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MLSys Basics

Optimizations and Parallelization

LLMSys



Course Eval

• If 80% of you finish the course eval, all get +2 points in final score!

• No reading summary for week10. Points go to PA3.

• Guest lecture by the author of the best speculative decoding

method on Thursday. Please attend!

• TA will hold recitations for PA3 and exams in week 10 or 11.

• date TBD.



Connecting the Dots: Compute/Comm characteristic of 

LLMs

Key characteristics: compute, memory, communication

• calculate the number of parameters of an LLM?

• calculate the flops needed to train an LLM?

• calculate the memory needed to train an LLM?



Recap: Compute -- Where is the Potential Bottleneck?

Q1:whyx3?

Whathappenswhen
bs=1ands=1



Connecting the Dots: Compute/Comm characteristic of 

LLMs

Key characteristics: compute, memory, communication

• calculate the number of parameters of an LLM?

• calculate the flops needed to train an LLM?

• calculate the memory needed to train an LLM?



2*M (fp16)

12*M (fp16-32

mixed precision)

2*M















Q1: if we checkpoint at the transformer

boundary, what’s the activation memory
(except embeddings)?

Q2: if we equally assign layers to
devices, what’s the P2P communication

overhead?

























Scale Up: Potential Problems?

1.all termsareat least linearwithh

2. this term isquadratic tos3.whatdimensioncanwe
partitionalong?



Scale Up: Potential Problems if h/i is large

1.Recap: tensorparallel

2.canwepartitionalongs ifs is
large?



Advanced Topics

• You already know megatron-style tensor parallelism

• s is large: can we partition along s?

• Partition n in attention (the number of head dimension) and s in MLP

• Deepspeed ulysses sequence parallelism

• What communication is needed?

• What if #head << # GPUs or is not a multiple of 8

• partition s in both attention and MLP

• Ring Attention



Large Language Models

• Transformers, Attentions

• Scaling Law

• MoE

• Connecting the dots: Training Optimizations

• Flash attention

• Long context, parallelism

• Serving and inference optimization

• Continuous batching and Paged attention

• Speculative decoding (Guest Lecture)

• Connecting the dots: Deepseek-v3

• Hot topics



Some Observations After the first part

• Compute is a function of: h, i, b

• #parameter is a function of: h, i

• Hence: compute correlates with #parameters

• more parameters, more compute

• more data, more compute (of course)

• Problem: we have limited compute ($)

• how should we allocate our limited resources:

• Train models longer vs train bigger models?

• Collect more data vs get more GPUs?

• How to choose the exact h, i, etc.?



Motivation of Scaling Laws

• We want to know: 

• how large a model (detailed specs) should we train…

• How many data should we use…

• To achieve a given performance…

• Subject to a compute budget ($)?



How do we do that in traditional ML: data scaling law

• Can we do this for 

transformers LLMs?

• Unfortunately NO



Think in this way

Mathematics vs.

Physics



Transformers vs LSTMs

• Q: Are transformers better than LSTMs?

• Brute force way: spend tens of millions to train a LSTM GPT-3

• Scaling law way:



Number of Layers

• Does depth or width make a huge difference?

• 1 vs 2 layers makes a huge difference. 

• More layers have diminishing returns below 107 params



The Scaling law way: Physics Way

• Approach:

• Train a few smaller models

• Establish a scaling law (LSTM vs. transformers)

• Select optimal hyperparams based on the scaling law prediction.

• Rationale

• The effect of hyperparameters on big LMs can be predicted before training! 

• Optimizer choice

• Model Depth

• Arechitecture choice 



Back to our problem:

• how large a model should we train…

• How many data should we use…

• To achieve a given performance…

• Subject to a compute budget?

• Approach: estimate a law between model size data joint scaling



Model size data joint scaling

• Do we need more data or bigger models?

• Clearly, lots of data is wasted on small models

• Joint data-model scaling laws describe how the two relate



Compute Trade-offs

• Q: what about other resources? Compute vs. performance?

• For a fixed compute budget…

• Big models that’s undertrained vs small model that’s well 

trained?

