
DSC 204A: Scalable Data Systems
Programming Assignment 3

Due: November 17, 2025

1 Introduction

In this assignment, you will (1) perform feature engineering on the Amazon Reviews data, (2)
train and tune a machine learning model using Ray, and (3) implement Mixture of Experts with
tensor parallel using Ray. The compute setup mirrors PA2 (a 3-node Ray cluster on DataHub).

Update Python 3 (ipykernel) by running this in a Jupyter Notebook.

!pip install ray==2.50.0

!pip install xgboost==1.7.6

Also review the setup in Section 6 before starting.

Start early. Although each task is small, Ray Train/Tune and MoE with tensor parallel may
be new to you; plan accordingly.

2 Preliminaries

2.1 Dataset

You will use three datasets:

1. product (metadata header.csv)

2. product processed (product processed.csv)

3. review (user reviews train.csv)

Descriptive schema (from the assignment PDF):

1) product (metadata_header.csv)

|-- asin: string -- product id, e.g., ’A00H8HVV6E’

|-- salesRankDict: map<string,int> -- category -> rank, e.g., {’Home & Kitchen’:

796318}

| |-- key: string -- category, e.g., ’Home & Kitchen’

| |-- value: int -- rank, e.g., 796318

|-- categories: list<list<string>> -- hierarchical categories, e.g., [[’Home &

Kitchen’,’Artwork’]]

| |-- element: list<string> -- e.g., [’Home & Kitchen’,’Artwork’]

| | |-- element: string -- category name

|-- title: string -- title, e.g., ’Intelligent Design Cotton Canvas’

|-- price: float -- price, e.g., 27.9

|-- related: map<string,array<string>> -- e.g., {’also_viewed’: [’B00I8HW0UK’]}

| |-- key: string -- attribute name, e.g., ’also_viewed’

| |-- value: array<string> -- array of product ids

| |-- element: string -- product id, e.g., ’B00I8HW0UK’

2) product_processed (product_processed.csv)

|-- asin: string

|-- title: string -- title after imputation

|-- category: string -- extracted top-level category

3) review (user_reviews_train.csv)

|-- asin: string

|-- reviewerID: string -- e.g., ’A1MIP8H7G33SHC’

|-- overall: float -- rating, e.g., 5.0

1

For Task 2, preprocessed features:

- ml_features_train

|-- feat_0-46: float -- contiguous features from user/product data

|-- overall: int -- review rating

- ml_features_test

|-- feat_0-46: float

|-- overall: int

All datasets are available in the shared course directory ~/public/pa3; you do not need to
move or download them.

2.2 Deliverables

We use nbgrader. Each task writes a dictionary res with the exact schema specified in the
task notebooks. Ensure your value types match (e.g., cast numpy scalars to Python int/float
where needed).
Generic res example:

res

|-- single_value: int

|-- list_of_values: list

| |-- element: float

3 Task 1: Feature Engineering with Modin on Ray

3.1 Task 1.1: Flatten categories and salesRank

1. From categories (a list of lists), take the first element of the first list (i.e., categories[0][0])
and place it in a new column category. If missing/empty, set null.

2. salesRankDict contains at most one pair of (key, value). From salesRankDict, extract the
key and the value into new columns salesCategory and salesRank. If missing/empty, set
null.

Expected res schema:

res

|-- count_total: int -- count of rows of the transformed table, including null rows

|-- mean_salesRank: float -- mean value of SalesRank

|-- variance_salesRank: float -- variance of ...

|-- numNulls_category: int -- count of nulls of category

|-- countDistinct_category: int -- count of distinct values of ..., excluding nulls

|-- numNulls_salesCategory: int -- count of nulls of salesCategory

|-- countDistinct_salesCategory: int -- count of distinct values of ..., excluding

nulls

3.2 Task 1.2: Flatten related

For each row, compute mean price of products referenced by related["also viewed"]. Ignore
ASINs not present in product or with price=null. Do not impute None (e.g., do not use
fillna(0) or similar).
Expected res schema:

res

|-- count_total: int -- count of rows of the transformed table, including null rows

|-- mean_meanPriceAlsoViewed: float -- mean value of meanPriceAlsoViewed

2

|-- variance_meanPriceAlsoViewed: float -- variance of ...

|-- numNulls_meanPriceAlsoViewed: int -- count of nulls of ...

3.3 Task 1.3: Impute price

1. Impute price with the mean and write to meanImputedPrice.

2. Impute price with the median and write to medianImputedPrice.

3. For title, replace null with the string "unknown" and write to unknownImputedTitle.

Expected res schema:

res

|-- count_total: int -- count of rows of the transformed table, including null rows

|-- mean_meanImputedPrice: float -- mean value of meanImputedPrice

|-- variance_meanImputedPrice: float -- variance of ...

|-- numNulls_meanImputedPrice: int -- count of nulls of ...

|-- mean_medianImputedPrice: floats -- mean value of medianImputedPrice

|-- variance_medianImputedPrice: float -- variance of ...

|-- numNulls_medianImputedPrice: int -- count of nulls of ...

|-- numUnknowns_unknownImputedTitle: float -- count of "unknown" of

unknownImputedTitle

4 Task 2: Training and Tuning with Ray

4.1 Task 2.1: Distributed XGBoost with Ray Train

Train a regression model (MSE objective) to predict overall using XGBoostTrainer

• Objective: regression with squared error (reg:squarederror)

• Model params: max depth=3, eta=0.3, others default.

• Use Ray Train with a suitable ScalingConfig; and you can set 2 workers with 1 CPUs
per worker.

• After training, run inference on the test set.

