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CSE 234: Data Systems for Machine Learning
Winter 2025

LLMSys

Optimizations and Parallelization

MLSys Basics




Course Eval

® | 80% of you finish the course eval, all get +2 points in final score!l
®* No reading summary for week10. Points go to PA3.
® Guest lecture by the author of the best speculative decoding
method on Thursday. Please attend!
* TA will hold recitations for PA3 and exams in week 10 or 11.
* date TBD.



Connecting the Dots: Compute/Comm characteristic of

LLMs

Key characteristics: compute, memory, communication

® calculate the memory needed to train an LLM?
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Recap: Compute -- Where is the Potential Bottleneck?
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Connecting the Dots: Compute/Comm characteristic of
LLMs

Output
Probabilities

Key characteristics: compute, memory, communication

® calculate the number of parameters of an LLM? N

Feed
Forward

Nx r
Masked

Multi-Head
Attention
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Positional

Encoding %
Input

Embedding

T

Inputs

® calculate the flops needed to train an LLM<

® calculate the memory needed to train an LLM?

J/




Composition of Memory Usage (Training)

Model Weights 2*M (fp16)
Intermidiate Action Value 2

12*M (fp16-32
mixed precision)

2*M
?




Llama2-7b Mix Precision(16bit-32bit)

[ Xinput 1
(b,s.v)

b: Batch size

5: Max sequence Length

h: Hidden Dimension

i: Intermdediate Size

n: Number of heads

d: Head Dimension (n * d = h)
v: Vocabulary Size




Llama2-7b Mix Precision(16bit-32bit)

(v h)
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Xinput H Embedding
(b, s, v) (b, s, h)

b: Batch size

5: Max sequence Length

h: Hidden Dimension

i: Intermdediate Size

n: Number of heads

d: Head Dimension (n * d = h)
v: Vocabulary Size




Llama2-7b Mix Precision(16bit-32bit)

(v.h)
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| X input l—- Embedding
(b,s,v) (b, s, h)

(b, 5. h)

b: Batch size

s: Max sequence Length

h: Hidden Dimension

i: Intermdediate Size

n: Number of heads

d: Head Dimension (n x d=h)
v Vocabulary Size




Llama2-7b Mix Precision(16bit-32bit)
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| X input ]—- Embedding
(b,s,v) (b, s, h)

(b, 5. h)

b: Batch size

s: Max sequence Length

h: Hidden Dimension

i: Intermdediate Size

n: Number of heads

d: Head Dimension (n x d=h)
v Vocabulary Size




Llama2-7b Mix Precision(16bit-32bit)
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(b, s, v) (b, s, h)

b: Batch size

s: Max sequence Length

h: Hidden Dimension

i: Intermdediate Size

n: Number of heads

d: Head Dimension (n x d= h)
v Vocabulary Size

(b, 5. h)

) (h, )

W s Wier |
1 ]
ez Tmmfohn::aﬁm

{b,s, h) (b, s, v)



Llama2-7b Mix Precision(16bit-32bit)

(v.h)
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| X input ]—- Embedding
(b, s, v) (b, s, h)

b: Batch size

s: Max sequence Length

h: Hidden Dimension

i: Intermdediate Size

n: Number of heads

d: Head Dimension (n x d= h)
v Vocabulary Size

(b, 5. h)
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Llama2-7b Mix Precision(16bit-32bit)

(v, h) 1 (h. ) (h, v)
o W || Wi
_ _ Attention : . ' Linlear
X input H Embedding }-» Block —»[ RMS Norm —»[ s
(b, s, v) (b, s, h) (b, s, h) (b,s,v)
(b, s, h) [ Softmax J
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QL1: if we checkpoint at the transformer +

b: Batch size

5: Max sequence Length

h: Hidden Dimension

i: Intermdediate Size

n: Number of heads

d: Head Dimension (n * d = h)
v: Vocabulary Size

boundary, what'’s the activation memory-

(except embeddings)?

Q2: if we equally assign layers to
devices, what’s the P2P communication

overhead?




