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Potential Bottleneck of LLM Inference in Serving
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®* How fo batch
®* Prompts have different length and unknown #generated

tokens
¢ Sol: continuous batching

* Memory
® KV cache memory becomes a bofttleneck

¢ Sol: paged attention
* In the presence of SLOs (beyond throughput)

* Interference of prefill and decoding
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Disaggregating Prefill and Decode

Disaggregation is a technigue that
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Disaggregation achieves better goodput
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Disaggregation achieves better goodput
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Disaggregation

® Published in 2024 at UCSD (yes, Hao's lab)

® Soon become the chosen architecture replacing confinuous
batching at large scale

®* Deepseek-v3 uses prefill-decode disaggregation combined with

different parallelisms for prefill and decoding instances.



Continuous batching -> disaggregation

® |t seems we are going back and forth

* Actually no:
® Continuous batching: improve GPU utlization hence throughput
® Disaggregation: to address goodput, throughput s.t. SLOs

® Also, key insights of CB carries to disaggregation
® Batch attentions and MLPs differently
® Exit finished request and pick up new request asap



LLM Inference Now is High-stake research topic

® Scheduling
® Confinuous batching
® Chunked preéfill
® Disaggregated prefill and decoding

* Speculative Decoding
* Address the memory bottleneck of KV Cache
®* New attention mechanisms: paged, sparse, etc.

® Sparse KV cache

® Kernel optimizations



large b
Large Language Models

® Transformers, Attentions
® Scaling Law
* MoE
® Connecting the dots: Training Optimizations
* Flash attention — come back to this later next week
® Serving and inference optimization
® Continuous batching and Paged attention
* Speculative decoding (Guest Lecture)
® Connecting the dots: Deepseek-v3
* Hot topics



The Rest of bottleneck

®.) . ITQ Jabn, Y 6504 (0bs0d (b.s.n, d) LY.
WRMSI Q } (bs s, 1, d) ? J[ f ] [ V } WOH{DN!
! ,
We Jtna OK' | :
RMS Norm > . softmax( ) —»{ Multiply V ]—» Output

K J (b, s, n, d) ,/3 \

(b, s, h) (b,s,n, d) (b, s, h)
(b’ n’ S’ S)
W, Jhna
— v —
Vo Jsng

 Quadratic compute wrt s
 Quadratic memory w.rt.s



HEEEEEEEN =

x

Attention: O = Softmax(QK') V

S=QKT:NxN S = mask(S)
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H100 SXM

FP64 34 teraFLOPS

L] Y .
Which would hit bottleneck first
FP32 67 teraFLOPS
TF32 Tensor Core” 989 teraFLOPS

C O m p U Te : 4 bSQ h BFLOATI6 Tensor Core’ 1,979 teraFLOPS

FP16 Tensor Core” 1,979 teraFLOPS
. 2
. FP8 Tensor Core 3,958 teraFLOPS
Memory: bs?n :
INT8 Tensor Core” 3,958 TOPS

Assume b = 1K, n =32, h = 4k
®* Assume s = 4K (sequence length) 2510
®* compute: 4 * 1K * 4K * 4K * 4K s
® =256 Tflops
®* memory. 1K * 4K * 4K * 32
® = 512G bytes

GPU memory is more scarce than compute at this moment



The Large [bnss] maftrix makes thing even worse

Algorithm 0 Standard Attention Implementation

Require: Matrices Q. K.V € RV*4 in HBM.
1:1 Load Q. K by blocks from HBM., compute S = KT write S to HBM.

3: Load P and V by blocks from HBM compute O =PV, write O to HBM.

4: Return O.

Additional Challenges:
¢ Repeated reads/writes from HBM -> SRAM of the large bnss

matrix



Revisit: GPU Memory Hierarchy

S\ SRAM: 19 TB/s (20 MB)
SRAM

LA\ HBM: 1.5 TB/s (40 GB)
HBM

WETT BT (o7 DRAM: 12.8 GB/s
(CPU DRAM) (>1TB)

Memory Hierarchy with
Bandwidth & Memory Size
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Problem: How 1o file soffmax?

