“dty”|...).. .P(“weather’|...)

T
Max Prob(x;.;) = HP (el 1)
t=1

This is'%del we got—capable of
“predicting the next token”.
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e Reaches its pre-defined maximum length (e.g., 2048 tokens)

e Generates certain tokens (e.g., “<|end of sequence|>")




Generative LLM Inference: Autoregressive Decoding

* Pre-filling phase (O-th iteration):
®* Process all input tokens at once
®* Decoding phase (all other iterations):
® Process a single token generated from previous
iteration

*Key-value cache:
® Save attention keys and values for the following
iterations to avoid recomputation
* what is KV cache essentiallye



w/ KV Cache vs. w/o KV Cache

E=)
B0 D b s nd) (b, 5m,d) (b,5,1,d) (h, b) # T |
(b’ S’ n’ d)
Step 1
(h, n, d)
— Multiply V H Output ’ Q KT QKT v Attention
bi ¢l Y d
(b, s,n, d) T (b,s,n, d) (b, s, h) ~ QK Value Token 1 | | Token 1
(h,n, d) o 5
p— X % = X =
[}
(b,s,n,d) =,
(1, emb_size) (emb_size, 1) (1,1 (1, emb_size) (1, emb_size)
DVaIues that will be masked

Zoom-in! (simplified without Scale and Softmax)



Q1: what happens on KV cache in prefill phase?
w/ KV Cache vs. w/o KV CadRig Do We neediocache Q7

Step 1
Q KT QKT Vv Attention
Query Token 1 = Value Token 1 Token 1
N Y
S x| g = X -
S3 >
(1, emb_size) (emb_size, 1) (1,1 (1, emb_size) (1, emb_size)
Q KT QK™ v Attention
Query Token 1 ~ Value Token 1 Token 1
S o %
Ss x |8 - x -
& z
(1, emb_size) (emb_size, 1) (1, 1) (1, emb_size) (1, emb_size)

D Values that will be masked D Values that will be taken from cache



Potential Bottleneck of LLM Inference?¢
() Wo Jhnd @ dbsnd (b5 0.d) (h,h) (h,) - (h, i) )
' n

(b, s, n,d) [ v J WOurpm

We o o d l
Multiply V H Output ]

(b, s, n, d) (b, s, h)
Wr h, n, d)
v (b,s,n,d)

* Compute:
® Prefill: largely same with training

® Decode:s =1
* Memory

* New: KV cache Q? how about batch size b?
® Communication

®* mostly same with training




Serving vs. Inference

Serving: many requests, online Inference: fewer request,
traffic, emphasize cost-per-query. low or offline traffic,
s.t. some mild latency constraints emphasize latency

emphasize throughput



largeb @ .
Potential Bottleneck of LLM Inference in Serving ".“

.1, d)

(b5, 0, d) (b, s, 0. d) (b,s. 1, d) (h, b)

L Il/ ] W o
Multiply V H Output J
. S, 1, d

(h,)

* Compute:
® Prefill:

* Different prompts have different length: how to batche
®* Decode

* Different prompts have different, unknown #generated tokens
*s=1,bislarge
* Memory

* New: KV cache

* bislarge -> KV is linear with b -> will KVs be large to store?
* Communication

® mostly same with training



b=1
Potential Bottleneck of LLM Inference in Serving

(h,) ) , 1, s.n, s n, (b, 5,1, d) (h, h)
ua W o

Multiply V H Output

(b, s, n, d) (b,s,h)

* Compute:
* Prefill:
®* Decode
' Differ%n’r prompts have different, unknown #generated tokens
®*s=1, b=l
* Memory
* New: KV cache
* Communication o
®* mostly same with fraining



GPUs are not very good atbs=1and s =1

v
max Al = #Hops / #bytes



Recap: Inference process of LLMs

Output the future of
—lr— —lr— —lr—
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Input Artificial |Intelligence is the future

Repeat until the sequence
e Reaches its pre-defined maximum length (e.g., 2048 tokens)
13 e Generates certain tokens (e.g., “<|end of sequence|>")



Problem of bs = 1 b=1

Latency = step latency * # steps

/

Speculative decoding reduces this, hence amortize the
memory moving cost (but it may increase compute Cost)



