
CSE 234: Data Systems for Machine Learning

Winter 2025

1

https://hao-ai-lab.github.io/cse234-w25/

MLSys Basics

Optimizations and Parallelization

LLMSys

Course Eval

• If 80% of you finish the course eval, all get +2 points in final score!

• No reading summary for week10. Points go to PA3.

• Guest lecture by the author of the best speculative decoding

method on Thursday. Please attend!

• TA will hold recitations for PA3 and exams in week 10 or 11.

• date TBD.

Connecting the Dots: Compute/Comm characteristic of

LLMs

Key characteristics: compute, memory, communication

• calculate the number of parameters of an LLM?

• calculate the flops needed to train an LLM?

• calculate the memory needed to train an LLM?

Recap: Compute -- Where is the Potential Bottleneck?

Q1:whyx3?

Whathappenswhen
bs=1ands=1

Connecting the Dots: Compute/Comm characteristic of

LLMs

Key characteristics: compute, memory, communication

• calculate the number of parameters of an LLM?

• calculate the flops needed to train an LLM?

• calculate the memory needed to train an LLM?

2*M (fp16)

12*M (fp16-32

mixed precision)

2*M

Q1: if we checkpoint at the transformer

boundary, what’s the activation memory
(except embeddings)?

Q2: if we equally assign layers to
devices, what’s the P2P communication

overhead?

Scale Up: Potential Problems?

1.all termsareat least linearwithh

2. this term isquadratic tos3.whatdimensioncanwe
partitionalong?

Scale Up: Potential Problems if h/i is large

1.Recap: tensorparallel

2.canwepartitionalongs ifs is
large?

Advanced Topics

• You already know megatron-style tensor parallelism

• s is large: can we partition along s?

• Partition n in attention (the number of head dimension) and s in MLP

• Deepspeed ulysses sequence parallelism

• What communication is needed?

• What if #head << # GPUs or is not a multiple of 8

• partition s in both attention and MLP

• Ring Attention

Large Language Models

• Transformers, Attentions

• Scaling Law

• MoE

• Connecting the dots: Training Optimizations

• Flash attention

• Long context, parallelism

• Serving and inference optimization

• Continuous batching and Paged attention

• Speculative decoding (Guest Lecture)

• Connecting the dots: Deepseek-v3

• Hot topics

Some Observations After the first part

• Compute is a function of: h, i, b

• #parameter is a function of: h, i

• Hence: compute correlates with #parameters

• more parameters, more compute

• more data, more compute (of course)

• Problem: we have limited compute ($)

• how should we allocate our limited resources:

• Train models longer vs train bigger models?

• Collect more data vs get more GPUs?

• How to choose the exact h, i, etc.?

Motivation of Scaling Laws

• We want to know:

• how large a model (detailed specs) should we train…

• How many data should we use…

• To achieve a given performance…

• Subject to a compute budget ($)?

How do we do that in traditional ML: data scaling law

• Can we do this for

transformers LLMs?

• Unfortunately NO

Think in this way

Mathematics vs.

Physics

Transformers vs LSTMs

• Q: Are transformers better than LSTMs?

• Brute force way: spend tens of millions to train a LSTM GPT-3

• Scaling law way:

Number of Layers

• Does depth or width make a huge difference?

• 1 vs 2 layers makes a huge difference.

• More layers have diminishing returns below 107 params

The Scaling law way: Physics Way

• Approach:

• Train a few smaller models

• Establish a scaling law (LSTM vs. transformers)

• Select optimal hyperparams based on the scaling law prediction.

• Rationale

• The effect of hyperparameters on big LMs can be predicted before training!

• Optimizer choice

• Model Depth

• Arechitecture choice

Back to our problem:

• how large a model should we train…

• How many data should we use…

• To achieve a given performance…

• Subject to a compute budget?

• Approach: estimate a law between model size data joint scaling

Model size data joint scaling

• Do we need more data or bigger models?

• Clearly, lots of data is wasted on small models

• Joint data-model scaling laws describe how the two relate

Compute Trade-offs

• Q: what about other resources? Compute vs. performance?