• Solving the following optimization?



Approach: empirical scaling law 



Today’s SoTA Law



Summary

• Scaling law: the physics of ML

• Scaling law marks a new era of ML research:

• Rigorous theoretical analysis -> empirical laws

• Exploration of different model architectures -> Scaling 

transformers

• Due to scaling law: ML systems become essential



PA3: Hints

You already know:

• How to estimate the number of parameters of an LLM?

• How to estimate the flops needed to train an LLM?

• How to estimate the memory needed to train a transformer?

• We will give you a scaling law and compute budget

• Task: design your optimal LLM



Large Language Models

• Transformers, Attentions

• Scaling Law

• MoE

• Connecting the dots: Training Optimizations

• Flash attention

• Serving and inference optimization

• Continuous batching and Paged attention

• Speculative decoding (Guest Lecture)

• Connecting the dots: Deepseek-v3

• Hot topics



MoE-based LLMs

• Superficially: mixture of experts

• Key idea: make each expert focus on predicting the right answer 

for a subset of cases



A Closer Look at Mixture-of-Experts

Gating:                      𝐺 = Softmax 𝑊𝐺𝑋
Expert indices:          𝐼 = {𝑖0, 𝑖1} = Top𝐾 𝐺, 𝑘 = 2

Output weight:         𝑠0=
𝐺𝑖0

𝐺𝑖0+𝐺𝑖1
, 𝑠1 =

𝐺𝑖1

𝐺𝑖0+𝐺𝑖1

Output:         𝑌 = s0FFN𝑖0
𝑋 + 𝑠1FFN𝑖1

(𝑋)

A typical MoE layer (assume single instance and activate two experts )



MoE from the Scaling Law Perspective

• Parameters

• MLP params dominate LLMs

• MLP params x N/2

• Increase drastically

• Memory

• parameter related x N/2

• activation?

• Compute

• Only increase mildly



MoE from the Scaling Law Perspective

• Essentially, MoE is a more compute-

efficient Model

• I.e., MoE has a better scaling law



Parallelization of MoE

What ifwestilldoTPin faceofMoE?

PotentialproblemsofMoE?
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Potential Problems of MoE?

Gale et.al MegaBlocks: Efficient Sparse Training with Mixture-of-Experts

𝑥0

𝑥1

𝑥2

𝑥3

Inputs

routing

Selected 
Experts

{0,2}

{0,1}

{0,2}

{1,2}

permute

𝑥0

𝑥1

𝑥2

Expert 0

Expert 1

Expert 2

𝑥1

𝑥2

𝑥3

𝑥0

𝑥3

𝑊1

𝑊2

𝑊3

𝑧0

𝑧1

𝑧2

𝑧4

𝑧3

𝑧6

𝑧5

𝑧7

Color tracks instance indices



The rest of bottleneck of LLMs

Ruleof thumb: inmanycomputersystemsand
algorithms,anythingmorecomplexthanquadratic is

less likely tobeadaptedat largescale



Large Language Models

• Transformers, Attentions

• Scaling Law

• MoE

• Connecting the dots: Training Optimizations

• Flash attention ← will fix the s^2 to some extend next week

• Serving and inference optimization

• Continuous batching and Paged attention

• Speculative decoding (Guest Lecture)

• Connecting the dots: Deepseek-v3

• Hot topics



Reality Check: LLMs are Slow and Expensive to Serve

• At least ten A100-40GB GPUs to serve 175B GPT-3 in half precision

• Generating 256 tokens takes ~20 seconds



Next Token Prediction

Probability(”SanDiegohasveryniceweather”)
=P(“SanDiego”) P(“has”|”SanDiego”)P(“very”|”SanDiego

has”)P(“city”|…)…P(“weather”|…)

Max𝑃𝑟𝑜b 𝑥1:𝑇 =ෑ

𝑡=1

𝑇

𝑃(𝑥𝑡+1|𝑥1…𝑡)

Thisismodelwegot–capableof

“predictingthenexttoken”.
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Inference process of LLMs

