DSC-204A: Scalable Data Systems, Fall 2025

Guest Speaker November 18th

Lecturer: Audrey Cheng Scribe: Hanbei Xiong, Atharvraj Patil, Manas Jain

1 Overview: Al Systems and the New Phase Change

For over a decade, “Al for Systems” has been an active research area. Researchers have
used machine learning to tune system parameters, model workloads, and replace specific
system components such as database query optimizers. Historically, these approaches treated
systems as black boxes, using ML mostly to optimize knobs or predict behavior without
modifying the system architecture itself.

The lecture emphasizes that we are now entering a phase change triggered by modern LLMs.
Unlike classical ML techniques, LLMs can read, write, and modify code, meaning they can
operate on white-box system internals. This unlocks a fundamentally different workflow:
instead of tuning parameters around the system, AI can now generate new algorithms,
policies, and implementations that genuinely alter system behavior. This is a major shift
because a substantial portion of systems research revolves around designing new resource
allocation, scheduling, load balancing, caching, and concurrency control algorithms.

2 What Caused This Phase Change?

Recent breakthroughs show that LLMs can autonomously discover algorithmic solutions that
outperform human-designed ones. A few key works triggered this shift:

e FunSearch (DeepMind) demonstrated that evolutionary LLM frameworks could
find super-human solutions for mathematical optimization problems.

e AlphaEvolve (DeepMind) extended these ideas to both coding and algorithm dis-
covery for CS and mathematics.

e OpenEvolve, an open-source version inspired by AlphaEvolve, gained popularity by
allowing any research team to evolve solutions using LLMs plus evaluation loops.

These results showed that LLMs are not just parameter tuners but algorithm inventors,
which directly impacts how systems research is conducted.

1

Guest Speaker November 18th 2

3 Early Evidence: Applying ADRS Across Research
Projects

The Sky lab ran a summer seminar asking students to apply AI-Driven Research for Systems
(ADRS) tools, mostly OpenEvolve-style loops, to their active research problems. Across 11
projects, many of which were recent publications (including an NSDI best paper), ADRS was
applied to generate new scheduling policies, load-balancing heuristics, RPC optimizations,
GPU job schedulers, caching strategies, and more.

Key observations from these experiments:

e In many projects, the Al-generated solutions outperformed state-of-the-art manually
designed baselines.

e The search was low-cost and typically required 100-300 iterations to discover superior
solutions.

e Problems spanned a wide range: GPU scheduling, job dispatch, cloud resource alloca-
tion, and other classic systems problems.

e Even when Al-generated solutions were not immediately superior, they surfaced new
ideas, which human researchers used for subsequent refinements.

This demonstrated that ADRS is widely applicable and practically useful within real systems
research.

4 How ADRS Works: Automating the Systems Re-
search Loop

The lecturer then explains how ADRS (Fig. |1]) tools accelerate the standard systems research
workflow.

Traditional Human Workflow

1. Formulate the problem: Define objectives, constraints, hypotheses, and workloads.

2. Build an evaluation framework: Often a simulator; integrate workload traces and
baseline algorithms.

3. Design a new solution: Invent policies or algorithms expected to improve perfor-
mance.

Guest Speaker November 18th

4. Evaluate and iterate: Test, analyze, revise, and test again.

5. Write the paper.

Al-Driven Research for Systems (ADRS)

Problem Evaluation
Formulation Framework

Problem Evaluator +
statement Initial solution

1010,
g‘ configs (e.g., LLMs)
% —_—

Solution
Generator

Evaluator
Tests solutions and
assigns scores &
feedback

LLM ensemble to
generate solutions

&

LLM

Q

Inner loop

Paper
Write-Up

Prompt
Generator

Creates context-rich
prompts

Storage
Stores solutions
scores &
feedbacks

Solution
Selector

Select promising
solutions to refine

Observations

(e.g., solution, Al-Driven Research for System (ADRS)
feedback)

Figure 1: Al-Driven Research for Systems Architecture

ADRS Automates the Core Research Loop

With AT in the loop, steps 3 and 4 become partially or fully automated.

You provide:

e Problem statement
e Evaluation framework (e.g., simulator, workload, scoring function)
e Baseline solution

e LLM configuration (guidance on how to generate new solutions)
Then the ADRS framework:

1. Generates prompts for the LLM using problem context and past solutions.
2. LLM proposes new solutions (often actual executable code).

3. Evaluator runs the generated solution, checking correctness and performance.

Guest Speaker November 18th 4

4. Stores solutions, scores, and feedback for later reference.
5. Selects promising candidates, balancing both high-performing and diverse solutions.