Expected res schema:

res

|-- test_rmse: float --- RMSE of the test set predictions

|-- train_rmse: float --- RMSE of the train set predictions

4.2 Task 2.2: Tuning with Ray Tune

We’ll now perform a grid search for 2 Xgboost hyperparameters - max depth and eta. Given
our limited computational budget, we’ll focus on a small grid of values:

max depth ∈ {3, 5}, eta ∈ {0.3, 0.5},

Your task is as follows:

1. Split the original training set into train/validation (75/25, random).

2. Train Xgboost models with 4 hyperparameter trials over the given grid using Ray Tune.

3. Report the best model’s validation and test RMSE. Also report validation RMSEs for specific
grid points (as specified in the notebook schema).

3

Nov 21 Update: For Task 2.2, the original test cases only allowed a 0.01 tolerance around
the provided RMSE. For final grading, any submission with RMSE less than 1.13 will receive
full credit.
Expected res schema:

res

|-- test_rmse: float -- best model’s test RMSE

|-- valid_rmse: float -- best model’s validation RMSE

|-- valid_depth_5_eta_0.3: float

|-- valid_depth_3_eta_0.5: float

Helpful links

• Distributed XGBoost with Ray Train

• Offline Batch Inference with Ray Data

• Ray Tune

• Ray Tune with XGBoost

5 Task 3. Mixture of Experts with Ray

This assignment implements distributed Mixture of Experts (MoE) using Ray. Before diving
into the implementation, here is some background context:

Mixture of Experts (MoE) is a neural network architecture where multiple “experts”
(sub-networks) exist in parallel. A gating network selects which experts should process each
input. This approach can greatly increase model capacity without a proportional increase in
computation per sample. Also, wee Page 43 - 47 of the slides for illustration of MoE.

Tensor Parallelism (TP) is a distributed training technique where a single layer (e.g.,
a large matrix multiplication) is split across multiple devices. Each device computes a partial
result, and the partial results are combined to produce the full output.

5.1 Task 3.1: MoE with Tensor Parallelism (MoE-TP)

• Each expert consists of multiple layers, and the parameters of every layer are sharded
across all workers (i.e., each worker stores only a slice of the layer’s weights).
In this assignment, we assume there are 10 experts, each containing 2 fully connected
layers, for a total of 20 layers. Under tensor parallelism, each worker maintains a shard
from every one of these 20 layers.

• Every worker computes its partial output for each layer (based on the parameters it
stores).

• The partial outputs are then combined by concatenation to obtain the full expert
outputs. See ShardedLinear in Task3.ipynb for how a sharded linear layer works.

• This design is well-suited for balanced workloads where all experts need to be computed
in parallel.

The goal of this assignment is to implement MoE-TP using Ray. As a refererence imple-
mentation, we provide the SimpleMoE class. We then provide the skeleton code for the MoE TP

class for you to complete. See Task3.ipynb for details.

5.2 Grading Rubric

• Efficiency: Achieve a speedup greater than 2×.

• Correctness: Given the same initization of weights and bias, the outputs after one forward
pass for SimpleMoE and MoE TP should be the same.

4

https://docs.ray.io/en/latest/train/getting-started-xgboost.html
https://docs.ray.io/en/latest/data/batch_inference.html#batch-inference-home
https://docs.ray.io/en/latest/tune/index.html
https://docs.ray.io/en/latest/tune/examples/tune-xgboost.html
https://hao-ai-lab.github.io/cse234-w25/assets/slides/mar4.pdf

6 Development Instructions

6.1 Environment

On DataHub, choose the environment with 8 CPUs and 16GB RAM on the head node.

6.2 Restarting the cluster

To restart, go to Control Panel → Stop My Server. Logging out does not stop the cluster. If
you need to clear state in a session, prefer ray.shutdown() and notebook restart over running
ray stop.

6.3 Shut Down Unused Notebooks

This assignment is memory-intensive. You can close unused Jupyter notebooks or processes to
free up CPU memory.

Figure 1: Check opened notebooks, or shut down all notebooks.

6.4 Validate

Sometimes you may encounter a validation error (Figure 2) even if all tests pass when you
directly run your notebook.

Figure 2: Validation Error.

In such cases, open a terminal and open pa3 folder, then run
nbgrader validate Task1.ipynb

You can replace Task1.ipynb with the notebook you are validating. This command provides
detailed warnings and errors, and is considered more robust than clicking “Validate” button
directly. You pass validation if this shows up in the end:

Success! Your notebook passes all the tests.

5

6.5 Submit

Make sure to retain only the four files in Figure 3 in your pa3 folder when submitting. Do not
delete rng.py, as it provides the necessary utilities for Task 3.

Figure 3: List of submitted files.

6.6 Grading

All tasks in PA3 will be graded by Datahub autograder.

Task Description Score

1.1 Flatten schema; handle list/dict types 15
1.2 Flatten schema; perform self-joins 15
1.3 Data imputation 10
2.1 Distributed XGBoost with Ray Train 20
2.2 Hyperparameter tuning with Ray Tune 20
3.1 MoE with Tensor Parallel 20

7 Acknowledgements

This assignment draws on prior coursework material (e.g., DSC 102 PySpark assignment).

6

	Introduction
	Preliminaries
	Dataset
	Deliverables

	Task 1: Feature Engineering with Modin on Ray
	Task 1.1: Flatten categories and salesRank
	Task 1.2: Flatten related
	Task 1.3: Impute price

	Task 2: Training and Tuning with Ray
	Task 2.1: Distributed XGBoost with Ray Train
	Task 2.2: Tuning with Ray Tune

	Task 3. Mixture of Experts with Ray
	Task 3.1: MoE with Tensor Parallelism (MoE-TP)
	Grading Rubric

	Development Instructions
	Environment
	Restarting the cluster
	Shut Down Unused Notebooks
	Validate
	Submit
	Grading

	Acknowledgements