Llama2-7b Attention Block (Self-Attention)

b: Batch size

s: Max sequence Length

h: Hidden Dimension

i Intermdediate Size

n: Number of heads

d: Head Dimension (n = d = h)
v: Vocabulary Size




Llama2-7b Attention Block (Self-Attention)

(h,)
| W |

[ RMS Norm 1

(b, s, h)

b: Batch size

s: Max sequence Length

h: Hidden Dimension

i Intermdediate Size

n: Number of heads

d: Head Dimension (n = d = h)
v: Vocabulary Size




(h,)
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Llama2-7b Attention Block (Self-Attention)

b: Batch size

s: Max sequence Length

h: Hidden Dimension

i Intermdediate Size

n: Number of heads

d: Head Dimension (n = d = h)
v: Vocabulary Size




(h,)
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Llama2-7b Attention Block (Self-Attention)

b: Batch size

s: Max sequence Length

h: Hidden Dimension

i Intermdediate Size

n: Number of heads

d: Head Dimension (n = d = h)
v: Vocabulary Size
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Llama2-7b Attention Block (Self-Attention)
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'b: Batch size
s: Max sequence Length
h: Hidden Dimension
i Intermdediate Size
n: Number of heads
d: Head Dimension (n = d = h)
v: Vocabulary Size
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Llama2-7b Attention Block (Self-Attention)
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n: Number of heads
d: Head Dimension (n = d = h)
v: Vocabulary Size
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Llama2-7b Attention Block (FeedForward)

b: Batch size

s: Max sequence Length

h: Hidden Dimension

i Intermdediate Size

n: Number of heads

d: Head Dimension (n = d = h)
v: Vocabulary Size
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Llama2-7b Attention Block (FeedForward)

b: Batch size

s: Max sequence Length

h: Hidden Dimension

i Intermdediate Size

n: Number of heads

d: Head Dimension (n = d = h)
v: Vocabulary Size




Llama2-7b Attention Block (FeedForward)
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b: Batch size

s: Max sequence Length

h: Hidden Dimension

i Intermdediate Size

n: Number of heads

d: Head Dimension (n = d = h)
v: Vocabulary Size




Llama2-7b Attention Block (FeedForward)
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b: Batch size

s: Max sequence Length

h: Hidden Dimension

i Intermdediate Size

n: Number of heads

d: Head Dimension (n = d = h)

v: Vocabulary Size




Llama2-7b Attention Block (FeedForward)
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Scale Up: Potential Problems?e
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Scale Up: Potential Problems if h/iis large

dem

SwiGLU H Down

(b, s, 1) (6,5, )

(b, s, h)

D Replicated D Row-partitioned D Column-partitioned

1. Recap: tensor parallel

@—»[mat?mul]—b[ gelu Hmat?mulHdr'OPOUt] 2_ Can We partltlon along S If S IS
. ; large?

all-reduce during backward

all-reduce during forward



Advanced Topics

(b, s.n, d) (h, h)
W,

Output

Multiply V H Output

(S

SwiGLU

(b, s,1)

(b.s.n,d) (b, s, h)

®* You dlready know megatron-style tensor parallelism
* sislarge: can we partition along s2
® Partition n in attention (the number of head dimension) and s in MLP
* Deepspeed ulysses sequence parallelism
* What communication is needed?
* Whatif #head << # GPUs or is not a multiple of 8
® partition s in both attention and MLP
® Ring Attention



Large Language Models

Transformers, Attentions

Scaling Law
* Mok
Connecting the dots: Training Optimizations

® Flash attention
® Long context, parallelism

Serving and inference optimization
® Continuous batching and Paged attention
* Speculative decoding (Guest Lecture)

Connecting the dots: Deepseek-v3

Hot topics



Some Observations After the first part

* Computeisafunctionof: h,i, b

* #parameteris a function of: h, i

®* Hence: compute correlates with #parameters
® more parameters, more compute
* more data, more compute (of course)

* Problem: we have limited compute ($)

* how should we allocate our limited resources:
® Train models longer vs train bigger models?
® Collect more data vs get more GPUs?

* How to choose the exact h, i, etc.?



Motivation of Scaling Laws

* We want to know:
®* how large a model (detailed specs) should we train...
* How many data should we use...
® To achieve a given performance...