• For a fixed compute budget…

• Big models that’s undertrained vs small model that’s well

trained?

• Solving the following optimization?

Approach: empirical scaling law

Today’s SoTA Law

Summary

• Scaling law: the physics of ML

• Scaling law marks a new era of ML research:

• Rigorous theoretical analysis -> empirical laws

• Exploration of different model architectures -> Scaling

transformers

• Due to scaling law: ML systems become essential

PA3: Hints

You already know:

• How to estimate the number of parameters of an LLM?

• How to estimate the flops needed to train an LLM?

• How to estimate the memory needed to train a transformer?

• We will give you a scaling law and compute budget

• Task: design your optimal LLM

Large Language Models

• Transformers, Attentions

• Scaling Law

• MoE

• Connecting the dots: Training Optimizations

• Flash attention

• Serving and inference optimization

• Continuous batching and Paged attention

• Speculative decoding (Guest Lecture)

• Connecting the dots: Deepseek-v3

• Hot topics

MoE-based LLMs

• Superficially: mixture of experts

• Key idea: make each expert focus on predicting the right answer

for a subset of cases

A Closer Look at Mixture-of-Experts

Gating: 𝐺 = Softmax 𝑊𝐺𝑋
Expert indices: 𝐼 = {𝑖0, 𝑖1} = Top𝐾 𝐺, 𝑘 = 2

Output weight: 𝑠0=
𝐺𝑖0

𝐺𝑖0+𝐺𝑖1
, 𝑠1 =

𝐺𝑖1

𝐺𝑖0+𝐺𝑖1

Output: 𝑌 = s0FFN𝑖0
𝑋 + 𝑠1FFN𝑖1

(𝑋)

A typical MoE layer (assume single instance and activate two experts)

MoE from the Scaling Law Perspective

• Parameters

• MLP params dominate LLMs

• MLP params x N/2

• Increase drastically

• Memory

• parameter related x N/2

• activation?

• Compute

• Only increase mildly

MoE from the Scaling Law Perspective

• Essentially, MoE is a more compute-

efficient Model

• I.e., MoE has a better scaling law

Parallelization of MoE

What ifwestilldoTPin faceofMoE?

PotentialproblemsofMoE?

49

Potential Problems of MoE?

Gale et.al MegaBlocks: Efficient Sparse Training with Mixture-of-Experts

𝑥0

𝑥1

𝑥2

𝑥3

Inputs

routing

Selected
Experts

{0,2}

{0,1}

{0,2}

{1,2}

permute

𝑥0

𝑥1

𝑥2

Expert 0

Expert 1

Expert 2

𝑥1

𝑥2

𝑥3

𝑥0

𝑥3

𝑊1

𝑊2

𝑊3

𝑧0

𝑧1

𝑧2

𝑧4

𝑧3

𝑧6

𝑧5

𝑧7

Color tracks instance indices

The rest of bottleneck of LLMs

Ruleof thumb: inmanycomputersystemsand
algorithms,anythingmorecomplexthanquadratic is

less likely tobeadaptedat largescale

Large Language Models

• Transformers, Attentions

• Scaling Law

• MoE

• Connecting the dots: Training Optimizations

• Flash attention ← will fix the s^2 to some extend next week

• Serving and inference optimization

• Continuous batching and Paged attention

• Speculative decoding (Guest Lecture)

• Connecting the dots: Deepseek-v3

• Hot topics

Reality Check: LLMs are Slow and Expensive to Serve

• At least ten A100-40GB GPUs to serve 175B GPT-3 in half precision

• Generating 256 tokens takes ~20 seconds

Next Token Prediction

Probability(”SanDiegohasveryniceweather”)
=P(“SanDiego”) P(“has”|”SanDiego”)P(“very”|”SanDiego

has”)P(“city”|…)…P(“weather”|…)

Max𝑃𝑟𝑜b 𝑥1:𝑇 =ෑ

𝑡=1

𝑇

𝑃(𝑥𝑡+1|𝑥1…𝑡)

Thisismodelwegot–capableof

“predictingthenexttoken”.