Large Language Models

® Connecting the dots: Training Optimizations
* Fash attention « come back to this later next week

® Connecting the dofts: Deepseek-v3
* Hoft topics



Large Language Models

® Connecting the dots: Training Optimizations
* Fash attention « come back to this later next week

* Continuous batching and Paged attention

® Connecting the dofts: Deepseek-v3
* Hot topics



largeb @ .
Potential Bottleneck of LLM Inference in Serving ".“

.1, d)

(b5, 0, d) (b, s, 0. d) (b,s. 1, d) (h, b)

L Il/ ] W o
Multiply V H Output J
. S, 1, d
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* Compute:
® Prefill:

* Different prompts have different length: how to batche
®* Decode

* Different prompts have different, unknown #generated tokens
*s=1,bislarge
* Memory

* New: KV cache

* bislarge -> KV is linear with b -> will KVs be large to store?
* Communication

® mostly same with training



LLM Decoding Timeline

Generation Iteration

ey

18



Batching Requests to Improve GPU Performance

-~ - — - -

T Ta T3 Tq T Ty Tp Ty T T T Tq T3 Tg Tp Ty
S, [s, |S: % S, [s. | B

S: ¢, 8K S: [, |9 Vol

Sj 93 S'J Slj 3) 9.5

SUIsy A S‘i% [ A A

Issues with static batching:

« Requests may complete at different iterations
* |dle GPU cycles

* New requests cannot start immediately

19



Continuous Batching

T Ty T3 Tq To Ty Tp Tg

gr IS, S' %

Sx|8,y

S'j s’) 33

Sy sy 1Sy sy B8l | |
Benefits:

* Higher GPU utilization
« New requests can start immediately

Orca: A Distributed Serving System for Transformer-Based Generative Models. OSD/ 22 20



Continuous Batching Step-by-Step

* Receives two new requests R1 and R2

R1: optimizing ML
systems

R2: LLM serving is

Request Pool
(CPU)

Execution Engine
(GPU)

21



Continuous Batching Step-by-Step

* Iteration 0: Compute the prefill of R1 and R2

R1: optimizing ML

systems C

R2: LLM serving is

Iteration O

Request Pool Execution Engine
(CPU) (GPU) 22



Continuous Batching Step-by-Step

'H 2
« Iteration 0: Compute the prefill of R1 and R2 Q: Howto baich these

Maximum sgrving batch
b,y size =3

[ i ](h‘“'d) (b, 5,1, d) (b, 5,1, d) (b, 5,1, d)
m @ - H o } thoptlmlzmg ML
(K Josn . — — systems
W Jone o
LV Jesng
R2: LLM serving is
i Iteration O

Execution Engine
(GPU) 23



Continuous Batching Step-by-Step

* Receive a new request R3; finish decoding R1 and R2

Maximum serving batch
size =3

R1: optimizing ML
systems

R2: LLM serving is

Request Pool Execution Engine
(CPU) (GPU)

C

Iteration 1

24



Continuous Batching Step-by-Step
Q: How to batch these?

* Receive a new request R3; finish decoding R1 and R2

Maximum serving batch

— ) size =3

Multiply V H Output }

(b s.n.d) o) R1: optimizina ML
systems requires

R?:1'l M serving is Iteration 1
critical.

Execution Engine
(GPU) 25



Iteration 2: Traditional Batching

* Receive new requests R4, R5; Decode more steps for R1 and R2

Maximum serving batch
size =3

R4: Adog is R1: optimizing ML

systems requires ML
R2: LLM serving is Iteration 2
critical. <EOS>

R5: How are

Request Pool Execution Engine
(CPU) (GPU)



Iteration 3: Traditional Batching O: How to baich these?

* R3, R4, R5 waiting; Decode more steps for R1 and R2 (though R2
finished)

Maximum sgrving batch
size =3

R1: optimizing ML
systems requires ML ‘
|and

R2: LLM serving is Iteration 3
critical. <EOS>

R4: Adog is

R5: How are

Request Pool Execution Engine
(CPU) (GPU)

27
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Summary: Traditional Batching

®* A batch isissued and run until completion
® Request in the queue cannot enter
® Request finished early cannot exit
®* GPUs can become idle due to different (and unknown) number

of generated tokens



Confinuous Batching Step-by-Step

® Receive a new request R3; finish decoding R1 and R2

Maximum serving batch
size =3

R1: optimizing ML
systems

R2: LLM serving is

Request Pool Execution Engine
(CPU) (GPU) 29

C

Iteration 1



Continuous Batching

* |teration 2: decode R1, R2, R3; receive R4, R5; R2 completes

R4: Adog is

R5: How are

Request Pool
(CPU)

Maximum serving batch
size =3

R3: Aman

R1: optimizing ML C

systems

Iteration 2

R2: LLM serving is

Execution Engine
(GPU) 30



Continuous Batching
Q: How to batch these?