® Subject to a compute budget ($)?



How do we do that in fraditional ML: data scaling law

Input: x; ..x, ~N(u,c?)

Task: estimate the average as i = _Zilxi

What’s the error? By standard arguments..

E[(2 - 1)*] = Z

This is a scaling law!!
log(Error) = —logn + 2logo

More generally, any polynomial rate 1/n% is a scaling law

® Can we do this for
transformers LLMs?¢
® Unfortunately NO



Think in this way

Mathematics vs.

Physics



Transformers vs LSTMs

®* Q: Are transformers better than LSTMs?
® Brute force way: spend tens of millions to train a LSTM GPT-3

® Scaling law way:

Test Loss 5.4

4.8

4.2 LSTMs

o

3.6
1 Layer

2 Layers
4 Layers

e

3.0 Transformers

24

105 106 107 108 109
Parameters (non-embedding) [Kaplan+ 2021]



Number of Layers

®* Does depth or width make a huge difference?

® 1 vs 2 layers makes a huge difference.

®* More layers have diminishing returns below 107 params
7
6

5

w

72}

S4

2 —— 1 Layer e N

& | —— 2 Layers \\

3] —— 3 Layers .

6 Layers
> 6 Layers

103 10* 105 105 107 108  10¢
Parameters (non-embedding)



The Scaling law way: Physics Way

* Approach:
® Train a few smaller models
® Establish a scaling law (LSTM vs. transformers)
® Select optimal hyperparams based on the scaling law prediction.

® Rationale
* The effect of hyperparameters on big LMs can be predicted before fraining!
® Optimizer choice
* Model Depth
® Arechitecture choice



Back to our problem:

®* how large a model should we train...
* How many data should we use...
®* To achieve a given performance...

® Subject to a compute budgete



Loss vs Model and Dataset Size

Model size data joint scaling " S =

Loss
o

e =
3.0 g o

®* Do we need more data or bigger model

10 109 10 1010
Tokens in Dataset

® Clearly, lots of data is wasted on small models

® Joint data-model scaling laws describe how the two relate

From Rosenfeld+ 2020,
Error=n"%4+m P +C

From Kaplan+ 2021
Error = [m™* +n"1]#

Provides surprisingly good fits to model-data joint error.



Compute Trade-offs

* Q: what about other resourcese Compute vs. performancee

® For a fixed compute budget...
® Big models that's undertrained vs small model that’'s well
trained?

® Solving the following optimization?

Nopt(c): Dopt(c) — argmin L(N, D).
N,D s.t. FLOPs(N,D)=C



Approach: empirical scaling law
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Figure 2 | Training curve envelope. On the left we show all of our different runs. We launched a
range of model sizes going from 70M to 10B, each for four different cosine cycle lengths. From these
curves, we extracted the envelope of minimal loss per FLOP, and we used these points to estimate the
optimal model size (center) for a given compute budget and the optimal number of training tokens
(right). In green, we show projections of optimal model size and training token count based on the
number of FLOPs used to train Gopher (5.76 x 10%2).



Today's SOoTA Law

406.4  410.7
N0.34 T DD.ZQ

L(N,D) = +1.69



Summary

® Scaling law: the physics of ML
¢ Scaling law marks a new era of ML research:
® Rigorous theoretical analysis -> empirical laws
® Exploration of different model architectures -> Scaling
transformers

® Due to scaling law: ML systems become essential



PA3: Hints

You already know:
®* How to estimate the number of parameters of an LLM?
®* How to estimate the flops needed to train an LLM?

®* How to estimate the memory needed to train a transformer?