54

Inference process of LLMs

Layer 1

Layer N

Artificial

the

the

future

Layer 1

Layer N

Layer 1

Layer N

future

of

Intelligence isInput

Output

… … …

Repeat until the sequence

● Reaches its pre-defined maximum length (e.g., 2048 tokens)

● Generates certain tokens (e.g., “<|end of sequence|>”)

Generative LLM Inference: Autoregressive Decoding

•Pre-filling phase (0-th iteration):
•Process all input tokens at once

•Decoding phase (all other iterations):
•Process a single token generated from previous

iteration

•Key-value cache:
•Save attention keys and values for the following

iterations to avoid recomputation
•what is KV cache essentially?

w/ KV Cache vs. w/o KV Cache

w/ KV Cache vs. w/o KV Cache

Q1:whathappensonKVcacheinprefillphase?

Q2:DoweneedtocacheQ?

Potential Bottleneck of LLM Inference?

• Compute:

• Prefill: largely same with training

• Decode: s = 1

• Memory

• New: KV cache
• Communication

• mostly same with training

Q?howaboutbatchsizeb?

Serving vs. Inference

Serving: many requests, online

traffic, emphasize cost-per-query.

s.t. some mild latency constraints

emphasize throughput

Inference: fewer request,

low or offline traffic,

emphasize latency

largeb b=1

Potential Bottleneck of LLM Inference in Serving

• Compute:
• Prefill:

• Different prompts have different length: how to batch?
• Decode

• Different prompts have different, unknown #generated tokens
• s = 1, b is large

• Memory
• New: KV cache
• b is large -> KV is linear with b -> will KVs be large?

• Communication
• mostly same with training

largeb

Potential Bottleneck of LLM Inference in Serving

• Compute:
• Prefill:

• Different prompts have different length: how to batch?
• Decode

• Different prompts have different, unknown #generated tokens
• s = 1, b=1

• Memory
• New: KV cache
• b =1 -> KV is linear with b -> will KVs be large?

• Communication
• mostly same with training

b=1

Problems of bs = 1

max AI = #ops / #bytes

63

Recap: Inference process of LLMs

Layer 1

Layer N

Artificial

the

the

future

Layer 1

Layer N

Layer 1

Layer N

future

of

Intelligence isInput

Output

… … …

Repeat until the sequence

● Reaches its pre-defined maximum length (e.g., 2048 tokens)

● Generates certain tokens (e.g., “<|end of sequence|>”)

Problem of bs = 1

Latency = step latency * # steps

b=1

Large Language Models

• Transformers, Attentions

• Scaling Law

• MoE

• Connecting the dots: Training Optimizations

• Flash attention ← come back to this later next week

• Serving and inference optimization

• Continuous batching and Paged attention

• Speculative decoding (Guest Lecture)

• Connecting the dots: Deepseek-v3

• Hot topics

b=1

Large Language Models

• Transformers, Attentions

• Scaling Law

• MoE

• Connecting the dots: Training Optimizations

• Flash attention ← come back to this later next week

• Serving and inference optimization

• Continuous batching and Paged attention

• Speculative decoding (Guest Lecture)

• Connecting the dots: Deepseek-v3

• Hot topics

largeb

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

LLM Decoding Timeline

67

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Batching Requests to Improve GPU Performance

Issues with static batching:

• Requests may complete at different iterations

• Idle GPU cycles

• New requests cannot start immediately

68

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching

Benefits:

• Higher GPU utilization

• New requests can start immediately

69Orca: A Distributed Serving System for Transformer-Based Generative Models. OSDI’22

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching Step-by-Step

• Receives two new requests R1 and R2

70

Request Pool

(CPU)

Execution Engine

(GPU)

R1: optimizing ML
systems

R2: LLM serving is

Maximum serving batch
size = 3

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching Step-by-Step

• Iteration 1: decode R1 and R2

71

R1: optimizing ML
systems

R2: LLM serving is

Iteration 1

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch
size = 3

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching Step-by-Step

• Iteration 1: decode R1 and R2

72

R1: optimizing ML
systems

R2: LLM serving is

Iteration 1

Execution Engine

(GPU)

Maximum serving batch
size = 3

Q:Howtobatchthese?