* Iteration 2: decode R1, R2, R3; receive R4, R5; R2 complet

Maximum serying batch

Wy Jomo 0 na ©snd) ) size = 3

]
Multiply V H Output } R3 A man

e (b, s.n. d) (b, s, h)

(h,n, d) o

(b,5.0.0) R1: optimizing ML

systems requires ML

s F

Iteration 2

R2: LLM consing s

critical <EOS>

Execution Engine
(GPU)

31



Traditional vs. Continuous Batching

* |teration 2: decode R1, R2, R3; receive R4, R5; R2 completes

Maximum serving batch Maximum serving batch
R4: A dog is size=3 size =3

R1: optimizing ML
systems requires ML .
R1: optimizing ML

systems requires ML

R5: How are

R2: LLM serving is Iteration 2

critical. <EOS>

R2: LLM serving is
critical. <EOS>

Request Pool Execution Engine  Execution Engine
(CPU) (GPU) (GPU) 32



Continuous Batching

* |teration 2: decode R1, R2, R3; receive R4, R5; R2 completes

R4: Adog is

R5: How are

Request Pool
(CPU)

Maximum serving batch
size =3

R3: Aman

R1: optimizing ML C

systems

Iteration 2

R2: LLM serving is

Execution Engine
(GPU) 33



Continuous Batching Step-by-Step

* |teration 3: decode R1, R3, R4

R5: How are

Request Pool
(CPU)

Maximum serving batch
size =3

R3: Aman

R1: optimizing ML
systems

R4: Adogis

Execution Engine
(GPU)

C

Iteration 3

34
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Summary: Continuous Batching

®* Handle early-finished and late-arrived requests more efficiently
®* Improve GPU utilization
® Key insight
® Attentions consume small percentage of flops (at short-
medium context length)

®* MLP kernels are agnostic to the sequence dimension



KV Cache
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Output
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KV Cache

* Memory space to store intfermediate vector representations of tokens
®* Working set rather than a “cache”

® The size of KV Cache dynamically grows and shrinks

future[_06 [ T

: : of
* A new token is appended in each step -
—ur-
* Tokens are delefed once fthe sequence finishes L LayerN
[ Aheisl [02_] 03 ]\ e EEEEREIEGES)
| motomcn 08 PO P02 |
| e 11 ] 05 | 04 | |
| | :
KV Cache | |
| [t
! ——
! !
| !

Is ¥
Woor i 07 | 01 | 02 1/

T e —ar—
future




Key insight

Efficient management of KV cache is crucial for high-throughput

LLM serving
- - EXisting systems -— vLLM
)
e
)
(@)]
3
KV Cache =
Parameters |(13GB, 33%) g* |
(26GB, 65%) £ :
= !
Param. 8 40
size Batch size (# requests)

Others

13B LLM on A100-40GB



Key insight

Efficient management of KV cache is crucial for high-throughput LLM

serving -
. — EXisting systems — VLLM
m A
O 40
© ! :
Q | |
KV Cache g . :
Parameters |(13GB, 33%) g* 26 | |
(26GB, 65%) = ! :
|
= 1 : >
A I I
— — — —I ———————————————————
Others 3 32 |
c v I
S & !
13B LLM on A100-40GB <R !
£ = 0.8~ -=
l_ -
40 8 40

Batch size (# requests)



Memory waste in KV Cache

2 slots for
generated tokens

3 slots future used
(reserved)
Al

Intellige
nce

Artificial

~

3 token states for
request A's prompt

® Reservation: not used at the current step, but used in the future

® Internal fragmentation: over-allocated due to the unknown

41

Request A
current step

output length.

fragmentation
P

technol
<e0s> <resv> <resv>

ogy

~
2040 slots never used
(internal fragmentation)

Request B



Memory waste in KV Cache

. Internal External
M Token states ™ Reservation I8 fragmentation fragmentation

Amu 89

& 36.6

s 80 4 41.6 .