* We will give you a scaling law and compute budget

® Task: design your optimal LLM



Large Language Models

® Transformers, Attentions

® Scaling Law
* MoE

® Connecting the dots: Training Optimizations
* Flash attention

® Serving and inference optimization
® Confinuous batching and Paged attention
* Speculative decoding (Guest Lecture)

® Connecting the dofts: Deepseek-v3

* Hot topics



MoE-based LLMs

® Superficially: mixture of experts

* Key idea: make each expert focus on predicting the right answer

for a subset of ca:

y

1

[

Add + Normalize

i

[

Switching FFN Layer

1A

J

[

Add + Normalize

T

Self-Attention

f

X

-
-
-,

........ Fom—
! @ FFN3 | | FFN4 FFN 2 FFN4 | )
Ay "

,—b[ Add + Normalize
Self-Attention
Positional Positional
embedding E? embedding 9
«[TTITT] %[TTTTT]
More Parameters

p=06s I' pSUE
Router Router
A A




A Closer Look at Mixture-of-Experts

A typical MoE layer (assume single instance and activate two experts )

/MoE layer
Gating: G = Softmax(W;X)
Expert indices: I ={iy, i} = TopK(G, k =2) 00| [G00ns
: Gi Gi
Output weight: Sg=—%—,5; = —+—
a J 07 (Gig+6iy)" " (Gig+Giy)
Output: Y = s,FFN; (X) + s;FFN;, (X)




MoE from the Scaling Law Perspective

®* Parameters

® MLP params dominate LLMs (o layer

® MLP params x N/2

* Increase drastically
* Memory

® parameter related x N/2 =

® activatione

® Compute
®* Only increase mildly



MoE from the Scaling Law Perspective

® Essentially, MoE is a more compute-

efficient Model (MBE layer

® |.e., MOE has a better scaling law

G(x),| | G(x)




Parallelization of MoE

What if we still do TP in face of MoE?

[:] Replicated D Row-patitioned [:] Column-partitioned D Replicated D Row-partitioned D Expert-partitioned

)
Normal MoE
layers Layers
matmul]—»[ gelu Hmatmul]—»[ dropout]
A A 4
! batch
| : [ X J—»[matmul]Tb[ X J_>matmu1
I

all-reduce during backward

o

|
all-reduce during forward all-to-all re-partition communication

Potential problems of MoE?



Potential Problems of MOE?

Selected
Inputs Experts
{0,2}

= oy )
rOUting {0,2} permute
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Color tracks instance indices

49 Gale et.al MegaBlocks: Efficient Sparse Training with Mixture-of-Experts
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The rest of bottleneck of LLMs
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&Rule of thumb: in many computer systems and

algonthms, anything more complex than quadratic is
less likely to be adapted at large scale




Large Language Models

® Transformers, Attentions
® Scaling Law
* MoE
® Connecting the dots: Training Optimizations
® Flash attention « will fix the sA2 to some extend next week

® Connecting the dots: Deepseek-v3
* Hot topics



Reality Check: LLMs are Slow and Expensive to Serve

* At least ten AT100-40GB GPUs to serve 175B GPT-3 in half precision

J

®* Generating 256 tokens takes ~20 seconds



Next Token Prediction

Probalbility("Scin Diego has very nice wecather”)
— P(“Scn Diegou) P(“hCIS” | ”Sdn DiegO")P(“Very" | "Sdn Diego
has")P(“dty”|...).. .P(“weather’|...)

T
Max Prob(x;.;) = HP (el 1)
t=1

This is'%del we got—capable of
“predicting the next token”.



Inference process of LLMs

Output the future of
—lr— —lr— —lr—
Layer N Layer N Layer N

| =
| | |

Layer 1 Layer 1 Layer 1

—r— —r— —r—

Y

Y

Input Artificial |Intelligence is the future

Repeat until the sequence
e Reaches its pre-defined maximum length (e.g., 2048 tokens)
o4 e Generates certain tokens (e.g., “<|end of sequence|>")



Generative LLM Inference: Autoregressive Decoding

* Pre-filling phase (O-th iteration):
®* Process all input tokens at once
®* Decoding phase (all other iterations):
® Process a single token generated from previous
iteration

*Key-value cache:
® Save attention keys and values for the following
iterations to avoid recomputation
* what is KV cache essentiallye



w/ KV Cache vs. w/o KV Cache

E=)
B0 D b s nd) (b, 5m,d) (b,5,1,d) (h, b) # T |
(b’ S’ n’ d)
Step 1
(h, n, d)
— Multiply V H Output ’ Q KT QKT v Attention
bi ¢l Y d
(b, s,n, d) T (b,s,n, d) (b, s, h) ~ QK Value Token 1 | | Token 1
(h,n, d) o 5
p— X % = X =
[}
(b,s,n,d) =,
(1, emb_size) (emb_size, 1) (1,1 (1, emb_size) (1, emb_size)
DVaIues that will be masked