Layer 1

Layer N

Artificial

the

the

future

Layer 1

Layer N

Layer 1

Layer N

future

of

Intelligence isInput

Output

… … …

Repeat until the sequence

● Reaches its pre-defined maximum length (e.g., 2048 tokens)

● Generates certain tokens (e.g., “<|end of sequence|>”)



Generative LLM Inference: Autoregressive Decoding

•Pre-filling phase (0-th iteration):
•Process all input tokens at once

•Decoding phase (all other iterations):
•Process a single token generated from previous 

iteration

•Key-value cache:
•Save attention keys and values for the following 

iterations to avoid recomputation
•what is KV cache essentially?



w/ KV Cache vs. w/o KV Cache



w/ KV Cache vs. w/o KV Cache

Q1:whathappensonKVcacheinprefillphase?

Q2:DoweneedtocacheQ?



Potential Bottleneck of LLM Inference?

• Compute:

• Prefill: largely same with training

• Decode: s = 1

• Memory

• New: KV cache
• Communication

• mostly same with training

Q?howaboutbatchsizeb?



Serving vs. Inference

Serving: many requests, online 

traffic, emphasize cost-per-query.

s.t. some mild latency constraints

emphasize throughput

Inference: fewer request, 

low or offline traffic,

emphasize latency

largeb b=1



Potential Bottleneck of LLM Inference in Serving

• Compute:
• Prefill:

• Different prompts have different length: how to batch?
• Decode

• Different prompts have different, unknown #generated tokens
• s = 1, b is large

• Memory
• New: KV cache
• b is large -> KV is linear with b -> will KVs be large?

• Communication
• mostly same with training

largeb



Potential Bottleneck of LLM Inference in Serving

• Compute:
• Prefill:

• Different prompts have different length: how to batch?
• Decode

• Different prompts have different, unknown #generated tokens
• s = 1, b=1

• Memory
• New: KV cache
• b =1 -> KV is linear with b -> will KVs be large?

• Communication
• mostly same with training

b=1



Problems of bs = 1

max AI = #ops / #bytes
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Recap: Inference process of LLMs

Layer 1

Layer N

Artificial

the

the

future

Layer 1

Layer N

Layer 1

Layer N

future

of

Intelligence isInput

Output

… … …

Repeat until the sequence

● Reaches its pre-defined maximum length (e.g., 2048 tokens)

● Generates certain tokens (e.g., “<|end of sequence|>”)



Problem of bs = 1

Latency = step latency * # steps 

b=1



Large Language Models

• Transformers, Attentions

• Scaling Law

• MoE

• Connecting the dots: Training Optimizations

• Flash attention ← come back to this later next week

• Serving and inference optimization

• Continuous batching and Paged attention

• Speculative decoding (Guest Lecture)

• Connecting the dots: Deepseek-v3

• Hot topics

b=1
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• Connecting the dots: Training Optimizations

• Flash attention ← come back to this later next week

• Serving and inference optimization

• Continuous batching and Paged attention

• Speculative decoding (Guest Lecture)

• Connecting the dots: Deepseek-v3

• Hot topics

largeb



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

LLM Decoding Timeline

67



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Batching Requests to Improve GPU Performance

Issues with static batching:

• Requests may complete at different iterations

• Idle GPU cycles

• New requests cannot start immediately

68



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching

Benefits:

• Higher GPU utilization

• New requests can start immediately

69Orca: A Distributed Serving System for Transformer-Based Generative Models. OSDI’22



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching Step-by-Step

• Receives two new requests R1 and R2

70

Request Pool

(CPU)

Execution Engine

(GPU)

R1: optimizing ML 
systems

R2: LLM serving is

Maximum serving batch 
size = 3



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching Step-by-Step

• Iteration 1: decode R1 and R2

71

R1: optimizing ML 
systems

R2: LLM serving is

Iteration 1

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 
size = 3



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching Step-by-Step

• Iteration 1: decode R1 and R2

72

R1: optimizing ML 
systems

R2: LLM serving is

Iteration 1

Execution Engine

(GPU)

Maximum serving batch 
size = 3

Q:Howtobatchthese?