K: N x S=QKT:NxN S = mask(S) S =softmax(S): NxN V:Nxd O=SV:Nxd
d W ENEEEEEN H H n n
m HEEEEEEEN HE HE ] a
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m HEEEEEEEN EEEEEN HEEEEE ] n
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Challenges: We must avoid materializing S while

° Compute softmax reduction O w/o access to NxN at forward

o Compute backward even without saving the NxN softmax forward
activations
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Recall in the Matmul Class

dram float A[n/v1][n/v3][v1][Vv3];
dram float B[n/v2][n/v3][v2][Vv3];
dram float C[n/v1][n/v2][v1l][v2];

* \We were able to compute the final

for (int 1 = 0; i < n/vl; ++1i) { - . -
for (int 4 - 0 3 < nv2s 149 ¢ resuttsthhputfullymatenalzng the
register float c[v1][v2] = 0; |nput/0utput

for (int k = 0; k < n/v3; ++k) {
register float a[v1][v3] = A[i][k];
register float b[v2][v3] = B[Jj][k];
¢ += dot(a, b.T);
}
C[1][3] = c;
}

}



The Large [bnss] maftrix makes thing even worse

Algorithm 0 Standard Attention Implementation

Require: Matrices Q. K.V € RV*4 in HBM.
1:1 Load Q. K by blocks from HBM., compute S = KT write S to HBM.

3: Load P and V by blocks from HBM compute O =PV, write O to HBM.

4: Return O.

Core Q: How to tile softmax?@



How to Implement Softmax

Algorithm 1 Naive softmax

1: dy <0
2: forj < 1,V do
3: dj — dj_l + e%i
4: end for
5: fori < 1,V do
6: Yi %
7: end for
Problem

Can easily go overflow because of sum (e/Ax)

20



Safe Soffmax

\"4
T; —MaxX Tl
e k=1
\74
14 Tj—maxTg
E e k=1

Algorithm 2 Safe softmax

1: mg < —o0

2: fork <+ 1,V do

3:

4: end for

5: do +— 0

6: for j «+ 1,V do

7.

8: end for

9: fori < 1,V do
eLi—my

10: Yi v

: end for

—
[a—

my < max(mp_1, k)

dj — dj_l + eTiTmvVv
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Can we fuse@¢

Create alternative /.
sequence

(A

2.

1

Lj

— 1y

d

With:

!/
vV =

dy

Algorithm 2 Safe softmax

1: Mg < —0oC

2l for k <+ 1,V do

3 my < max(mp_1, k)
41 end for

S < U

6] for j +— 1,V do

7 dj <~ dj_1 +e®7™mv
81 end for

9: for2 < 1,V do

10: g e S0

11: end for




23

Further Note:

Create alternative
sequence

The sequence exhibits
recurrence

_Z;.: e
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With:
I,/ = dy
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Online, Safe Soffmax

Algorithm 3 Safe softmax with online normalizer calculation

1:

LRI HELDN

mp < —00
d0<—0
for j < 1,V do

€

e

mj <— max (m;_1, ;)
dj — dj_l X eMi—17 M 4 %3~
nd for

for
emi 7mV
Yi — dy
T

Q : canwe further fuse these two loops?
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Self attention v2: with Online Safe Softmax

NOTATIONS

Q[k,:]: the k-th row vector of @ matrix.
KT[:,4]: the i-th column vector of KT matrix.
Olk,:]: the k-th row of output O matrix.
Vi,:]: the i-th row of V matrix.

{oi}: 22:1 a;V'[j,:], a row vector storing partial aggregation result A[k,:i] x V[:4,:]

Bobpy
for i— 1, N do

end
for i— 1, N do

end

Z;
my;

d!