Zoom-in! (simplified without Scale and Softmax)



w/ KV Cache vs. w/o KV Cache

Step 1

Q KT QKT Vv Attention
N Query Token 1 E Value Token 1 Token 1
& =
nembsza  emoseen  QLiMMNAL hAPRERS QN KV, Cache in prefil phase?
"""""""""""""""""""""""""""""""""""""""""""""""""" Q2: Dowe needto cache Q?
Q KT QKT Attention
Query Token 1 ~ Value Token 1 Token 1
S @ %
§(}§ X % = X =
(1, emb_size) (emb_size, 1) (1,1 (1, emb_size) (1, emb_size)

D Values that will be masked D Values that will be taken from cache



Potential Bottleneck of LLM Inference?¢
() Wo Jhnd @ dbsnd (b5 0.d) (h,h) (h,) - (h, i) )
' n

(b, s, n,d) [ v J WOurpm

We o o d l
Multiply V H Output ]

(b, s, n, d) (b, s, h)
Wr h, n, d)
v (b,s,n,d)

* Compute:
® Prefill: largely same with training

® Decode:s =1
* Memory

* New: KV cache Q? how about batch size b?
® Communication

®* mostly same with training




Serving vs. Inference

Serving: many requests, online Inference: fewer request,
traffic, emphasize cost-per-query. low or offline traffic,
s.t. some mild latency constraints emphasize latency

emphasize throughput



largeb @ .
Potential Bottleneck of LLM Inference in Serving ".“

.1, d)

(b5, 0, d) (b, s, 0. d) (b,s. 1, d) (h, b)

L Il/ ] W o
Multiply V H Output J
. S, 1, d

(h,)

* Compute:
® Prefill:

* Different prompts have different length: how to batche
®* Decode

* Different prompts have different, unknown #generated tokens
*s=1,bislarge
* Memory

* New: KV cache

* bislarge -> KV is linear with b -> will KVs be large?
* Communication

® mostly same with training



b=1
Potential Bottleneck of LLM Inference in Serving

(h,) ) , 1, s.n, s n, (b, 5,1, d) (h, h)
ua W o

Multiply V H Output

(b, s, n, d) (b,s,h)

* Compute:
* Prefill:
®* Decode
' Differ%n’r prompts have different, unknown #generated tokens
®*s=1, b=]
* Memory
* New: KV cache
* Communication o
®* mostly same with fraining



Problems of bs = 1

v
max Al = #Hops / #bytes



Recap: Inference process of LLMs

Output the future of
—lr— —lr— —lr—
Layer N Layer N Layer N

| =
| | |

Layer 1 Layer 1 Layer 1

—r— —r— —r—

Y

Y

Input Artificial |Intelligence is the future

Repeat until the sequence
e Reaches its pre-defined maximum length (e.g., 2048 tokens)
3 e Generates certain tokens (e.g., “<|end of sequence|>")



Problem of bs = 1 b=1

Latency = step latency * # steps



Large Language Models

® Connecting the dots: Training Optimizations
* Fash attention « come back to this later next week

* Speculative decoding (Guest Lecture)
® Connecting the dofts: Deepseek-v3
* Hot topics



Large Language Models

® Connecting the dots: Training Optimizations
* Fash attention « come back to this later next week

* Continuous batching and Paged attention

® Connecting the dofts: Deepseek-v3
* Hot topics



LLM Decoding Timeline

Generation Iteration

ey

67



Batching Requests to Improve GPU Performance

-~ - — - -

T Ta T3 Tq T Ty Tp Ty T T T Tq T3 Tg Tp Ty
S, [s, |S: % S, [s. | B

S: ¢, 8K S: [, |9 Vol

Sj 93 S'J Slj 3) 9.5

SUIsy A S‘i% [ A A

Issues with static batching:

