DSC 204A: Scalable Data Systems, Fall 2025
Lecture 13: Machine Learning Systems II

Lecturer: Hao Zhang
Scriber: Aritra Das, Sirui Cao, Yanghe Sun, Xuanwen Hua
Halicioglu Data Science Institute
University of California, San Diego
La Jolla, CA
ardas@ucsd.edu, x2huaQucsd.edu, sic038Qucsd.edu, yas029Qucsd.edu

1 Introduction

This lecture continues the discussion on Machine Learning Systems (MLSys), focusing on bridging
the gap between high-level model definitions and efficient hardware execution. The discussion covers
the evolution of deep learning frameworks, the mechanics of automatic differentiation, the layers of
the MLSys stack (graph optimization, parallelization, runtime, and operators), and an introduction to
Large Language Models (LLMs) from a systems perspective.

2 Deep Learning Frameworks and Compilation

2.1 Imperative vs. Symbolic Programming
Deep learning frameworks have historically fallen into two categories:

e Imperative (Define-and-Run): Represented by PyTorch. The computation graph is con-
structed dynamically as the code is executed. This approach offers excellent debugging
capabilities and flexibility (e.g., using Python control flow) but often sacrifices performance
due to the lack of a global graph view for optimization.

* Symbolic (Define-then-Run): Represented by TensorFlow (v1). The user defines the entire
computation graph first, which is then compiled and executed. This allows for extensive
optimizations (operator fusion, memory planning) but makes debugging difficult and the
learning curve steeper.

2.2 Just-In-Time (JIT) Compilation

Modern frameworks aim to combine the best of both worlds: the ease of imperative programming
with the performance of symbolic execution. This is achieved through Just-In-Time (JIT) compilation,
a technique central to frameworks like PyTorch and JAX.

In PyTorch 2.0, this is realized via torch.compile(). A user writes standard Python code (im-
perative), and by decorating a function with @torch.compile (), the framework extracts the code,
translates it into a symbolic graph, optimizes it (graph lowering), and compiles it into efficient
machine code. This transition moves the paradigm from "Define-by-Run" to "Define-then-Run"
during deployment, while maintaining "Define-by-Run" during development. The compiler has a
global view of the entire program, enabling significant optimizations before launching the efficient
binary code to the device.

Limitation: JIT compilation relies on static graphs. Models with dynamic control flow (where the
graph structure changes based on input data, e.g., the decode phase of LLM inference, where the
graph changes with each generated token) present challenges for static optimization because the graph

Graph Graph Graph

Acquisition Lowering Compilation
IZ';:ADX:‘:;: d ATen/Prim IR Iﬂgﬁrlnduc(or (default) powered by Triton
Your Own Backend
nvFuser
™vMm
XLA
AlTemplate
TensorRT
. snn| (mmm| [mmm
@torch.compile() 5] oy - ==
v EEN| |mEm| |mEm
def foo(x): s | conv B bixs | | I I
y = F.conv2d(x, ...) i v SEsi aasl e
z = F.batch_norm2d(y, ...) — [x]- — (emE—EEE—|EEm
return F.relu(z) + - Ems mE EEm
RelU * l I]
v nEmn am LA |
[¥] SN —EEE|—EEN
v EEE| |(EEE| |mEm
[]

Figure 1: JIT Compilation

must be re-optimized/re-compiled for changing conditions. A direct consequence of this compilation
process is that the first iteration is slow, because it is optimizing a graph, which takes a lot of CPU
time. This initial overhead is known as the "warm-up" cost. Subsequent iterations then benefit from
the optimized code

3 Automatic Differentiation (Autodiff)

To train models, frameworks must compute gradients via backpropagation. Modern systems explicitly
construct a backward computation graph that complements the forward graph.

3.1 Mathematical Formulation

Given a function y = f(x1, 9, ...), we compute gradients using the chain rule. In Reverse Mode
Autodiff, we calculate the adjoint (;) for each node v;, defined as the partial derivative of the output
y with respect to v;:
_ dy
v =
¢ (91)1'

For a node v; that acts as an input to multiple consumers v; € next(¢), the adjoint is the sum of the
partial adjoints from all consumers:

vi=)y ﬁjg—z

Jj€next(z)

3.2 Implementation Loop

Frameworks implement autodiff by traversing the forward graph in reverse topological order. The
algorithm conceptually follows these steps:

Initialize the adjoint of the output node to 1 (since % =1).
Iterate through nodes in reverse topological order.

1.
2.
3. For the current node, sum all accumulated partial adjoints to get the full adjoint.
4.

For each input (producer) of the current node, compute the partial adjoint using the local
derivative (e.g.,if z =z - v, % = y) and the current node’s adjoint.