%

O;

— Qlk,:] KT[:,1]

— max (m;_1,x;)

s dz(;lemi_l—mi_i_ea:i—mi

Q1: canwe further fuse these two loops?

— /
dy

— 0;_1+a; V[Z,]

Olk,:] —on

Q2: Howtogetx I?
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Self attention

NOTATIONS

Qlk,:]: the k-th row vector of @ matrix.
KT[:,]: the i-th column vector of KT matrix.
Olk,:]: the k-th row of output O matrix.
Vli,:]: the i-th row of V matrix.

{oi}: Z;zl a;V[j,:], a row vector storing partial aggregation result A[k,:¢] x V[:,:]

Boby
for i—1,N do
z; — Qlk,:] KT[:, 1)
m; «— max (m;_1,;)
di — di_yemimiTm 4 i
end
for i—1,N do
eTi—mN
a; < T
o; |— Oi41+aiV[i,:]
end 1
O[k,:]f—ON

In self attention, we just want o, nota



Derive the Recurrence

O, - Z : dl V[.ja]
Jj=1 !
i—1 eTi — i eTi— M
- Z d( V[ja] + d'-' V[Z,]
J=1 ¢ v
(i_l e%i—Mi—1  xj—mi ! i —TT0s
_ S A R P e
N \32::1 d£—1 eTi—Mi—1 d{ V[j?] + dzl V[Zv]
(i—l Tj—my—1 dl Ti—my
e D R R ()
\ d; _4 d; d!
j=1 t= 4 . i
ol emiimme gmemi Insight: o; only depends on:
= 0;1 + Vii,:] ;

/ / / !
. K 0j—1» i1, G My, My
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Finally: Flash Attention 1. weonlyreadx; (Q,K)once
2. We never matenalizethe full S

3. We never matenalize the full a (softmax(S))

for :<—1, N do
zi — Qlk:] K[, 1]
?J ’0 c,
m; <« max(m;_1,T;)
dl « dl_je™ 17 eTim M
d( eMi—1—Mmi eTi—Mm;
/ / 1—1 .
0, <— 0;_1 7 A———V[i,:]
d; d;
end

Olk,:] — on



Tiling: Decompose Large Softmax into smaller ones by Scaling

Outer Loop =
1. Load inputs by blocks from global K':dxN
.I.O ShGred memory Copy Block to SRAM
. . Outer L
2. On chip, compute attention @Nxd TPy ViNXd
output wrt the block 2! I :
o . 1l
3. Update output in device memory o S, h |
. 8 - Compute Block |
by scaling = on SRAM =
& Copy | =
£ | | ?i
| N E:
4 I I L A

— e e e

Output to HBM

sm(QK"V: N x d

Inner Loop

FlashAttention

doo1 483nQ



+ Tlllﬂg Keys (NxK)
AR EERRERERRERRREO 000 RETRRERRRRRRRRERRARE

=

1. Load inputs by blocks from
global to shared memory

2. On chip, compute attention
output wrt the block Q @ tr(K)

3. Update output in device NXxN
memory by scaling

Queries (NxK) Output Values
(NxK) (NxK)

Animation credit: Francisco Massa



Outer Loop

Recomputation: Backward Pass

By storing softmax normalization factors
from forward (size N), recompute
attention in the backward from inputs in

Compute Block
on SRAM

Inner Loop

Attention Standard | FlashAttenti
on

GFLOPs 66.6 75.2 I
Output to HEM
Global mem 40.3 GB 4.4 GB sm(QK")V: N xd
aCCess Inner Loop ;
FlashAttention
Runtime 41.7 ms 7.3 ms

doo Jauy|

Speed up backward pass with with increased FLOPs!

dooT 133nQ




Speed (TFLOPs/s)

FlashAttention: 2-4x speedup,

Attention forward + backward speed (A100 80GB SXM4)

200 1

150

100 1

50 1

Pytorch
FlashAttention
xformers
FlashAttention Triton
FlashAttention-2

512

1k

2k 4k
Sequence length

8k

182 189

Memory Reduction (X times less)