(@)

%

S 60+

(]

c

O 40 A

©

O

= 204

X

0 - -

Orca Orca Orca Ours
(Max) {Pow2) (Oracle)

Only 20-40% of KV cache is utilized to store token states

*Yu, G. I, Jeong, J. S., Kim, G. W., Kim, S., Chun, B. G. “Orca: A Distributed Serving System for Transformer-Based
Generative Models” (OSDI 22).

42



VLLM: Efficient memory management for LLM inference

Inspired by virtual memory and paging

Memory management in OS Memory management in vLLM
Page 0 Token Block 0
Process Page 1 Process Request Token Block 1 Request
A Page 2 B A Token Block 2 B
Page 3 Token Block 3
Page 4 Token Block 4

Physical Memory KV Cache




Token block

Token blocks
(KV Cache)

* A fixed-size configuous chunk of block 0

memory that can store tfoken states block 1

from left to right block 2

block 3

block 4

KV _Cache

block 5

block 6

block 7

44 Block size =4




Token block

* A fixed-size contiguous chunk of memory that can store token
Token blocks

states from left to right (KV Cache)
block O
block 1
block 2
Block 4 block 3
Artificial | -0.2 0.1 11 | € ek 4
Intelligence| 0.9 0.7 0.2
is -0.1 -0.3 0.1 block 5| Artificial [Intelligence] is the
the -1.1 0.5 0.4
[\ J block 6
Y
820 KB / token
(LLaMA-13B) block 7
N
45 Block size = 4




Paged Attention

®* An aftention algorithm that allows for storing continuous keys

and values in non-contiguous memory space

Key and value vectors

mathe-

Block 1 [computer| scientist and S ician

Block 2 renowned for
Query

vector

for

Block 0 | Alan Turing is a




Logical & physical tfoken blocks

Physical token blocks

(KV Cache)
Request block 0
A
block 1
Prompt: “Alan Turing is a computer scientist”
block 2
Logical token blocks block 3
block 0| Alan Turing is a block 4
block 1 | computer | scientist block 5
block 2 block 6
block 3 block 7

47




Logical & physical tfoken blocks

Physical token blocks
(KV Cache)

ReckleSt block 0

block 1| computer | scientist

Prompt: “Alan Turing is a computer scientist”

block 2
Logical token blocks Block table block 3
block 0| Alan Turing is a \ blozzyrfdﬁi‘éer # Filled block 4
block 1 | computer | scientist ! 4 block 5
., ) N oc
block 2 - - block 6
block 3 block 7| Alan Turing is

48



Logical & physical tfoken blocks

Physical token blocks
(KV Cache)

ReckleSt block 0

block 1| computer | scientist

Prompt: “Alan Turing is a computer scientist”

Completion: “and” block 2
Logical token blocks Block table block 3
block 0| Alan Turing is a \ bloztysdﬁéer 4 Filled block 4
block 1 | computer | scientist ! : block 5
T~ 1 5 oc
block 2 - - block 6
block 3 block 7| Alan Turing is

49



Logical & physical tfoken blocks

Physical token blocks
(KV Cache)

Re‘kleﬁ block 0

block 1| computer | scientist

Prompt: “Alan Turing is a computer scientist”

Completion: “and” block 2
Logical token blocks Block table block 3
block 0| Alan Turing is a \ blozzyﬁdﬁi‘éer # Filled block 4
— 7 4
block 1 | computer | scientist and ~ . 5 block 5
block 2 - - block 6
block 3 - - block 7| Alan Turing is
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Logical & physical tfoken blocks

Physical token blocks
(KV Cache)

Re‘kleﬁ block 0

block 1| computer | scientist | and

Prompt: “Alan Turing is a computer scientist”

Completion: “and” block 2
Logical token blocks Block table block 3
block 0| Alan Turing is a \ blozzyﬁdﬁi‘éer # Filled block 4
— 7 4
block 1 | computer | scientist and ~ . ; block 5
block 2 - - block 6
block 3 - - block 7| Alan Turing is