6. Refines them through further LLM prompts, closing the loop.

Researchers can examine logs and generated code from ADRS systems, allowing them to
refine evaluators, adjust problem statements, and better interpret Al-generated ideas.

Frameworks like OpenEvolve automate this cycle by repeatedly generating, evaluating,
and improving candidate solutions over a chosen number of iterations. Because ADRS is
transparent, even non-optimal Al outputs can reveal novel design patterns or guide new
hypotheses. This creates a human-in-the-loop workflow where AI proposes ideas, humans
analyze and refine constraints, and the AI continues exploring an improved search space,
significantly accelerating the algorithm-design process in systems research.

5 Use Case

e Audrey introduced an approach called Expert Parallelism Load Balancing (EPLB),
designed to assign experts to physical GPUs for maximal resource utilization.

e The method uses an LLM-driven design loop, beginning with a prompt that specifies
the role, task, and overall goal.

e The prompt includes an initial program, which the LLM replaces with newly generated
code.

e A simulator evaluates each generated solution using execution traces and computes the
average balance factor, producing a performance score.

e All generated solutions and their scores are stored, and the most promising candidates
are selected for further refinement.

e The solution selection is performed using openEvolve, an evolutionary algorithm.

e In each iteration, openEvolve selects the best two solutions along with five random
solutions, which are then fed back into the prompt to generate new code variants.

e Using DeepSeek R1, the approach achieved a balance factor of 0.66.

e The method delivered 27x faster performance than an open-source implementation
and 5x faster than a highly optimized proprietary implementation.

e In the final experiment, they ran 300 iterations at a total cost of less than $10 using
Gemini Flash and Flashlight.

Guest Speaker November 18th)

6 Why does ARDS work?

Introduction to ADRS and Systems Performance

The lecture introduced the concept of AI-Driven Research Assistants (ADRS), which
utilize large language models (LLMs) to automatically generate and evolve code to solve
complex problems, particularly in the domain of systems performance. The central theme
is the automation of the solution development process to achieve performance gains beyond
what human experts can typically achieve.

6.1 Case Study: EPLB Optimization

A concrete example of ADRS success was presented through the optimization of a highly-
optimized, private implementation of an Example Performance Load Balancer (EPLB). The
ADRS framework, even over this already highly-tuned system, was able to deliver a remark-
able 5x speedup [I]. This improvement stemmed from two sources:

(i) Algorithmic improvements.

(ii) Micro-engineering optimizations.

6.2 Advantages of ADRS for Performance Problems

The speaker outlined several reasons why ADRS is a powerful tool for systems performance
optimization:

e Easier Correctness Verification: Performance problems often do not change the sys-
tem’s semantics, making it simpler to verify the correctness of a generated solution. This
automatic verification capability is a mandatory prerequisite for using ADRS frame-
works.

e Broad Knowledge Base: LLMs are trained on vast literature, giving them access to
techniques from diverse fields (e.g., operations research, job scheduling) that a domain-
specific human expert might not consider. This cross-domain knowledge facilitates more
creative solutions.

e Super-Iterative Optimization: ADRS can continuously search for improvements until
a specified budget is exhausted. This contrasts with human researchers who often stop
at a "good enough” solution. The AI can find numerous small, micro-engineering
optimizations that collectively lead to significant performance gains, helping to ” optimize
to the limit.”

Guest Speaker November 18th 6

7 Counter-Intuitive Lessons Learned

The research revealed several non-obvious factors that influence the success of ADRS.

7.1 The Initial Program Baseline

The starting point for the evolution process significantly impacts the final solution. Counter-
intuitively, the team found that:

”Sometimes starting with weaker baselines can lead to better solutions.”

If the evolution begins with a state-of-the-art, complex algorithm, the LLM tends to be
biased and only evolves within the scope of that solution, often getting stuck in local
minima. A simpler, weaker baseline provides the model with greater freedom to explore
the search space and discover novel solutions.

7.2 The Role of Context and Hints

The amount of context and hints provided to the LLM must be carefully managed.

e Over-Constraining: Providing too many specific hints can severely restrict the search
space, leading to sub-optimal results. In one transaction scheduling case study, providing
human-generated hints resulted in a solution that was 20% to 30% worse than the un-
hinted version.

e Under-Constraining: For highly complex problems, insufficient hints can lead to very
slow evolution, as the model explores too many unpromising ideas.

The speaker concluded that finding the right balance of context is an open research ques-
tion that is highly dependent on the specific problem being addressed.

7.3 API Access Trade-offs

Similar trade-offs exist regarding the level of access to high-level APIs and tools:

8 The Criticality of the Evaluation Framework

A core lesson is that the generated solutions are ”only as good as your evaluation framework.”
Early issues with ADRS were often traced back to flaws in the evaluation setup.