« Requests may complete at different iterations
* |dle GPU cycles

* New requests cannot start immediately

68



Continuous Batching

T Ty T3 Tq To Ty Tp Tg

gr IS, S' %

Sx|8,y

S'j s’) 33

Sy sy 1Sy sy B8l | |
Benefits:

* Higher GPU utilization
« New requests can start immediately

Orca: A Distributed Serving System for Transformer-Based Generative Models. OSDI'22 69



Continuous Batching Step-by-Step

* Receives two new requests R1 and R2

R1: optimizing ML
systems

R2: LLM serving is

Request Pool
(CPU)

Execution Engine
(GPU)

70



Continuous Batching Step-by-Step

* |teration 1: decode R1 and R2

R1: optimizing ML

systems C

R2: LLM serving is

Iteration 1

Request Pool Execution Engine
(CPU) (GPU) 71



Continuous Batching Step-by-Step

. ?
« Iteration 1: decode R1 and R2 Q: How fo batch these”

Maximum sgrving batch

AT (b. 5.0, d) (b, 5, n, ) (b. 5,0, d) (b, ) size=3
m @ o H -~ } thoptlmlzmg ML
(K Jesno oo oo systems
W Jone o
Vs
R2: LLM serving is
B . Iteration 1

Execution Engine
(GPU) 72



Continuous Batching Step-by-Step

* Receive a new request R3; finish decoding R1 and R2

Maximum serving batch
size =3

R1: optimizing ML
systems

R2: LLM serving is

Request Pool Execution Engine
(CPU) (GPU)

C

Iteration 1

73



Continuous Batching Step-by-Step
Q: How to batch these?

* Receive a new request R3; finish decoding R1 and R2

Maximum serving batch

— ) size =3

Multiply V H Output }

(b s.n.d) o) R1: optimizina ML
systems requires

R?:1'l M serving is Iteration 1
critical.

Execution Engine
(GPU) 74



Traditional Batching

* Receive a new request R3; finish decoding R1 and R2

Maximum serving batch
size =3

R1: optimizing ML

systems requires ML

R2: LLM serving is Iteration 2
critical. <EOS>

R4: Adog is

R5: How are

Request Pool Execution Engine
(CPU) (GPU) 75



Continuous Batching

* |teration 2: decode R1, R2, R3; receive R4, R5; R2 completes

R4: Adog is

R5: How are

Request Pool
(CPU)

Maximum serving batch
size =3

R3: Aman

R1: optimizing ML C

systems

Iteration 2

R2: LLM serving is

Execution Engine
(GPU) 76



Continuous Batching
Q: How to batch these?

* Iteration 2: decode R1, R2, R3; receive R4, R5; R2 complet

Maximum serying batch

Wy Jomo 0 na ©snd) ) size = 3

]
Multiply V H Output } R3 A man

e (b, s.n. d) (b, s, h)

(h,n, d) o

(b,5.0.0) R1: optimizing ML

systems requires ML

s F

Iteration 2

R2: LLM consing s

critical <EOS>

Execution Engine
(GPU)

77



Traditional vs. Continuous Batching

* |teration 2: decode R1, R2, R3; receive R4, R5; R2 completes

Maximum serving batch Maximum serving batch
R4: A dog is size =3 size =3

R3: A man

R1: optimizing ML C

systems requires ML

R5: How are

R1: optimizing ML
systems requires ML

R2: LLM serving is Iteration 2

critical. <EOS>

R2: LLM serving is
critical. <EOS>

Request Pool Execution Engine  Execution Engine
(CPU) (GPU) (GPU) 78



Continuous Batching

* |teration 2: decode R1, R2, R3; receive R4, R5; R2 completes

R4: Adog is

R5: How are

Request Pool
(CPU)

Maximum serving batch
size =3

R3: Aman

R1: optimizing ML C

systems

Iteration 2

R2: LLM serving is

Execution Engine
(GPU) 79



Continuous Batching Step-by-Step

* |teration 3: decode R1, R3, R4

R5: How are

Request Pool
(CPU)

Maximum serving batch
size =3

R3: Aman

R1: optimizing ML
systems

R4: Adogis

Execution Engine
(GPU)

C

Iteration 3

80
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Summary: Continuous Batching

®* Handle early-finished and late-arrived requests more efficiently
®* Improve GPU utilization
® Key observation

