
DSC 204A: Scalable Data Systems
Programming Assignment 2

October 2025

1 Introduction
The goal of this programming assignment is to go further with Ray—focusing on multi-node
data processing and collective communication. We will first have an easy introduction to the Ray
Data API. We will then revisit the Ray Core API and introduce Ray Actors. Finally, we will
build several communication algorithms through the Ray Collective Communications library.

2 Task 1: Ray Data (30 points)
In this question, you will work with Ray Datasets and apply basic transformation methods
for distributed data processing. Ray Data is part of Ray AI Runtime and is built on top of
Ray Core, inheriting the same scaling and parallelism benefits. First upgrade ray in Python 3
(ipykernel) in Jupyter, as instructed in task1.ipynb.

pip install "ray[default]" --upgrade

Note. Before working on the tasks, check Section 5 for Ray Dashboard access.

2.1 Problem

You are given a 100K subset of the Amazon Reviews dataset on DataHub1. A starter notebook
task1.ipynb is provided. Follow the instructions and linked documentation to complete the
notebook.

Ray Data should maximally utilize CPUs on all workers, which you can validate via the Ray
Dashboard (Cluster section). See Section 5 for instructions.

2.2 Grading Rubric

Submit a completed task1.ipynb. Correctness only.

Section Points
All sections prior to “Cleaning Up reviewText” 20 (Auto graded)
“Cleaning Up reviewText” 10 (Auto graded)

Helpful asserts are included in the notebook to verify correctness.

3 Task 2: MapReduce with Ray Actors (30 points)
This task focuses on implementing a distributed MapReduce word count using Ray Actors.

1Dataset path: ~/public/pa2.

1



3.1 MapReduce

MapReduce breaks down large tasks into smaller units that can be distributed across multiple
nodes. For reference, see the provided guide and example notebook (which includes a Ray
tasks-based implementation at the end). A detailed overview of MapReduce will also appear in
the future lectures.

3.2 Problem

Implement word-count via MapReduce using Actors in task2.ipynb. We provide a test file
essay.txt (an LLM-related essay).

• Parallelism: Launch Mappers equal to the number of workers/CPUs in your Ray cluster
and partition the text evenly.

• Map stage: Each Mapper processes its partition to produce local word counts.

• Reduce stage: A Reducer Actor aggregates partial counts from all Mappers.

Modify task2.ipynb to:

1. Define Mapper and Reducer as Ray Actors.

2. Partition input text across Mappers.

3. Compute local counts (map) and combine them (reduce).

3.3 Grading Rubric

Correctness only. You must use Ray Actors and parallelize across NUM_CPUS; otherwise,
the submission is invalid.

Criterion Points
Correct counts for public case essay.txt 20 (Auto graded)
Hidden test cases 10 (Auto graded)

4 Task 3: Collective Communication (40 points)
In this task, you will use point-to-point (P2P) APIs from ray.util.collective to implement
the AllReduce collective in three ways. A Worker class template is provided; complete its
functions so Actors can perform AllReduce among themselves. Profiling helpers are provided to
compare implementations.

4.1 Problem

P2P Communication (Building Block)

Implement the P2P send/receive functions in the Worker class using Ray’s built-in P2P API.

AllReduce Variants

Implement three AllReduce algorithms:

1. ray_all_reduce: A simple implementation leveraging Ray’s built-ins.

2



2. bde_all_reduce: Bidirectional exchange AllReduce.
Uses a bidirectional-exchange pattern: each round, every node exchanges data with its
partner (which is me + size/2 or me - size/2) and accumulates the result.
See details of BDE Allreduce in Section 6.3 and Figure 7 of Reference. Note that you need
to implement Allreduce, instead of the Allgather and Reduce-Scatter in Figure 7.

3. mst_all_reduce: Minimum Spanning Tree (MST) AllReduce. As building blocks, first
implement MST Reduce and Broadcast collectives covered in class, then compose MST
AllReduce.
See details of MST AllReduce in the course slides, staring Page 82. In the course slides,
we have world_size = 9, so only 2 of 9 nodes participate in the first round (see Page 88).
In PA2, we simplify to world_size = 8, which allows an even split of nodes at every level.

4.2 Grading Rubric

Component Points
Workers instantiation 5 (Manually graded)
P2P communication methods 5 (Auto graded)
RAY AllReduce 3 (Auto graded)
BDE AllReduce 10 (Auto graded)
MST AllReduce 15 (Auto graded)
Profiling results 2 (Manually graded)

Testing Reminder: There are hidden test cases which will compare your implementation’s
self.comm_log against the hidden ground-truth communication trace.

• For BDE, the hidden test is unique.

• For MST, the hidden test accepts two valid variants:

– Follow the course slides (starting Page 82), which always reduce toward the leftmost
node.

– Follow Figure 3 of Reference, where the left half reduces to its leftmost node, and the
right half reduces to its rightmost node.

• For both BDE and MST, you may only rely on your implemented P2P operations and any
helper functions you define.

5 Dashboard Access
Instructions for Ray Dashboard are provided in the first code cell of task2.ipynb. Use the
dashboard to confirm CPU utilization across workers for Task 1 and to monitor Actor placement
and activity for Tasks 2–3.

Since Datahub doesn’t have browser, you can’t view the dashboard using the URL provided
in the screenshot. If you want to check the dashboard when working on PA2, you can download
the notebooks and the data in ~/public/pa2 to your local machine.

Submission
Submit the completed task1.ipynb, task2.ipynb, and task3.ipynb. Ensure notebooks run
end-to-end on the target environment and that all required outputs and logs are present.

3

https://www.cs.utexas.edu/~flame/pubs/InterCol_TR.pdf
https://hao-ai-lab.github.io/dsc204a-f25/assets/slides/7.%20collective-communication-1.pdf
https://hao-ai-lab.github.io/dsc204a-f25/assets/slides/7.%20collective-communication-1.pdf
https://www.cs.utexas.edu/~flame/pubs/InterCol_TR.pdf


4


	Introduction
	Task 1: Ray Data (30 points)
	Problem
	Grading Rubric

	Task 2: MapReduce with Ray Actors (30 points)
	MapReduce
	Problem
	Grading Rubric

	Task 3: Collective Communication (40 points)
	Problem
	Grading Rubric

	Dashboard Access