10-20x memory reduction

FlashAttention Memory Reduction

20 A

159

10 1

128 256 512 1024 2048 4096
Sequence Length

B Dropout + Masking



High-level GISTs of FA

* [t completely avoid materializing the large S of size bs?n
* |t willmake the compute 4bs?h even worse

* |t will greatly reduce memory movement between memory
hierarchy

Why FA is even greater win than thought -- Cascaded effect:
®* Because it saves the memory of bs?n, it enables two possibilities
® Can frain with a large b (in fact, pre-FA, most train with b=1)
® > high Al
® Can turn off gradient checkpointing
®* -> No need to pay extra forward (25% flops)



FA2 and FA3

®* More kernel-level optimizations over FA
®* More fusion
®* Improved memory access patterns

® Discussion: why FA took off¢



large b
Large Language Models

® Transformers, Attentions
® Scaling Law
* MoE
® Connecting the dots: Training Optimizations
* Flash attention « come back to this later next week
® Serving and inference optimization
® Continuous batching and Paged attention
* Speculative decoding (Guest Lecture)
® Connecting the dofts: Deepseek-v3
* Hot topics



In Practice: How LLMs are frained today
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Summary: How LLMs are frained today

® Quter Loop 1:
® Inter-op parallelism + 1F1B
® Quter Loop 2: Intra-op parallelism based on model architecture
® Jero-2 / Zero-3 + data parallelism
* Megatron-LM tensor parallelism or Expert parallelism
® Quter Loop 3:
* Gradient checkpointing and recomputation at backward
®* |nner Loop 4:
® Graph fusion
® [nner Loop 5.
* Operator-level optimization: tiling, flash attention, etc.
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Deepseek-v3 overview

Dee

@@, DeepSeek-V3
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Figure 1 | Benchmark performance of DeepSeek-V3 and its counterparts.



Deepseek-v3 overview

Training Costs | Pre-Training Context Extension Post-Training | Total
in H800 GPU Hours 2664K 119K 5K 2788K
in USD $5.328M $0.238M $0.01M $5.576M

Caveats: very good marketing because the majority (100 — 1000x
more) of the GPU hours ($) are spent on the planning phase, not the
actual training phase



Outline

Deepseek-v3
 Model architecture

« System optimizations

Deepseek-rl
« RL
« Maybe next course ©) 2



Deepseek is an MoE with 256 Experts

DeepSeekMoE

: (CO00 -~ 0000 () Routed Expert !

Transformer Block xL Output Hidden h; Shared Expert

Ns =1
Nr = 256

I

[ RMSNorm

First 3 layers: dense Hactivated = 8

Other layers: MoE

.- Cached During Inference
Attention .. Output Hidden u, (OO -~ OOO0)
N f

I

RMSNorm ]

N [ Multi-Head Attention J
T

{[af; af ]}

3
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure 2 | Illustration of the basic architecture of DeepSeek-V3. Following DeepSeek-V2, we
adopt MLA and DeepSeekMOoE for efficient inference and economical training.



Cons of MoE

Large number of Parameters -> Need expert parallelism

Need expert parallelism -> expert balancing

Will come back to this later



Deepseek is an MoE with 256 Experts

[OOOO ...... OOOO] D Routed Expert

Output Hidden hy 1 C] Shared Expert

Transformer Block xL

I

[ RMSNorm

1

} ! Cached During Inference 1

Attention c” . [

. Output Hidden u:(OOQ OO T 0000 !

1 ~ 1

I X \j Multi-Head Attention :
RMSNorm ] :
1
1
1

MLA: multi-head
latent attention

Figure 2 | Illustration of the basic architecture of DeepSeek-V3. Following DeepSeek-V2, we
adopt MLA and DeepSeekMOoE for efficient inference and economical training.