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching Step-by-Step

• Receive a new request R3; finish decoding R1 and R2

73

R1: optimizing ML 
systems requires

R2: LLM serving is 
critical.

Iteration 1

R3: A man

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 
size = 3



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching Step-by-Step

• Receive a new request R3; finish decoding R1 and R2

74

R1: optimizing ML 
systems requires

R2: LLM serving is 
critical.

Iteration 1

Execution Engine

(GPU)

Maximum serving batch 
size = 3

Q:Howtobatchthese?



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Traditional Batching

• Receive a new request R3; finish decoding R1 and R2

75

R2: LLM serving is 
critical. <EOS>

Iteration 2

R3: A man

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 
size = 3

R1: optimizing ML 
systems requires ML

R4: A dog is

R5: How are



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching

• Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes 

76

R1: optimizing ML 
systems requires ML

R2: LLM serving is 
critical. <EOS>

Iteration 2

R3: A man

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 
size = 3

R4: A dog is

R5: How are



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching

• Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes 

77

R1: optimizing ML 
systems requires ML

R2: LLM serving is 
critical. <EOS>

Iteration 2

R3: A man

Execution Engine

(GPU)

Maximum serving batch 
size = 3

Q:Howtobatchthese?



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Traditional vs. Continuous Batching

• Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes 

78

R1: optimizing ML 
systems requires ML

R2: LLM serving is 
critical. <EOS>

Iteration 2

R3: A man

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 
size = 3

R4: A dog is

R5: How are

R2: LLM serving is 
critical. <EOS>

Execution Engine

(GPU)

Maximum serving batch 
size = 3

R1: optimizing ML 
systems requires ML

R3: A man



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching

• Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes 
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R1: optimizing ML 
systems requires ML

R2: LLM serving is 
critical. <EOS>

Iteration 2

R3: A man

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 
size = 3

R4: A dog is

R5: How are



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Continuous Batching Step-by-Step

• Iteration 3: decode R1, R3, R4

80

Iteration 3

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 
size = 3

R1: optimizing ML 
systems requires ML

R3: A man is

R4: A dog is

R5: How are
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Summary: Continuous Batching

• Handle early-finished and late-arrived requests more efficiently

• Improve GPU utilization

• Key observation

• MLP kernels are agnostic to the sequence dimension



KV Cache

Layer 1

Layer N

Artificial

the

the

future

Layer 1

Layer N

82
Intelligence is

… …
-0.1 0.3 1.2

0.7 -0.4 0.8

0.2 -0.1 1.1

Input

Output

Artificial

Intelligence

is

-0.7 0.1 -0.2the

-0.2 0.1 -1.1

0.9 0.7 0.2

-0.1 -0.3 0.1

Artificial

Intelligence

is

-1.1 0.5 0.4the

KV Cache
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KV Cache

Layer 1

Layer N

future

of

…

-0.1 0.3 1.2

0.7 -0.4 0.8

0.2 -0.1 1.1

Input

Output

Artificial

Intelligence

is

-0.7 0.1 -0.2the

-0.6 0.0 0.9future

-0.2 0.1 -1.1

0.9 0.7 0.2

-0.1 -0.3 0.1

Artificial

Intelligence

is

-1.1 0.5 0.4the

0.1 -2.1 0.5future

KV Cache
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KV Cache

• Memory space to store intermediate vector representations of tokens

• Working set rather than a “cache”

• The size of KV Cache dynamically grows and shrinks

• A new token is appended in each step

• Tokens are deleted once the sequence finishes
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Key insight

Efficient management of KV cache is crucial for high-throughput 

LLM serving

13B LLM on A100-40GB

Parameters 

(26GB, 65%)

KV Cache
(13GB, 33%)

Others

40

26

Existing systems vLLM

8 40
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Key insight

Efficient management of KV cache is crucial for high-throughput 

LLM serving

13B LLM on A100-40GB

Parameters 

(26GB, 65%)

KV Cache
(13GB, 33%)

Others

40

26

Existing systems vLLM

8 40

0.8

3.2
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Memory waste in KV Cache

• Reservation: not used at the current step, but used in the future

• Internal fragmentation: over-allocated due to the unknown 

output length.

