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Potential Bottleneck of LLM Inference in Serving

• How to batch
• Prompts have different length and unknown #generated

tokens
• Sol: continuous batching

• Memory
• KV cache memory becomes a bottleneck
• Sol: paged attention

• In the presence of SLOs (beyond throughput)
• Interference of prefill and decoding
• Sol: disaggregate prefill and decode

largeb



Disaggregating Prefill and Decode



Colocate
1 GPU for both Prefill and Decode

Disaggregation achieves better goodput



Colocate Disaggregate (2P1D)
2 GPU for Prefill + 1 GPU for Decode1 GPU for both Prefill and Decode

Disaggregation achieves better goodput

goodput



Colocate Disaggregate (2P1D)
2 GPU for Prefill + 1 GPU for Decode1 GPU for both Prefill and Decode

Simple Disaggregation

achieves 2x goodput 

(per GPU)

Disaggregation achieves better goodput

goodput



Disaggregation

• Published in 2024 at UCSD (yes, Hao’s lab)

• Soon become the chosen architecture replacing continuous

batching at large scale

• Deepseek-v3 uses prefill-decode disaggregation combined with

different parallelisms for prefill and decoding instances.



Continuous batching -> disaggregation

• It seems we are going back and forth

• Actually no:

• Continuous batching: improve GPU utlization hence throughput

• Disaggregation: to address goodput, throughput s.t. SLOs

• Also, key insights of CB carries to disaggregation

• Batch attentions and MLPs differently

• Exit finished request and pick up new request asap



LLM Inference Now is High-stake research topic

• Scheduling

• Continuous batching

• Chunked prefill

• Disaggregated prefill and decoding

• Speculative Decoding

• Address the memory bottleneck of KV Cache

• New attention mechanisms: paged, sparse, etc.

• Sparse KV cache

• Kernel optimizations



Large Language Models

• Transformers, Attentions

• Scaling Law

• MoE

• Connecting the dots: Training Optimizations

• Flash attention ← come back to this later next week

• Serving and inference optimization

• Continuous batching and Paged attention

• Speculative decoding (Guest Lecture)

• Connecting the dots: Deepseek-v3

• Hot topics

largeb



The Rest of bottleneck

• Quadraticcomputew.r.t.s

• Quadraticmemoryw.r.t.s



Attention: O = Softmax(QKT) V

12

Q: N x 
d

K: N x 
d

S = QKT : N x N S = softmax(S) : N x N V: N x d O = SV: N x dS = mask(S)



Which would hit bottleneck first

Compute: 4bs2h

Memory: bs2n

Assume b = 1K, n =32, h = 4k
• Assume s = 4K (sequence length)

• compute: 4 * 1K * 4K * 4K * 4K

• = 256 Tflops

• memory: 1K * 4K * 4K * 32

• = 512G bytes

GPU memory is more scarce than compute at this moment



The Large [bnss] matrix makes thing even worse

Additional Challenges:

• Repeated reads/writes from HBM -> SRAM of the large bnss

matrix



Revisit: GPU Memory Hierarchy



nowis3



Problem: How to tile softmax?
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Q: N x 
d

K: N x 
d

S = QKT : N x N S = softmax(S) : N x N V: N x d O = SV: N x dS = mask(S)

Challenges: We must avoid materializing S while

• Compute softmax reduction O w/o access to NxN at forward

• Compute backward even without saving the NxN softmax forward

activations



Recall in the Matmul Class

• Wewereabletocomputethefinal

resultswithout fullymaterialzingthe

input/output



The Large [bnss] matrix makes thing even worse

Core Q: How to tile softmax?



How to Implement Softmax
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Problem

• Can easily go overflow because of sum (e^x)



Safe Softmax

21
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Can we fuse?

Create alternative
sequence

With:

𝑑𝑉
′ = 𝑑𝑉
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Further Note:

With:

𝑑𝑉
′ = 𝑑𝑉

Create alternative
sequence

The sequence exhibits

recurrence
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Online, Safe Softmax

Q：canwefurtherfusethesetwoloops?
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Self attention v2: with Online Safe Softmax

Q1:canwefurtherfusethesetwoloops?