®* MLP kernels are agnostic to the sequence dimension



KV Cache
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KV Cache

* Memory space to store intfermediate vector representations of tokens
®* Working set rather than a “cache”

® The size of KV Cache dynamically grows and shrinks

future[_06 [ T

: : of
* A new token is appended in each step -
—ur-
* Tokens are delefed once fthe sequence finishes L LayerN
[ Aheisl [02_] 03 ]\ e EEEEREIEGES)
| motomcn 08 PO P02 |
| e 11 ] 05 | 04 | |
| | :
KV Cache | |
| [t
! ——
! !
| !

Is ¥
Woor i 07 | 01 | 02 1/

T e —ar—
future




Key insight

Efficient management of KV cache is crucial for high-throughput

LLM serving
- - EXisting systems -— vLLM
)
e
)
(@)]
3
KV Cache =
Parameters |(13GB, 33%) g* |
(26GB, 65%) £ :
= !
Param. 8 40
size Batch size (# requests)

Others

13B LLM on A100-40GB



Key insight

Efficient management of KV cache is crucial for high-throughput

LLM servin
J - - EXisting systems -— vLLM
m A
O 40
O ! |
e ! !
KV Cache 5 | :
Parameters |(13GB, 33%) g* 26 | |
(26GB, 65%) = ! :
|
= 1 : >
A | I
— — — —I ———————————————————
Others 3 32 :
c v I
S & !
13B LLM on A100-40GB o 0 !
£ = 0.8 - =
l_ -
86 8 40

Batch size (# requests)



Memory waste in KV Cache

2 slots for
generated tokens

3 slots future used
(reserved)
AL

Intellige
nce

Artificial

~

3 token states for
request A's prompt

® Reservation: not used at the current step, but used in the future

® Internal fragmentation: over-allocated due to the unknown

87

Request A
current step

output length.

fragmentation
P

technol
<e0s> <resv> <resv>

ogy

~
2040 slots never used
(internal fragmentation)

Request B



Memory waste in KV Cache

. Internal External
M Token states ™ Reservation I8 fragmentation fragmentation

Amu 89

& 36.6

s 80 4 41.6 .

(@)

%

S 60+

(]

c

O 40 A

©

O

= 204

X

0 - -

Orca Orca Orca Ours
(Max) {Pow2) (Oracle)

Only 20-40% of KV cache is utilized to store token states

*Yu, G. I, Jeong, J. S., Kim, G. W., Kim, S., Chun, B. G. “Orca: A Distributed Serving System for Transformer-Based
Generative Models” (OSDI 22).
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VLLM: Efficient memory management for LLM inference

Inspired by virtual memory and paging

Memory management in OS Memory management in vLLM
Page 0 Token Block 0
Process Page 1 Process Request Token Block 1 Request
A Page 2 B A Token Block 2 B
Page 3 Token Block 3
Page 4 Token Block 4

Physical Memory KV Cache




Token block

Token blocks
(KV Cache)

* A fixed-size configuous chunk of block 0

memory that can store tfoken states block 1

from left to right block 2

block 3

block 4

KV _Cache

block 5

block 6

block 7

90 Block size =4




Token block

* A fixed-size contiguous chunk of memory that can store token
Token blocks

states from left to right (KV Cache)
block O
block 1
block 2
Block 4 block 3
Artificial -0.2 0.1 11 | 4 ook a
Intelligence| 0.9 0.7 0.2
is -0.1 -0.3 0.1 block 5| Artificial [Intelligence] is the
the -1.1 0.5 0.4
¥ J block 6
Y
820 KB / token
(LLaMA-13B) block 7
N
o1 Block size = 4




Paged Attention

®* An aftention algorithm that allows for storing continuous keys

and values in non-contiguous memory space

Key and value vectors

mathe-

Block 1 [computer| scientist and S ician

Block 2 renowned for
Query

vector

for

Block 0 | Alan Turing is a




Logical & physical tfoken blocks

Physical token blocks

(KV Cache)
Request block 0
A
block 1
Prompt: “Alan Turing is a computer scientist”
block 2
Logical token blocks block 3
block 0| Alan Turing is a block 4
block 1 | computer | scientist block 5
block 2 block 6
block 3 block 7