Artificial
Intellige

nce
is the future of

technol

ogy
<eos> <resv> … <resv> … …

2040 slots never used 

(internal fragmentation)

3 slots future used

(reserved)

External 

fragmentation

3 token states for 

request A’s prompt
Request A

current step

2 slots for

generated tokens

LLM is …

Request B
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Memory waste in KV Cache

Only 20–40% of KV cache is utilized to store token states

Ours

* Yu, G. I., Jeong, J. S., Kim, G. W., Kim, S., Chun, B. G. “Orca: A Distributed Serving System for Transformer-Based 

Generative Models” (OSDI 22).



vLLM: Efficient memory management for LLM inference

Inspired by virtual memory and paging
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Token block

• A fixed-size contiguous chunk of 

memory that can store token states 

from left to right

Token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Block size = 4

KV Cache
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Token block

• A fixed-size contiguous chunk of memory that can store token 

states from left to right

Artificial Intelligence is the

Token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Block size = 4

-0.2 0.1 -1.1

0.9 0.7 0.2

-0.1 -0.3 0.1

Artificial

Intelligence

is

-1.1 0.5 0.4the

Block 4

820 KB / token

(LLaMA-13B) 
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Paged Attention

• An attention algorithm that allows for storing continuous keys 

and values in non-contiguous memory space
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Logical & physical token blocks

Request

A

Alan Turing is a

computer scientist

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

Physical token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical token blocks
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Logical & physical token blocks

Request

A

Alan Turing is a

computer scientist

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist

Alan Turing is a

Physical token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical token blocks

Physical

block number
# Filled

7 4

1 2

– –

– –

Block table
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Logical & physical token blocks

Request

A

Alan Turing is a

computer scientist

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist

Alan Turing is a

Physical token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical token blocks

Physical

block number
# Filled

7 4

1 2

– –

– –

Block table

Completion: “and”
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Logical & physical token blocks

Request

A

Alan Turing is a

computer scientist and

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist

Alan Turing is a

Physical token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical token blocks

Physical

block number
# Filled

7 4

1 2

– –

– –

Block table

Completion: “and”
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Logical & physical token blocks

Request

A

Alan Turing is a

computer scientist and

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist and

Alan Turing is a

Physical token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical token blocks

Physical

block number
# Filled

7 4

1 3

– –

– –

Block table

Completion: “and”
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Logical & physical token blocks

Request

A

Alan Turing is a

computer scientist and
mathema

tician

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist and
mathem

atician

Alan Turing is a

Physical token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical token blocks

Physical

block number
# Filled

7 4

1 4

– –

– –

Block table

Completion: “and mathematician”
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Logical & physical token blocks

Request

A

Alan Turing is a

computer scientist and
mathema

tician

renowned

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist and
mathem

atician

renowned

Alan Turing is a

Physical token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical token blocks

Physical

block number
# Filled

7 4

1 4

5 1

– –

Block table

Completion: “and mathematician renowned”

Allocated on demand
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Serving multiple requests

Alan Turing is a

computer scientist and
mathema

tician

renowned

Logical token blocks

Request

A

Block Table

computer scientist and
mathem

atician

Artificial
Intellige

nce
is the

renowned

future of
technolog

y

Alan Turing is a

Physical token blocks

(KV Cache)

Artificial Intelligence is the

future of technology

Logical token blocks

Request

B

Block Table
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Memory efficiency of vLLM 

• Minimal internal fragmentation

• Only happens at the last block of a sequence

• # wasted tokens / seq < block size

• Sequence: O(100) – O(1000) tokens

• Block size: 16 or 32 tokens

• No external fragmentation
Alan Turing is a

computer scientist and
mathemati

cian

renowned

Internal fragmentation
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Effectiveness of PagedAttention

96.3% KV cache utilization

Ours
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