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching Step-by-Step

• Receive a new request R3; finish decoding R1 and R2

73

R1: optimizing ML
systems requires

R2: LLM serving is
critical.

Iteration 1

R3: A man

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch
size = 3

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching Step-by-Step

• Receive a new request R3; finish decoding R1 and R2

74

R1: optimizing ML
systems requires

R2: LLM serving is
critical.

Iteration 1

Execution Engine

(GPU)

Maximum serving batch
size = 3

Q:Howtobatchthese?

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Traditional Batching

• Receive a new request R3; finish decoding R1 and R2

75

R2: LLM serving is
critical. <EOS>

Iteration 2

R3: A man

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch
size = 3

R1: optimizing ML
systems requires ML

R4: A dog is

R5: How are

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching

• Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes

76

R1: optimizing ML
systems requires ML

R2: LLM serving is
critical. <EOS>

Iteration 2

R3: A man

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch
size = 3

R4: A dog is

R5: How are

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching

• Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes

77

R1: optimizing ML
systems requires ML

R2: LLM serving is
critical. <EOS>

Iteration 2

R3: A man

Execution Engine

(GPU)

Maximum serving batch
size = 3

Q:Howtobatchthese?

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Traditional vs. Continuous Batching

• Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes

78

R1: optimizing ML
systems requires ML

R2: LLM serving is
critical. <EOS>

Iteration 2

R3: A man

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch
size = 3

R4: A dog is

R5: How are

R2: LLM serving is
critical. <EOS>

Execution Engine

(GPU)

Maximum serving batch
size = 3

R1: optimizing ML
systems requires ML

R3: A man

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching

• Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes

79

R1: optimizing ML
systems requires ML

R2: LLM serving is
critical. <EOS>

Iteration 2

R3: A man

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch
size = 3

R4: A dog is

R5: How are

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching Step-by-Step

• Iteration 3: decode R1, R3, R4

80

Iteration 3

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch
size = 3

R1: optimizing ML
systems requires ML

R3: A man is

R4: A dog is

R5: How are

81

Summary: Continuous Batching

• Handle early-finished and late-arrived requests more efficiently

• Improve GPU utilization

• Key observation

• MLP kernels are agnostic to the sequence dimension

KV Cache

Layer 1

Layer N

Artificial

the

the

future

Layer 1

Layer N

82
Intelligence is

… …
-0.1 0.3 1.2

0.7 -0.4 0.8

0.2 -0.1 1.1

Input

Output

Artificial

Intelligence

is

-0.7 0.1 -0.2the

-0.2 0.1 -1.1

0.9 0.7 0.2

-0.1 -0.3 0.1

Artificial

Intelligence

is

-1.1 0.5 0.4the

KV Cache

83

KV Cache

Layer 1

Layer N

future

of

…

-0.1 0.3 1.2

0.7 -0.4 0.8

0.2 -0.1 1.1

Input

Output

Artificial

Intelligence

is

-0.7 0.1 -0.2the

-0.6 0.0 0.9future

-0.2 0.1 -1.1

0.9 0.7 0.2

-0.1 -0.3 0.1

Artificial

Intelligence

is

-1.1 0.5 0.4the

0.1 -2.1 0.5future

KV Cache

84

KV Cache

• Memory space to store intermediate vector representations of tokens

• Working set rather than a “cache”

• The size of KV Cache dynamically grows and shrinks

• A new token is appended in each step

• Tokens are deleted once the sequence finishes

85

Key insight

Efficient management of KV cache is crucial for high-throughput

LLM serving

13B LLM on A100-40GB

Parameters

(26GB, 65%)

KV Cache
(13GB, 33%)

Others

40

26

Existing systems vLLM

8 40

86

Key insight

Efficient management of KV cache is crucial for high-throughput

LLM serving

13B LLM on A100-40GB

Parameters

(26GB, 65%)

KV Cache
(13GB, 33%)

Others

40

26

Existing systems vLLM

8 40

0.8

3.2

87

Memory waste in KV Cache

• Reservation: not used at the current step, but used in the future

• Internal fragmentation: over-allocated due to the unknown

output length.