51



Logical & physical tfoken blocks

Request
A

Prompt: “Alan Turing is a computer scientist”

Completion: “and mathematician”

Logical token blocks

Block table
block 0| Alan Turing is a \ blozzyﬁd‘;?éer # Filled
block 1 | computer | scientist and mr:titcl;aenma\ I j
block 2 - —
block 3 - -

52

block O

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Physical token blocks

(KV Cache)
I mathem
computer | scientist| and L
atician
Alan Turing is a




Logical & physical tfoken blocks

Request
A

Prompt: “Alan Turing is a computer scientist”
Completion: “and mathematician renowned”

Logical token blocks

Block table
block 0| Alan Turing is a Physical # Filled
\ block number
. 7 4
block 1 | computer | scientist and ma_thema
tician | 1 4
block 3

53

block O
block 1

block 2

block 3

block 4
s

block 5
|

block 6

block 7

Physical token blocks

(KV Cache)
computer | scientist| and mqthem
atician
Allocated on demand
Alan Turing is a




Serving mulfiple requests

Request
A

Block Table

Logical token blocks

Physical token blocks

(KV Cache)

Block Table

Request
B

Logical token blocks

Alan Turing is a
S mathema

computer | scientist and -
tician

Acrtificial

Intelligence

L mathem
computer | scientist| and .
atician
Artificial | Melge et e
nce
future of
Alan Turing is a

future

of

is

the




Memory efficiency of vLLM

* Minimal internal fragmentation
* Only happens at the last block of a sequence
* # wasted tokens / seq < block size
® Sequence: O(100) — O(1000) tokens

® Block size: 16 or 32 tokens

. Alan Turing is a
®* No external fragmentation —
computer scientist and cian
renowned
[\ J
Y

Internal fragmentation



Effectiveness of PagedAttention

. Internal External
M Token states ™ Reservation I8 fragmentation fragmentation

Amu 89

S

© BO -

o

%

S 60+

()}

<

O 40

©

@)

= 204

X

,u_

Orca Orca Orca Ours
(Max) {Pow2) (Oracle)

96.3% KV cache utilization



Large Language Models

® Transformers, Attentions
® Scaling Law
* MoE
® Connecting the dots: Training Optimizations
® Flash attention « come back to this later next week
® Serving and inference optimization
* Continuous batching and Paged attention
® Speculative decoding (Guest Lecture)

Connecting the dots: Deepseek-v3

Hot topics
® Prefill-decode disaggregation



LLM System Today Optimize Throughput

g DeepSpeed M|

<3

NVIDIA.

Beyond State-of-the-art Performance

24x higher thmughput cnmpared to HF o

— LLaMA-13R. A100-40GA LLaMA-TR. A10G

: .

g 3.5x higher throughput than TGl.
= 100

2 6.4 2 8.3

= = HF TGI wLLM = . HF TGI wLLM

Serving throughput when each request asks for ane output completion. vLLM achieves 1dx - 24x
higher throughput than HF and 2.2x - 2.5x higher throughput than TGIL




Motivation: Applications have Diverse SLO

*TTFT *TPOT

Time to first token Time per output token
Initial response time Average time between two subsequent generated tokens

G 58808500 GG000E0
- Fast initial response - Human reading speed (P99 latency = 250ms)

Chatbot
m — l Data output generation (P99 latency = 35ms)
Summarization User can tolerate longer initial

response



High Throughput # High Goodput

TTFT
-

High Throughput
Throughput =10 rps System

= completed request / time

v
TRGT Suppose 10 requests complete
within 1 second..



High Throughput # High Goodput

TTFT
o

L

Throughput =10 rps

= completed request / time

b "

TRGT Suppose 10 requests complete

200ms

50ms

within 1 second.. under‘ SLO
criteria

l I I Goodput =3 rps @
= completed request within SLO / time

L

-
TEOT  _ but only 3 {out of 10) hold the

latency target

High Throughput
System

can have
Low Goodput!



High Throughput # High Goodput

200ms |

50ms

1T
A

TTFT

TROT

FT

L

L
TROT

High Throughput can

]

still have Low Goodput

— but anly 3 {mlﬂ of 10) hold the
latency target

Goodput =3 rps

= completed request within SLO / time

High Throughput

= Poor UX '

e ——-uput!



