
CSE 234: Data Systems for Machine Learning

Winter 2025

1

https://hao-ai-lab.github.io/cse234-w25/

MLSys Basics

Optimizations and Parallelization

LLMSys

Potential Bottleneck of LLM Inference in Serving

• How to batch
• Prompts have different length and unknown #generated

tokens
• Sol: continuous batching

• Memory
• KV cache memory becomes a bottleneck
• Sol: paged attention

• In the presence of SLOs (beyond throughput)
• Interference of prefill and decoding
• Sol: disaggregate prefill and decode

largeb

Disaggregating Prefill and Decode

Colocate
1 GPU for both Prefill and Decode

Disaggregation achieves better goodput

Colocate Disaggregate (2P1D)
2 GPU for Prefill + 1 GPU for Decode1 GPU for both Prefill and Decode

Disaggregation achieves better goodput

goodput

Colocate Disaggregate (2P1D)
2 GPU for Prefill + 1 GPU for Decode1 GPU for both Prefill and Decode

Simple Disaggregation

achieves 2x goodput

(per GPU)

Disaggregation achieves better goodput

goodput

Disaggregation

• Published in 2024 at UCSD (yes, Hao’s lab)

• Soon become the chosen architecture replacing continuous

batching at large scale

• Deepseek-v3 uses prefill-decode disaggregation combined with

different parallelisms for prefill and decoding instances.

Continuous batching -> disaggregation

• It seems we are going back and forth

• Actually no:

• Continuous batching: improve GPU utlization hence throughput

• Disaggregation: to address goodput, throughput s.t. SLOs

• Also, key insights of CB carries to disaggregation

• Batch attentions and MLPs differently

• Exit finished request and pick up new request asap

LLM Inference Now is High-stake research topic

• Scheduling

• Continuous batching

• Chunked prefill

• Disaggregated prefill and decoding

• Speculative Decoding

• Address the memory bottleneck of KV Cache

• New attention mechanisms: paged, sparse, etc.

• Sparse KV cache

• Kernel optimizations

Large Language Models

• Transformers, Attentions

• Scaling Law

• MoE

• Connecting the dots: Training Optimizations

• Flash attention ← come back to this later next week

• Serving and inference optimization

• Continuous batching and Paged attention

• Speculative decoding (Guest Lecture)

• Connecting the dots: Deepseek-v3

• Hot topics

largeb

The Rest of bottleneck

• Quadraticcomputew.r.t.s

• Quadraticmemoryw.r.t.s

Attention: O = Softmax(QKT) V

12

Q: N x
d

K: N x
d

S = QKT : N x N S = softmax(S) : N x N V: N x d O = SV: N x dS = mask(S)

Which would hit bottleneck first

Compute: 4bs2h

Memory: bs2n

Assume b = 1K, n =32, h = 4k
• Assume s = 4K (sequence length)

• compute: 4 * 1K * 4K * 4K * 4K

• = 256 Tflops

• memory: 1K * 4K * 4K * 32

• = 512G bytes

GPU memory is more scarce than compute at this moment

The Large [bnss] matrix makes thing even worse

Additional Challenges:

• Repeated reads/writes from HBM -> SRAM of the large bnss

matrix

Revisit: GPU Memory Hierarchy

nowis3

Problem: How to tile softmax?

17

Q: N x
d

K: N x
d

S = QKT : N x N S = softmax(S) : N x N V: N x d O = SV: N x dS = mask(S)

Challenges: We must avoid materializing S while

• Compute softmax reduction O w/o access to NxN at forward

• Compute backward even without saving the NxN softmax forward

activations

Recall in the Matmul Class

• Wewereabletocomputethefinal

resultswithout fullymaterialzingthe

input/output

The Large [bnss] matrix makes thing even worse

Core Q: How to tile softmax?

How to Implement Softmax

20

Problem

• Can easily go overflow because of sum (e^x)

Safe Softmax

21

22

Can we fuse?

Create alternative
sequence

With:

𝑑𝑉
′ = 𝑑𝑉

23

Further Note:

With:

𝑑𝑉
′ = 𝑑𝑉

Create alternative
sequence

The sequence exhibits

recurrence

24

Online, Safe Softmax

Q：canwefurtherfusethesetwoloops?

25

Self attention v2: with Online Safe Softmax

Q1:canwefurtherfusethesetwoloops?

Q2:Howtogetx_i?