Artificial
Intellige

nce
is the future of

technol

ogy
<eos> <resv> … <resv> … …

2040 slots never used

(internal fragmentation)

3 slots future used

(reserved)

External

fragmentation

3 token states for

request A’s prompt
Request A

current step

2 slots for

generated tokens

LLM is …

Request B

88

Memory waste in KV Cache

Only 20–40% of KV cache is utilized to store token states

Ours

* Yu, G. I., Jeong, J. S., Kim, G. W., Kim, S., Chun, B. G. “Orca: A Distributed Serving System for Transformer-Based

Generative Models” (OSDI 22).

vLLM: Efficient memory management for LLM inference

Inspired by virtual memory and paging

90

Token block

• A fixed-size contiguous chunk of

memory that can store token states

from left to right

Token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Block size = 4

KV Cache

91

Token block

• A fixed-size contiguous chunk of memory that can store token

states from left to right

Artificial Intelligence is the

Token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Block size = 4

-0.2 0.1 -1.1

0.9 0.7 0.2

-0.1 -0.3 0.1

Artificial

Intelligence

is

-1.1 0.5 0.4the

Block 4

820 KB / token

(LLaMA-13B)

92

Paged Attention

• An attention algorithm that allows for storing continuous keys

and values in non-contiguous memory space

93

Logical & physical token blocks

Request

A

Alan Turing is a

computer scientist

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

Physical token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical token blocks

94

Logical & physical token blocks

Request

A

Alan Turing is a

computer scientist

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist

Alan Turing is a

Physical token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical token blocks

Physical

block number
Filled

7 4

1 2

– –

– –

Block table

95

Logical & physical token blocks

Request

A

Alan Turing is a

computer scientist

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist

Alan Turing is a

Physical token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical token blocks

Physical

block number
Filled

7 4

1 2

– –

– –

Block table

Completion: “and”

96

Logical & physical token blocks

Request

A

Alan Turing is a

computer scientist and

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist

Alan Turing is a

Physical token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical token blocks

Physical

block number
Filled

7 4

1 2

– –

– –

Block table

Completion: “and”

97

Logical & physical token blocks

Request

A

Alan Turing is a

computer scientist and

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist and

Alan Turing is a

Physical token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical token blocks

Physical

block number
Filled

7 4

1 3

– –

– –

Block table

Completion: “and”

98

Logical & physical token blocks

Request

A

Alan Turing is a

computer scientist and
mathema

tician

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist and
mathem

atician

Alan Turing is a

Physical token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical token blocks

Physical

block number
Filled

7 4

1 4

– –

– –

Block table

Completion: “and mathematician”

99

Logical & physical token blocks

Request

A

Alan Turing is a

computer scientist and
mathema

tician

renowned

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist and
mathem

atician

renowned

Alan Turing is a

Physical token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical token blocks

Physical

block number
Filled

7 4

1 4

5 1

– –

Block table

Completion: “and mathematician renowned”

Allocated on demand

100

Serving multiple requests

Alan Turing is a

computer scientist and
mathema

tician

renowned

Logical token blocks

Request

A

Block Table

computer scientist and
mathem

atician

Artificial
Intellige

nce
is the

renowned

future of
technolog

y

Alan Turing is a

Physical token blocks

(KV Cache)