Q2:Howtogetx_i?
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Self attention

Create alternative sequence with 𝑜𝑁 = 𝑜′𝑁

inselfattention,wejustwanto,nota



27

Derive the Recurrence

Insight:𝑜𝑖
′onlydependson:

𝑜𝑖−1
′ ,𝑑𝑖−1

′ ,𝑑𝑖
′,𝑚𝑖,𝑚𝑖−1
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Finally: Flash Attention 1. weonlyread𝑥1 (Q,K)once

2. WenevermaterializethefullS

3. wenevermaterializethefulla(softmax(S))



Tiling: Decompose Large Softmax into smaller ones by Scaling

1. Load inputs by blocks from global 

to shared memory

2. On chip, compute attention 

output wrt the block

3. Update output in device memory 
by scaling



+ Tiling

Animation credit: Francisco Massa

1. Load inputs by blocks from 

global to shared memory
2. On chip, compute attention 

output wrt the block

3. Update output in device 
memory by scaling



Recomputation: Backward Pass

By storing softmax normalization factors 

from forward (size N), recompute 

attention in the backward from inputs in 

shared memoryAttention Standard FlashAttenti

on

GFLOPs 66.6 75.2

Global mem 

access

40.3 GB 4.4 GB

Runtime 41.7 ms 7.3 ms

Speed up backward pass with with increased FLOPs!



FlashAttention: 2-4x speedup, 10-20x memory reduction

32



High-level GISTs of FA

• It completely avoid materializing the large S of size bs2n

• It will make the compute 4bs2h even worse

• It will greatly reduce memory movement between memory
hierarchy

Why FA is even greater win than thought -- Cascaded effect:

• Because it saves the memory of bs2n, it enables two possibilities

• Can train with a large b (in fact, pre-FA, most train with b=1)
• -> high AI

• Can turn off gradient checkpointing

• -> No need to pay extra forward (25% flops)



FA2 and FA3

• More kernel-level optimizations over FA

• More fusion

• Improved memory access patterns

• Discussion: why FA took off?



Large Language Models

• Transformers, Attentions

• Scaling Law

• MoE

• Connecting the dots: Training Optimizations

• Flash attention ← come back to this later next week

• Serving and inference optimization

• Continuous batching and Paged attention

• Speculative decoding (Guest Lecture)

• Connecting the dots: Deepseek-v3

• Hot topics

largeb



In Practice: How LLMs are trained today
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Summary: How LLMs are trained today

• Outer Loop 1:

• Inter-op parallelism + 1F1B

• Outer Loop 2: Intra-op parallelism based on model architecture

• Zero-2 / Zero-3 + data parallelism

• Megatron-LM tensor parallelism or Expert parallelism
• Outer Loop 3:

• Gradient checkpointing and recomputation at backward

• Inner Loop 4:

• Graph fusion

• Inner Loop 5:
• Operator-level optimization: tiling, flash attention, etc.
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Deepseek-v3 overview



Deepseek-v3 overview

Caveats: very good marketing because the majority (100 – 1000x
more) of the GPU hours ($) are spent on the planning phase, not the

actual training phase



Outline

Deepseek-v3

• Model architecture

• System optimizations

Deepseek-r1

• RL

• Maybe next course ?



Deepseek is an MoE with 256 Experts

Ns  = 1

Nr = 256

#activated = 8First 3 layers: dense

Other layers: MoE



Cons of MoE

Large number of Parameters -> Need expert parallelism

Need expert parallelism -> expert balancing

Will come back to this later



Deepseek is an MoE with 256 Experts

MLA: multi-head

latent attention



MLA: multi-head latent attention



MLA: multi-head latent attention



Multi-token Prediction: 2 claims

Training with MTP improves pretraining

Training with MTP gives a free speculation head



Outline

Deepseek-v3

• Model architecture

• System optimizations



Hao’s Ultimate Guide

if your model training

can fit into a single gpu
Yes

scale with data

parallelism until JCT ok

No
Check mem opt

and can fit?

JCT ok? Yes

JCT ok?

No

Yes

No

Yes

No
+intra/inter-op

parallelism (turn off
memopt)

GPUs are

connected all with

nvlink (<=8)

GPUs are connected

w/o nvlink
Yes

WTV but typically

Megatron-style TP

Scale beyond 8 GPUs

with 3D parallelism
still

cannot fit

High-bandwidth connect
(>=100gbps/gpu), e.g.

infiniband

medium-to-low-bandwidth

connect (<100gbps/gpu)

inter-op parallelism

tune #mb and mbs

turn on memopt

cannot fitzero-2 zero-3cannot fit
turn on memopt cannot fit

You are deepseek,

what you do?