26

Self attention

Create alternative sequence with 𝑜𝑁 = 𝑜′𝑁

inselfattention,wejustwanto,nota

27

Derive the Recurrence

Insight:𝑜𝑖
′onlydependson:

𝑜𝑖−1
′ ,𝑑𝑖−1

′ ,𝑑𝑖
′,𝑚𝑖,𝑚𝑖−1

28

Finally: Flash Attention 1. weonlyread𝑥1 (Q,K)once

2. WenevermaterializethefullS

3. wenevermaterializethefulla(softmax(S))

Tiling: Decompose Large Softmax into smaller ones by Scaling

1. Load inputs by blocks from global

to shared memory

2. On chip, compute attention

output wrt the block

3. Update output in device memory
by scaling

+ Tiling

Animation credit: Francisco Massa

1. Load inputs by blocks from

global to shared memory
2. On chip, compute attention

output wrt the block

3. Update output in device
memory by scaling

Recomputation: Backward Pass

By storing softmax normalization factors

from forward (size N), recompute

attention in the backward from inputs in

shared memoryAttention Standard FlashAttenti

on

GFLOPs 66.6 75.2

Global mem

access

40.3 GB 4.4 GB

Runtime 41.7 ms 7.3 ms

Speed up backward pass with with increased FLOPs!

FlashAttention: 2-4x speedup, 10-20x memory reduction

32

High-level GISTs of FA

• It completely avoid materializing the large S of size bs2n

• It will make the compute 4bs2h even worse

• It will greatly reduce memory movement between memory
hierarchy

Why FA is even greater win than thought -- Cascaded effect:

• Because it saves the memory of bs2n, it enables two possibilities

• Can train with a large b (in fact, pre-FA, most train with b=1)
• -> high AI

• Can turn off gradient checkpointing

• -> No need to pay extra forward (25% flops)

FA2 and FA3

• More kernel-level optimizations over FA

• More fusion

• Improved memory access patterns

• Discussion: why FA took off?

Large Language Models

• Transformers, Attentions

• Scaling Law

• MoE

• Connecting the dots: Training Optimizations

• Flash attention ← come back to this later next week

• Serving and inference optimization

• Continuous batching and Paged attention

• Speculative decoding (Guest Lecture)

• Connecting the dots: Deepseek-v3

• Hot topics

largeb

In Practice: How LLMs are trained today

36

Summary: How LLMs are trained today

• Outer Loop 1:

• Inter-op parallelism + 1F1B

• Outer Loop 2: Intra-op parallelism based on model architecture

• Zero-2 / Zero-3 + data parallelism

• Megatron-LM tensor parallelism or Expert parallelism
• Outer Loop 3:

• Gradient checkpointing and recomputation at backward

• Inner Loop 4:

• Graph fusion

• Inner Loop 5:
• Operator-level optimization: tiling, flash attention, etc.

37

Deepseek-v3 overview

Deepseek-v3 overview

Caveats: very good marketing because the majority (100 – 1000x
more) of the GPU hours ($) are spent on the planning phase, not the

actual training phase

Outline

Deepseek-v3

• Model architecture

• System optimizations

Deepseek-r1

• RL

• Maybe next course ?

Deepseek is an MoE with 256 Experts

Ns = 1

Nr = 256

#activated = 8First 3 layers: dense

Other layers: MoE

Cons of MoE

Large number of Parameters -> Need expert parallelism

Need expert parallelism -> expert balancing

Will come back to this later

Deepseek is an MoE with 256 Experts

MLA: multi-head

latent attention

MLA: multi-head latent attention

MLA: multi-head latent attention

Multi-token Prediction: 2 claims

Training with MTP improves pretraining

Training with MTP gives a free speculation head

Outline

Deepseek-v3

• Model architecture

• System optimizations

Hao’s Ultimate Guide

if your model training

can fit into a single gpu
Yes

scale with data

parallelism until JCT ok

No
Check mem opt

and can fit?

JCT ok? Yes

JCT ok?

No

Yes

No

Yes

No
+intra/inter-op

parallelism (turn off
memopt)

GPUs are

connected all with

nvlink (<=8)

GPUs are connected

w/o nvlink
Yes

WTV but typically

Megatron-style TP

Scale beyond 8 GPUs

with 3D parallelism
still

cannot fit

High-bandwidth connect
(>=100gbps/gpu), e.g.

infiniband

medium-to-low-bandwidth

connect (<100gbps/gpu)

inter-op parallelism

tune #mb and mbs

turn on memopt

cannot fitzero-2 zero-3cannot fit
turn on memopt cannot fit

You are deepseek,

what you do?