MLA: multi-head latent attention

qec = Wth; (1)
kt = WKht, (2)
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MLA: multi-head latent attention

Attention Mechanism KV Cache per Token (# Element) Capability
Multi-Head Attention (MHA) 2npdpl Strong
Grouped-Query Attention (GQA) 2ngdpl Moderate
Multi-Query Attention (MQA) 2dyl Weak
MLA (Ours) (de +dM)l = 3dpl Stronger




Multi-token Prediction: 2 claims

Training with MTP improves pretraining

Training with MTP gives a free speculation head

Target Tokens  t, t3 ty ts t ty ts te ts ts te t;
[ N N [ S T [ S
[ Cross-Entropy Loss ]—~ Liptain [ Cross-Entropy Loss ]—> Liwp [ Cross-Entropy Loss ]—~ L
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: (Next? Token Prediction)
1

| (Next Token Prediction) I (Next® Token Prediction)

[ Embedding Layer ] [ Embedding Layer }

I
: l !
1 1 1 " :
' ( Output Head = | (C outputhead ) ‘ ([ outputHead ] !
i P I . p N I P 1
! I I T ‘ !
: i ! ] ‘ 1
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I \ 1
| w 1 1 1 " .
| G| T | T |
| 1 I [ Linear Projection ] | | [ Linear Projection ] :
: Transformer Block X L : : concatenation : ; concatenation 1
I ] !
! | | ( RMsNorm | ( RMSNorm | 1 : [ RMSNorm | [ RMsNorm |
1 W ! : ¥ r * : T ¥ [ * :
1 ! : ; | |
| ey | ey |



Outline

Deepseek-v3
* Model architecture
» System optimizations



Hao's Ultimate Guide

if your model training

. . Yes =——> JCT 0k? =1 Yes —>
can fit into a single gpu

scale with data

— No . .
parallelism until JCT ok

Check mem opt

—_— 2
No - and can fit? —1-—' Yes JCT ok~ —1—> Yes —

+intra/inter-op

= parallelism (turn off <= No
memopt)
1
v
WTV b i : . GPUs are connected medium-to-low-bandwidth
cted all with > . —
Megatron-s ; — w/o nvlink connect (<100gbps/gpu)
High-bandwidth connect inter-op %arallelism
. . . (>=100gbps/gpu), e.g.
cannot fit h 3D parallelism infiniband tune #mb and mbs
zero-2 =» cannotfit =% zero-3 =P cannot fit 1
cannot

" | t—

You are deepseek,

~
-

what you do? turn on memopt =—



Cons of MoE

Large number of Parameters -> Need expert parallelism

Need expert parallelism -> expert balancing

They only have H800 -> no tensor parallelism

-> pipeline parallelism + data parallelism + expert parallelism



They still cannot use TP anyway (even without MoE)

All-reduce is Nx more complex than all-to-all

processor

2 3
0 Al A A O ¢ B
% 1 o @ _ (A0 |¢]m
g 2 L JIE A O ¢ B
3 H N A O ¢ B
‘rank0 { rank1 | rank 2 | rank 3 | irank0 { rank1 | rank 2 { rank 3

| in3 || mmwdi| out || out [i| out ||| out |}

lout[l] = stlJmﬂHX[i])l



Cons of MoE

Large number of Parameters -> Need expert parallelism

Need expert parallelism -> expert balancing

They only have H800 -> no tensor parallelism

-> pipeline parallelism + data parallelism + expert parallelism

We'll come back to this later



Potential Problems of MOE?

Selected
Inputs Experts
{0,2}

= oy )
rOUting {0,2} permute
(12

Color tracks instance indices

Gale et.al MegaBlocks: Efficient Sparse Training with Mixture-of-Experts

Expert0

X

X

X

Expert 1
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Fixing Expert Parallelism: Loss-free balancing

Typical: add a expert balancing loss
Deepseek’s arguments:
* This loss hurts the pretraining

* Use a auxiliary-loss-free bias term

, )it sie+bi € Topk({sj +bj|1 <j< N}, Kp),
8it = ]
0, otherwise.