Artificial Intelligence is the

future of technology

Logical token blocks

Request

B

Block Table

101

Memory efficiency of vLLM

• Minimal internal fragmentation

• Only happens at the last block of a sequence

• # wasted tokens / seq < block size

• Sequence: O(100) – O(1000) tokens

• Block size: 16 or 32 tokens

• No external fragmentation
Alan Turing is a

computer scientist and
mathemati

cian

renowned

Internal fragmentation

102

Effectiveness of PagedAttention

96.3% KV cache utilization

Ours

	Slide 1: CSE 234: Data Systems for Machine Learning Winter 2025
	Slide 2: Course Eval
	Slide 3: Connecting the Dots: Compute/Comm characteristic of LLMs
	Slide 4: Recap: Compute -- Where is the Potential Bottleneck?
	Slide 5: Connecting the Dots: Compute/Comm characteristic of LLMs
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Scale Up: Potential Problems?
	Slide 26: Scale Up: Potential Problems if h/i is large
	Slide 27: Advanced Topics
	Slide 28: Large Language Models
	Slide 29: Some Observations After the first part
	Slide 30: Motivation of Scaling Laws
	Slide 31: How do we do that in traditional ML: data scaling law
	Slide 32: Think in this way
	Slide 33: Transformers vs LSTMs
	Slide 34: Number of Layers
	Slide 35: The Scaling law way: Physics Way
	Slide 36: Back to our problem:
	Slide 37: Model size data joint scaling
	Slide 38: Compute Trade-offs
	Slide 39: Approach: empirical scaling law
	Slide 40: Today’s SoTA Law
	Slide 41: Summary
	Slide 42: PA3: Hints
	Slide 43: Large Language Models
	Slide 44: MoE-based LLMs
	Slide 45: A Closer Look at Mixture-of-Experts
	Slide 46: MoE from the Scaling Law Perspective
	Slide 47: MoE from the Scaling Law Perspective
	Slide 48: Parallelization of MoE
	Slide 49: Potential Problems of MoE?
	Slide 50: The rest of bottleneck of LLMs
	Slide 51: Large Language Models
	Slide 52: Reality Check: LLMs are Slow and Expensive to Serve
	Slide 53: Next Token Prediction
	Slide 54: Inference process of LLMs
	Slide 55: Generative LLM Inference: Autoregressive Decoding
	Slide 56: w/ KV Cache vs. w/o KV Cache
	Slide 57: w/ KV Cache vs. w/o KV Cache
	Slide 58: Potential Bottleneck of LLM Inference?
	Slide 59: Serving vs. Inference
	Slide 60: Potential Bottleneck of LLM Inference in Serving
	Slide 61: Potential Bottleneck of LLM Inference in Serving
	Slide 62: Problems of bs = 1
	Slide 63: Recap: Inference process of LLMs
	Slide 64: Problem of bs = 1
	Slide 65: Large Language Models
	Slide 66: Large Language Models
	Slide 67: LLM Decoding Timeline
	Slide 68: Batching Requests to Improve GPU Performance
	Slide 69: Continuous Batching
	Slide 70: Continuous Batching Step-by-Step
	Slide 71: Continuous Batching Step-by-Step
	Slide 72: Continuous Batching Step-by-Step
	Slide 73: Continuous Batching Step-by-Step
	Slide 74: Continuous Batching Step-by-Step
	Slide 75: Traditional Batching
	Slide 76: Continuous Batching
	Slide 77: Continuous Batching
	Slide 78: Traditional vs. Continuous Batching
	Slide 79: Continuous Batching
	Slide 80: Continuous Batching Step-by-Step
	Slide 81: Summary: Continuous Batching
	Slide 82: KV Cache
	Slide 83: KV Cache
	Slide 84: KV Cache
	Slide 85: Key insight
	Slide 86: Key insight
	Slide 87: Memory waste in KV Cache
	Slide 88: Memory waste in KV Cache
	Slide 89: vLLM: Efficient memory management for LLM inference
	Slide 90: Token block
	Slide 91: Token block
	Slide 92: Paged Attention
	Slide 93: Logical & physical token blocks
	Slide 94: Logical & physical token blocks
	Slide 95: Logical & physical token blocks
	Slide 96: Logical & physical token blocks
	Slide 97: Logical & physical token blocks
	Slide 98: Logical & physical token blocks
	Slide 99: Logical & physical token blocks
	Slide 100: Serving multiple requests
	Slide 101: Memory efficiency of vLLM
	Slide 102: Effectiveness of PagedAttention