Cons of MoE

Large number of Parameters -> Need expert parallelism

Need expert parallelism -> expert balancing

They only have H800 -> no tensor parallelism

-> pipeline parallelism + data parallelism + expert parallelism

They still cannot use TP anyway (even without MoE)

All-reduce is Nx more complex than all-to-all

Cons of MoE

Large number of Parameters -> Need expert parallelism

Need expert parallelism -> expert balancing

They only have H800 -> no tensor parallelism

-> pipeline parallelism + data parallelism + expert parallelism

We’ll come back to this later

Potential Problems of MoE?

Gale et.al MegaBlocks: Efficient Sparse Training with Mixture-of-Experts

𝑥0

𝑥1

𝑥2

𝑥3

Inputs

routing

Selected
Experts

{0,2}

{0,1}

{0,2}

{1,2}

permute

𝑥0

𝑥1

𝑥2

Expert 0

Expert 1

Expert 2

𝑥1

𝑥2

𝑥3

𝑥0

𝑥3

𝑊1

𝑊2

𝑊3

𝑧0

𝑧1

𝑧2

𝑧4

𝑧3

𝑧6

𝑧5

𝑧7

Color tracks instance indices

Typical: add a expert balancing loss

Deepseek’s arguments:

• This loss hurts the pretraining

• Use a auxiliary-loss-free bias term

Fixing Expert Parallelism: Loss-free balancing

Fixing Expert Parallelism: Loss-free balancing

Sequence level balancing loss

• encourages the expert load on each sequence to be balanced.

• Hao’s comments: ???

Parallelism

“16 way pipeline parallelism

64 way expert parallelism

the rest is ZERO data parallelism”

Assuming 2048 GPUs (which they claimed):

* 16 PP x 64EP x 2DP = 2048 GPUs

Parallelism: 16-way PP

16 way pipeline parallelism

64 way expert parallelism

2-way ZERO-1 data parallelism

St
ag
e
1

St
ag
e
2

St
ag
e
3

S
t
ag
e

16

64x H100 64x H100 64x H100 64x H100

inter-op

communication
…

x2

Parallelism: 64-way Expert Parallelism

S
t
ag
e

1

64 x H100

Zoom in

64-way DP 64-way EP 64-way DP

Pipeline Parallelism Optimization

• DualPipe

• Communication and Computation Overlapping

• All-to-all kernel

Recap: Chimera

Idea: Store bi-directional stages and combine bidirectional pipeline to further reduce pipeline

bubbles.

Device 4

Device 3

Device 2

Device 1 0

0

1

1

10

U
p
d
a
te

0

0

1

1

10

10

10Stage 1

Stage 2

Stage 3

Stage 4

Device 4

Device 3

Device 2

Device 1 2

2

3

3

32
U

pd
a
te

2

2

3

3

32

32

32Stage 4

Stage 3

Stage 2

Stage 1

D4

D3

D2

D1 0

0

1

1

10

U
pd

a
te

0

0

1

1

10

10

10S1

S2

S3

S4

2

2

3

3

32

2

2

3

3

32

32

32S4

S3

S2

S1

Pipeline bubbles percentage

= (D - 2) / (D - 2 + 2N)

with Ddevices and Nmicro-batches.

Li, Shigang, and Torsten Hoefler. "Chimera: efficiently training large-scale neural networks with bidirectional pipelines." SC 21.

Extra copy of parameters & extra

synchronization.

Compute&Communication Pattern

• attention -> all-to-all dispatch (1st) -> MLP/expert -> all-to-all

combine (2nd) -> P2P communication

St
ag
e
1

St
ag
e
2

64x H100 64x H100

P2Pcommunication

64-way EP 64-way DP

Overlapping Opportunities with a Reverse Pipeline

All-to-All Communication Kernel: Very cool

Traditional FP16-FP32 mixed precision Training

• Master copy (fp32) = 4 *M

• Grad (fp16) = 2 * M

• Running copy (fp16) = 2 * M

• Adam mean and variance (fp32) = 2 * 4 *M

• Rule the thumb: (4 + 2 + 2 + 4 + 4) N = 16N memory for an LLM

Deepseeks’ FP8-FP16-FP32 mix precision training

• Master copy (fp32) = 4 *M

• Grad (fp16) = 2 * M

• Running copy (fp16) = M

• Adam mean and variance (fp32) = 2 * 2 *M

• (4 + 2 + 1 + 2 + 2) N = 13N memory for an LLM

• Using fp8 tensorcore (2x peak flops of fp16 core)

Other Optimizations

•Fine-grained quantization
•fp8 kernels

•Inference
•Prefill-decode disaggregation (Hao’s 2024

work)