Fixing Expert Parallelism: Loss-free balancing

Sequence level balancing loss
* encourages the expert load on each sequence to be balanced.
* Hao’s comments: 222

N,
LpBa = Z fiPi,
=1

T

N .
fi= = 21 (sie € Topk({sjell < j < N}, K)))
=1
;. Sit
Sie = N; ’

j:l ijt

N
D-_]



Parallelism

“16 way pipeline parallelism
64 way expert parallelism

the rest is ZERO data parallelism”

Assuming 2048 GPUs (which they claimed):
* 16 PP x 64EP x 2DP = 2048 GPUs



Parallelism: 16-way PP

16 way pipeline parallelism
64 way expert parallelism

2-way ZERO-1 data parallelism

i inter-op N mMm 3
g,i) conmunication g)o g_i) @
(G (G G 20
& & & +
V)
64x H100 64x H100 64x H100 64x H100



Parallelism: 64-way Expert Parallelism

Stage 1

64 xH100

Zoom in

D Replicated D Row-partitioned D Expert-partitioned

SR
Normal MoE
layers Layers

L 4
[ X Hmath1H x ]_.mbaattmcuhl

A A
I |
I |

64-way DP ' 64-wayEP | 64-wayDP

all-to-all re-partition communication



Pipeline Parallelism Optimization

* DualPipe
* Communication and Computation Overlapping

* All-to-all kernel



Recap: Chimera

Idea: Store bi-directional stages and combine bidirectional pipeline to further reduce pipeline

bubbles.

Extra copy of parameters & extra

Device 1 [Stage 1) [@] [12 o| |1 ) synchronizction.
Device 2 0 1 0 1 %
Device 3 o |1|e|\|1 e /
Device 4 [ Stage 4 ele|1]|1]\, or (s1)(sa) [e] [2]2]23[z3]e
':H:' . D2 e|2|1]3|2|e]3 3
D3 2le|3]1]|e|2|1 E
Device 1 (Stage 4| 2| 2(3]3 D4 [s4)(s1]) [2],[3]@feft]1]>2
Device 2 2| [3]|2| |3 8 /
Device 3 2 = 2 3 § Pipeline bubbles percentage
Device4 (Stage 1] [2]| |3 a E _ =(D-2)/(D-2+2N)

with D devices ond N micro-batches.

Li, Shigang, and Torsten Hoefler. "Chimera: efficiently training large-scale neural networks with bidirectional pipelines." SC 21.



Compute&Communication Pattern

) )
D Replicated D Row-partitioned D Expert-partitioned
— o\
@ | P2Pcommuncaton @ ( )
an — [oTo] Normal MoE
B B layers Layers
wn (V)] t :

Y
—__ N [ X ]—»[matmul]T{ X }_>mbaattmcuh1
|

A
I
|

. 64-wayEP | 64-way DP

64x H100 64x H100 all-to-all re-partition communication

® attention -> all-to-all dispatch (1st) -> MLP/expert -> all-to-all

combine (2nd) -> P2P communication



Overlapping Opportunities with a Reverse Pipeline

Computation MLP(B) A MLP(W) A MLP(F) A ATTN(B) A ATTN(W) A ATTN(F) A
Communication DISPATCH(F) A DISPATCH(B) A COMBINE(F) A PP COMBINE(B) A
Time -
A Forward chunk A Backward chunk

Figure 4 | Overlapping strategy for a pair of individual forward and backward chunks (the
boundaries of the transformer blocks are not aligned). Orange denotes forward, green denotes
"backward for input", blue denotes "backward for weights", purple denotes PP communication,
and red denotes barriers. Both all-to-all and PP communication can be fully hidden.