93




Logical & physical tfoken blocks

Physical token blocks
(KV Cache)

ReckleSt block 0

block 1| computer | scientist

Prompt: “Alan Turing is a computer scientist”

block 2
Logical token blocks Block table block 3
block 0| Alan Turing is a \ blozzyrfdﬁi‘éer # Filled block 4
block 1 | computer | scientist ! 4 block 5
., ) N oc
block 2 - - block 6
block 3 block 7| Alan Turing is
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Logical & physical tfoken blocks

Physical token blocks
(KV Cache)

ReckleSt block 0

block 1| computer | scientist

Prompt: “Alan Turing is a computer scientist”

Completion: “and” block 2
Logical token blocks Block table block 3
block 0| Alan Turing is a \ bloztysdﬁéer 4 Filled block 4
block 1 | computer | scientist ! : block 5
T~ 1 5 oc
block 2 - - block 6
block 3 block 7| Alan Turing is
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Logical & physical tfoken blocks

Physical token blocks
(KV Cache)

Re‘kleﬁ block 0

block 1| computer | scientist

Prompt: “Alan Turing is a computer scientist”

Completion: “and” block 2
Logical token blocks Block table block 3
block 0| Alan Turing is a \ blozzyﬁdﬁi‘éer # Filled block 4
— 7 4
block 1 | computer | scientist and ~ . 5 block 5
block 2 - - block 6
block 3 - - block 7| Alan Turing is
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Logical & physical tfoken blocks

Physical token blocks
(KV Cache)

Re‘kleﬁ block 0

block 1| computer | scientist | and

Prompt: “Alan Turing is a computer scientist”

Completion: “and” block 2
Logical token blocks Block table block 3
block 0| Alan Turing is a \ blozzyﬁdﬁi‘éer # Filled block 4
— 7 4
block 1 | computer | scientist and ~ . ; block 5
block 2 - - block 6
block 3 - - block 7| Alan Turing is
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Logical & physical tfoken blocks

Request
A

Prompt: “Alan Turing is a computer scientist”

Completion: “and mathematician”

Logical token blocks

Block table
block 0| Alan Turing is a \ blozzyﬁd‘;?éer # Filled
block 1 | computer | scientist and mr:titcl;aenma\ I j
block 2 - —
block 3 - -
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block O

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Physical token blocks

(KV Cache)
I mathem
computer | scientist| and L
atician
Alan Turing is a




Logical & physical tfoken blocks

Request
A

Prompt: “Alan Turing is a computer scientist”
Completion: “and mathematician renowned”

Logical token blocks

Block table
block 0| Alan Turing is a Physical # Filled
\ block number
. 7 4
block 1 | computer | scientist and ma_thema
tician | 1 4
block 3
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block O
block 1

block 2

block 3

block 4
s

block 5
|

block 6

block 7

Physical token blocks

(KV Cache)
computer | scientist| and mqthem
atician
Allocated on demand
Alan Turing is a




Serving mulfiple requests

Request
A

Block Table

Logical token blocks

Physical token blocks

Block Table

Request
B

Logical token blocks

Alan Turing is a
S mathema

computer | scientist and -
tician

Acrtificial

Intelligence

100

(KV Cache)
computer | scientist| and mgthem
atician
Artificial |'™€198 1 s | the
nce
future of
Alan Turing is a

future

of

is

the




Memory efficiency of vLLM

* Minimal internal fragmentation
* Only happens at the last block of a sequence
* # wasted tokens / seq < block size
® Sequence: O(100) — O(1000) tokens

® Block size: 16 or 32 tokens

. Alan Turing is a
®* No external fragmentation —
computer scientist and cian
renowned
[\ J
Y

Internal fragmentation



Effectiveness of PagedAttention

. Internal External
M Token states ™ Reservation I8 fragmentation fragmentation

Amu 89

S

© BO -

o

%

S 60+

()}

<

O 40

©

@)

= 204

X

,u_

Orca Orca Orca Ours
(Max) {Pow2) (Oracle)

96.3% KV cache utilization
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