Recap of Prefill-Decode Disaggregation

4 TP/SP + 8 DP
32EP in MoE

+ redundant experts

4 TP/SP + DP80
EP320

Large Language Models

• Transformers, Attentions

• Scaling Law

• MoE

• Connecting the dots: Training Optimizations

• Flash attention ← come back to this later next week

• Serving and inference optimization

• Continuous batching and Paged attention

• Speculative decoding (Guest Lecture)

• Connecting the dots: Deepseek-v3

• Hot topics: prefill-decode disaggregation

Hope You Have Enjoyed the Content

MLSys Basics

Optimizations and Parallelization

LLMSys

• ML Systems

• CUDA Kernels

• ML Distributed systems

• Efficient ML algorithms

• The current technology market

The End

• The world now is changing 10x faster than before

• Innovations happen 10x faster

• What you have learned can be replaced in 1 – 2 years

• This will become a norm

•What we really hope you learn from this course:
• Ability to identify the right problems

• Ability to understand “trends”

• Ability to “predict the future” (I hope so)

Once you have such skills

Identify a good problem and

write an influential paper

Name: You

Employer: the next OpenAI

Package:

Invest the right future and

become the next

	Slide 1: CSE 234: Data Systems for Machine Learning Winter 2025
	Slide 2: Potential Bottleneck of LLM Inference in Serving
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Disaggregation
	Slide 8: Continuous batching -> disaggregation
	Slide 9: LLM Inference Now is High-stake research topic
	Slide 10: Large Language Models
	Slide 11: The Rest of bottleneck
	Slide 12: Attention: O = Softmax(QKT) V
	Slide 13: Which would hit bottleneck first
	Slide 14: The Large [bnss] matrix makes thing even worse
	Slide 15: Revisit: GPU Memory Hierarchy
	Slide 16
	Slide 17: Problem: How to tile softmax?
	Slide 18: Recall in the Matmul Class
	Slide 19: The Large [bnss] matrix makes thing even worse
	Slide 20: How to Implement Softmax
	Slide 21: Safe Softmax
	Slide 22: Can we fuse?
	Slide 23: Further Note:
	Slide 24: Online, Safe Softmax
	Slide 25: Self attention v2: with Online Safe Softmax
	Slide 26: Self attention
	Slide 27: Derive the Recurrence
	Slide 28: Finally: Flash Attention
	Slide 29: Tiling: Decompose Large Softmax into smaller ones by Scaling
	Slide 30: + Tiling
	Slide 31: Recomputation: Backward Pass
	Slide 32: FlashAttention: 2-4x speedup, 10-20x memory reduction
	Slide 33: High-level GISTs of FA
	Slide 34: FA2 and FA3
	Slide 35: Large Language Models
	Slide 36: In Practice: How LLMs are trained today
	Slide 37: Summary: How LLMs are trained today
	Slide 38: Deepseek-v3 overview
	Slide 39: Deepseek-v3 overview
	Slide 40: Outline
	Slide 41: Deepseek is an MoE with 256 Experts
	Slide 42: Cons of MoE
	Slide 43: Deepseek is an MoE with 256 Experts
	Slide 44: MLA: multi-head latent attention
	Slide 45: MLA: multi-head latent attention
	Slide 46: Multi-token Prediction: 2 claims
	Slide 47: Outline
	Slide 48: Hao’s Ultimate Guide
	Slide 49: Cons of MoE
	Slide 50: They still cannot use TP anyway (even without MoE)
	Slide 51: Cons of MoE
	Slide 52: Potential Problems of MoE?
	Slide 53: Fixing Expert Parallelism: Loss-free balancing
	Slide 54: Fixing Expert Parallelism: Loss-free balancing
	Slide 55: Parallelism
	Slide 56: Parallelism: 16-way PP
	Slide 57: Parallelism: 64-way Expert Parallelism
	Slide 58: Pipeline Parallelism Optimization
	Slide 59: Recap: Chimera
	Slide 60: Compute&Communication Pattern
	Slide 61: Overlapping Opportunities with a Reverse Pipeline
	Slide 62: All-to-All Communication Kernel: Very cool
	Slide 63: Traditional FP16-FP32 mixed precision Training
	Slide 64: Deepseeks’ FP8-FP16-FP32 mix precision training
	Slide 65: Other Optimizations
	Slide 66: Recap of Prefill-Decode Disaggregation
	Slide 67: Large Language Models
	Slide 68: Hope You Have Enjoyed the Content
	Slide 69: The End
	Slide 70: Once you have such skills