Cons of MoE

Large number of Parameters -> Need expert parallelism

Need expert parallelism -> expert balancing

They only have H800 -> no tensor parallelism

-> pipeline parallelism + data parallelism + expert parallelism



They still cannot use TP anyway (even without MoE)

All-reduce is Nx more complex than all-to-all



Cons of MoE

Large number of Parameters -> Need expert parallelism

Need expert parallelism -> expert balancing

They only have H800 -> no tensor parallelism

-> pipeline parallelism + data parallelism + expert parallelism

We’ll come back to this later



Potential Problems of MoE?

Gale et.al MegaBlocks: Efficient Sparse Training with Mixture-of-Experts
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Typical: add a expert balancing loss

Deepseek’s arguments:

• This loss hurts the pretraining

• Use a auxiliary-loss-free bias term

Fixing Expert Parallelism: Loss-free balancing



Fixing Expert Parallelism: Loss-free balancing

Sequence level balancing loss

• encourages the expert load on each sequence to be balanced.

• Hao’s comments: ???



Parallelism

“16 way pipeline parallelism

64 way expert parallelism

the rest is ZERO data parallelism”

Assuming 2048 GPUs (which they claimed):

* 16 PP x 64EP x 2DP = 2048 GPUs



Parallelism: 16-way PP

16 way pipeline parallelism

64 way expert parallelism 

2-way ZERO-1 data parallelism
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inter-op
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…
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Parallelism: 64-way Expert Parallelism
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1

64 x H100

Zoom in

64-way DP 64-way EP 64-way DP



Pipeline Parallelism Optimization

• DualPipe

• Communication and Computation Overlapping

• All-to-all kernel



Recap: Chimera

Idea: Store bi-directional stages and combine bidirectional pipeline to further reduce pipeline 

bubbles.
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= (D - 2) / (D - 2 + 2N) 

with Ddevices and Nmicro-batches.

Li, Shigang, and Torsten Hoefler. "Chimera: efficiently training large-scale neural networks with bidirectional pipelines." SC 21.

Extra copy of parameters & extra 

synchronization.



Compute&Communication Pattern

• attention -> all-to-all dispatch (1st) -> MLP/expert -> all-to-all 

combine (2nd) -> P2P communication

St
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64x H100 64x H100

P2Pcommunication

64-way EP 64-way DP



Overlapping Opportunities with a Reverse Pipeline



All-to-All Communication Kernel: Very cool



Traditional FP16-FP32 mixed precision Training

• Master copy (fp32) = 4 *M

• Grad (fp16) = 2 * M

• Running copy (fp16) = 2 * M

• Adam mean and variance (fp32) = 2 * 4 *M 

• Rule the thumb: (4 + 2 + 2 + 4 + 4) N = 16N memory for an LLM



Deepseeks’ FP8-FP16-FP32 mix precision training

• Master copy (fp32) = 4 *M

• Grad (fp16) = 2 * M

• Running copy (fp16) =  M

• Adam mean and variance (fp32) = 2 * 2 *M 

• (4 + 2 + 1 + 2 + 2) N = 13N memory for an LLM

• Using fp8 tensorcore (2x peak flops of fp16 core)



Other Optimizations

•Fine-grained quantization
•fp8 kernels

•Inference
•Prefill-decode disaggregation (Hao’s 2024 

work )



Recap of Prefill-Decode Disaggregation

4 TP/SP + 8 DP
32EP in MoE

+ redundant experts

4 TP/SP + DP80
EP320



Large Language Models

• Transformers, Attentions

• Scaling Law

• MoE

• Connecting the dots: Training Optimizations

• Flash attention ← come back to this later next week

• Serving and inference optimization

• Continuous batching and Paged attention

• Speculative decoding (Guest Lecture)

• Connecting the dots: Deepseek-v3

• Hot topics: prefill-decode disaggregation



Hope You Have Enjoyed the Content

MLSys Basics

Optimizations and Parallelization

LLMSys

• ML Systems

• CUDA Kernels

• ML Distributed systems

• Efficient ML algorithms

• The current technology market



The End

• The world now is changing 10x faster than before

• Innovations happen 10x faster

• What you have learned can be replaced in 1 – 2 years

• This will become a norm

•What we really hope you learn from this course:
• Ability to identify the right problems

• Ability to understand “trends”

• Ability to “predict the future” (I hope so)



Once you have such skills

Identify a good problem and

write an influential paper

Name: You

Employer: the next OpenAI

Package:

Invest the right future and

become the next
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