Background: Continuous Batching

Request Arrived

ar 2
i
Worker . .

Request

Timeline



Prefill and Decode have Distinct Characteristics

* Prefill

Compute-bound

One prefill saturates compute.

* Decode saaassnns

Memory-bound
Must batch a lot of requests together to saturate compute



Continuous Batching Cause Interference

Continuous Batching
Batch R1 and R2 together in 1 GPU

K_H
~ B 08

R2

Time wasted for decode

Request
arrival

Time wasted for prefill
R2 arrives

tlme

Separate prefill / decode
R1 and R2 in separate GPUs

il
5 -00008
il
. time

? »
Request R2 arrives
arrival

No Interference

wasted time



Continuous Batching Cause Interference

Continuous Batching
Batch R1 and R2 together in 1 GPU

Time wasted for decode

K_H
wn ~0080 0080
IE
v Illlll

Time wasted for prefill

Request R2 arrives
arrival

time

Continuous Batching
Batch R1~R4 together in 1 GPU

- 308 8 8 68
) 8 @8

° GED & 088
y ab i

|-
Request T T T time -
arriva

wasted time



Colocation - Overprovision Resource to meet SLO

TPOT
Poor UX @ @ Good UX @

lower cost &) Higher cost () ® & &



Summary: Problems caused by Colocation

Is there a better way to achieve
0 better
Goodput per GPU?

TP | DP

Coupled Parallelism Strategy

Continuous Batching Cause
Interference




Disaggregating Prefill and Decode

Disaggregation is a technigue that

Request Arrived

[ |
1/6PU -
‘ Prefill Worker ‘ ‘ Decode Worker

Request ‘

Timeline



Disaggregation achieves better goodput

Colocate
1 GPU for both Prefill and Decode

P9
-
&
)
L]

E

Decode = 1.6 rps

Ia « &« + w»
quest rFate per second

0 | Max System goodput

= Min(Prefill, Decode)

= 1.6 rps / GPU @

P90 TPOT




Disaggregation achieves better goodput

Colocate
1 GPU for both Prefill and Decode

| Prefill = 3 rps

ige o+ 7w
RbZusst

PO TTFT

rate per second

h, Coscoote

& PRO TPOT <= 40 ms

Decode = 1.6 rps

Ia « &« + w»
Request rFate par sesond

P90 TPOT

51 | Max System goodput
= Min(Prefill, Decode)

= 1.6 rps / GPU @

Disaggregate (2P1D)

2 GPU for Prefill + 1 GPU for Decode

' Prefill = 5.6 rps |

FQOTTFT <= 400 ms

PRO TTFT

=

& «5.5hd F 0
Sequest rake per second

b, Decods-only

0 TPOT <= 40 ms

Decode = 10 rps -

L 7]

Reguedt cate pac aecend

P30 TPOT

" 6ru JB 6Py Disaggregate (2P1D) goodput
: = Min (5.6 x 2, 10) rps / 3 GPU

| 3.3 rps / GPU @




Disaggregation achieves better goodput

Colocate
1 GPU for both Prefill and Decode

| Colotote

TTFT

@ PI0TTFT <= 400 ms

I | Prefill = 3 rps

ige o+ 7w
Request rate per second

P90

|, Colacate

- PRO TPOT <= 40 ms

P90 TPOT

Decode = 1.6 rps

Ia « &« + w»
Request rFate par sesond

0 | Max System goodput

= Min(Prefill, Decode)

= 1.6 rps / GPU @

Disaggregate (2P1D)

2 GPU for Prefill + 1 GPU for Decode

b Prefill-onty
Ll— ! )
= Prefill = 5.6 . . .
Cl e R Simple Disaggregation
g - FAO TTFT <= 400 ms
o T achieves 2X goodput
I (per GPU)
E PO TPOT <= 40 ms
= T
E [D«ecude-mrps -
o — 1

"0 R GPU Disaggregate (2P1D) goodput

= Min (5.6 x 2, 10) rps / 3 GPU

| 3.3 rps / GPU @




Disaggregation

® Published in 2024 at UCSD (yes, Hao's lab)

® Soon become the chosen architecture replacing confinuous
batching at large scale

®* Deepseek-v3 uses prefill-decode disaggregation combined with

different parallelisms.
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