All-to-All Communication Kernel: Very cool

Undefined-behavior PTX usage

» For extreme performance, we discover and use an undefined-behavior PTX usage: using read-only PTX
1d.global.nc.L1::no_allocate.L2::256B to read volatile data. The PTX modifier .nc indicates that a non-
coherent cache is used. But the correctness is tested to be guaranteed with .L1::no_allocate on Hopper
architectures, and performance will be much better. The reason we guess may be: the non-coherent cache is
unified with L1, and the L1 modifier is not just a hint but a strong option, so that the correctness can be
guaranteed by no dirty data in L1.

¢ Initially, because NVCC could not automatically unroll volatile read PTX, we tried using _ 1dg (i.e., ld.nc).
Even compared to manually unrolled volatile reads, it was significantly faster (likely due to additional compiler
optimizations). However, the results could be incorrect or dirty. After consulting the PTX documentation, we
discovered that L1 and non-coherent cache are unified on Hopper architectures. We speculated that
.L1::no_allocate might resolve the issue, leading to this discovery.

« If you find kernels not working on some other platforms, you may add DISABLE_AGGRESSIVE_PTX_INSTRS=1 to
setup.py and disable this, or file an issue.



Traditional FP16-FP32 mixed precision Training

F16

Weights ——> raks
float2half eigh > FWD =25 Activations
Activations ——

F16 <% \Weights
Activation Grad «—— BWD-Actv F16 ,g ]
«—Activation Grad

- )
Weight Grad ~ F16 e Activations

BWD-Weight
: &Activation Grad

Master-Weights (F32) i»(Weight Update ]i—-» Updated Master-Weights

®* Master copy (fp32) =4 *M
® Grad (fpl16) =2*M
® Running copy (fpl16) =2*M
® Adam mean and variance (fp32) =2 * 4 *M
®* Rule thethumb:(4+2+2+ 4+ 4)N = 16N memory for an LLM




Deepseeks’ FP8-FP16-FP32 mix precision training

To FP8
Weight

Fprop . BF16 Wgrad
To FP8 0 :
Input - ’x‘ @ Output Gradient
BF16 FP32 X FP32 FPa2 T
BF16
: To FP8 Master | 0FF32
Weight Weight

Dgrad

Input | 7°EF76 e ‘ ." | Torrs Output To FP8
Gradient S Gradient

FP32 BF16

Optimizer
States

®* Master copy (fp32) =4 *M

® Grad (fpl16) =

® Running copy (fpl16) =

® Adam mean and variance (fp32) =2 * 2 *M
®*(4+2+1+2+2)N=13N memory for an LLM
® Using fp8 tensorcore (2x peak flops of fp16 core)



Other Optimizations

* Fine-grained quantization
*fp8 kernels

*|nference
* Prefill-decode disaggregation (Hao's 2024

work@ )



Recap of Prefil-Decode Disaggregation

Disaggregation is a technigue that

Request Arrived

Prefill Worker i i ; Decode Worker i

Request

Timeline

4 TP/SP + 8 DP +
32EP in MoE 4 TP/ESPP320DP8O

+ redundant experts



Large Language Models

® Transformers, Afttentions
® Scaling Law
* MoE
® Connecting the dots: Training Optimizations
* Flash attention — come back to this later next week
® Serving and inference optimization
® Confinuous batching and Paged attention
* Speculative decoding (Guest Lecture)
®* Connecting the dots: Deepseek-v3
® Hot topics: prefill-decode disaggregation



Hope You Have Enjoyed the Content

® ML Systems

® CUDA Kernels

* ML Distributed systems

¢ Efficient ML algorithms

® The current technology market

LLMSys

Optimizations and Parallelization

MLSys Basics



The End

®* The world now is changing 10x faster than before

* Innovations happen 10x faster
* What you have learned can be replaced in 1 —2 years
® This will become a norm

* What we really hope you learn from this course:
* Ability to identify the right problems
® Ability to understand "trends”
* Ability to “predict the future” (I hope so)



Once you have such skills

Invest the right future and
|dentify a good problem and become the next
write an influential paper

0
CITED BY YEAR

Name: You

42086 2020 Employer: the next OpenAl

Package: @ @ @ @ @
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