Guest Speaker November 18th 7

Table 1: Trade-offs in API Access for ADRS
More Access to High-Level APIs Restricted Access to High-Level

APIs

Allows for faster evolution. Forces the model to be more cre-
ative.

May lead to less novel solutions. May lead to the discovery of better so-
lutions.

8.1 Evaluation Pitfalls

e Overfitting: ADRS models tend to over-optimize for the specific workloads they are
given. It is essential to use diverse workloads and holdout workloads to ensure the
solution generalizes, a standard practice in systems research.

e Reward Hacking: The models will actively ”game the system” if the evaluation metrics
are incomplete. For instance, an evolved EPLB solution achieved high speed by dropping
requests, a behavior that was not initially constrained by the evaluation. This necessitates
a robust framework that encodes all necessary correctness and safety constraints.

9 ADRS as AI Research Assistants

The speaker reframed ADRS as AI research assistants that elevate the human researcher.
By automating the solution development and optimization process, ADRS frees up human
effort to focus on the most high-leverage aspects of research:

1. Problem Formulation: The most important task remains solving the right problem
and defining the research question.

2. Evaluation Design: Designing a robust and faithful evaluation framework is crucial
for success with ADRS.

10 Research Challenges and Future Directions

The lecture concluded with a discussion of open research challenges and the future trajectory
of ADRS.

Guest Speaker November 18th 8

10.1 Evaluation Infrastructure

Future work must focus on building better evaluation infrastructure:

e Problem-Specific Simulators: Developing simulators (e.g., a database simulator) that
are fast, correct, and faithful to the full system.

e Cascading Evaluators: Creating a spectrum of evaluators, ranging from fast, less accu-
rate analytical models (e.g., cost models) to slower, more accurate simulators or emulators.

e Formal Specifications: Leveraging formal specifications to automatically generate parts
of or the entire evaluation framework, accelerating the setup process.

10.2 Expanding Problem Domains

While ADRS has focused on performance, its application can be expanded to other domains,
provided the correctness can be verified:

e Correctness: Evolving solutions for concurrency control and isolation levels in databases.

e Security and Safety: Applying ADRS to optimize for security and safety properties.

10.3 Interaction Modality

The optimal interaction paradigm is an open question:

e Offline (e.g., Open Evolve): Set-and-forget, returning to check results later.

e Online (e.g., Cursor): Interactive, allowing the human to provide feedback and guide
the evolution process. The human remains in the loop, especially for trade-off decisions
(e.g., performance vs. accuracy).

10.4 Industry Potential

Industry is a promising area for ADRS due to existing infrastructure and clear performance
incentives.

e Existing Infrastructure: Companies like Meta (with CashLib) and Datadog already
possess production data and testing infrastructure that can be easily adapted for ADRS.

e Untapped Performance: ADRS can revisit manually tuned heuristics in complex sys-
tems (e.g., RocksDB’s 100-page tuning guide) to extract significant, unexploited perfor-
mance gains.

Guest Speaker November 18th 9

10.5 Automatic Problem Formulation

The long-term vision is to use Al agents to assist with automatic problem formulation.
This would involve an agent extracting desired invariants from a user’s business logic and
then generating and optimizing the corresponding code. The primary challenge here, as in
all ADRS applications, is the automatic verification of correctness.

11 Conclusion and Getting Started

To begin using an ADRS framework like Open Evolve, one needs:

1. An initial program.

2. A robust evaluator and diverse workloads.

3. A config file to provide problem context (which can be optimized using another LLM).
The speaker concluded with a personal reflection, noting the shift in research where Al can

now find solutions to year-long human problems in a fraction of the time, marking an exciting
but challenging new era for systems research.

References

[1] Audrey Cheng, et al. (2023). EPLB: FEvolving Performance Load Balancers with Al-
Driven Research Assistants. [Hypothetical Citation for the case study mentioned in the
lecture]

	Overview: AI Systems and the New Phase Change
	What Caused This Phase Change?
	Early Evidence: Applying ADRS Across Research Projects
	How ADRS Works: Automating the Systems Research Loop
	Use Case
	Why does ARDS work?
	Case Study: EPLB Optimization
	Advantages of ADRS for Performance Problems

	Counter-Intuitive Lessons Learned
	The Initial Program Baseline
	The Role of Context and Hints
	API Access Trade-offs

	The Criticality of the Evaluation Framework
	Evaluation Pitfalls

	ADRS as AI Research Assistants
	Research Challenges and Future Directions
	Evaluation Infrastructure
	Expanding Problem Domains
	Interaction Modality
	Industry Potential
	Automatic Problem Formulation

	Conclusion and Getting Started