2 (v,) (7.) y

How to derive the gradient of v,

_6172 _6v3
=T, =2 + Py =3
2 30, 3

— 0 af (vy,v3) dv af (vy,v v
T = Yy _ (2 3) 2 I (2 3) 3
a"‘1

1= 6171 6172 E)vl 6v3 6171

Figure 2: an example of reverse-mode automatic differentiation using chain rule

5. Propagate this partial adjoint to the producer’s list of gradients.

This process constructs a backward graph where nodes represent gradient computations (e.g., matrix
multiplication transpose, element-wise derivative) and edges represent the flow of gradient data.
Finally, optimizer nodes (e.g., SGD update: 6 <— § — V) are appended to the graph.

3.3 Explicit Graph Construction vs. On-the-Fly Execution

A key distinction discussed in the lecture is the evolution of autodiff implementation. Early frame-
works like Caffe performed backpropagation "on the fly"—they took the forward graph and executed
backward steps numerically without generating a new graph structure. Modern frameworks (Ten-
sorFlow, PyTorch) explicitly construct a materialized backward graph. This separation allows the
system to apply the same optimization techniques (kernel fusion, scheduling) to the backward pass as
it does to the forward pass.

4 The MLSys Stack

The "Grand Problem" of MLSys is to take a user-defined dataflow graph and execute it on a cluster of
diverse hardware (GPUs, TPUs, etc.) while maximizing speed, scalability, and memory efficiency.
This is solved via a layered optimization stack:

4.1 Graph Optimization
The system rewrites the computation graph G into an equivalent but more efficient graph G’.

* Kernel Fusion: Combining multiple operations into a single kernel to improve Arithmetic
Intensity (operations per byte of memory transfer).

* Example: In Multi-Head Attention, computing), K,V involves three separate matrix
multiplications: XWq, XWp, XWy, . A graph optimizer can fuse these into a single matrix
multiplication X W¢ kv followed by a split, reducing kernel launch overhead and memory
1/0.

* Methods of Optimization: The lecture highlighted two primary approaches to finding
efficient graph rewrites:

1. Rule-Based (Templates): Experts write specific templates (e.g., "If you see A + B +
C, replace it with D"). This is the classical compiler approach.

2. Auto-Discovery (Search): The system iteratively tries merging nodes or altering the
graph structure and benchmarking the results to discover new optimizations automati-
cally (conceptually similar to Neural Architecture Search).

* Mega Kernels: An extreme case of fusion discussed was the "Mega Kernel" approach (e.g.,
by researchers at Stanford), where the entire computation graph of a model (like Llama) is
fused into a single massive operator. While efficient, this makes the model impossible to
debug.

4.2 Parallelization
Partitioning the graph across a cluster of devices.

* Data Parallelism: Replicating the model on every worker and splitting the data.

* Model Parallelism: Partitioning the graph itself when the model is too large for a single
GPU.

* The goal is to maximize computation on high-bandwidth intra-node connections (e.g.,
NVLink) and minimize communication over slower inter-node connections (e.g., Ether-
net/InfiniBand).

4.3 Runtime and Scheduling

Orchestrating execution to minimize idle time ("bubbles") and manage memory. This involves
scheduling compute and communication to overlap whenever possible and managing tensor allocation
to prevent Out-Of-Memory (OOM) errors.

4.4 Operator Optimization
The lowest level involves writing highly optimized kernels (e.g., in CUDA) for specific hardware.

* Optimization depends on hardware characteristics: tensor core availability, precision support
(FP16, FP8, INT8), and memory hierarchy.

e Libraries like cuDNN or Triton provide optimized implementations for standard shapes (e.g.,
matrix multiplication of specific sizes), but custom shapes or operators may require bespoke
kernel implementations.

5 Q& Apart

Q1: Just-in-Time Compilation

Question:

Ideally, we want define-and-run during

We want define-then-run during .
How can we combine the best of both worlds?

Answer:

We want define-and-run during development and define-then-run during deployment.

We can combine them using Just-in-Time (JIT) compilation (e.g., PyTorch’s
torch.compile()). This allows us to write models imperatively (flexible debugging)
while compiling them into an optimized graph for efficient deployment.

Q2: The Problem with JIT

Question: What is the main limitation of JIT?

Answer: It requires (almost) static computation graphs.

Explanation:

JIT compilers work best when shapes, control flow, and operations are fixed. Typical PyTorch
code uses dynamic control flow (Python if loops) and dynamic shapes. To use JIT, we must
often rewrite or restrict code to fit a static graph, making the models less flexible and harder
to debug.

Q3: Reverse-mode AD Calculation

Question: Compute %’1 for the function below using reverse-mode AD:
y = f(z1,22) = In(z1) + z122 — sin(zs)
(Assuming inputs derived from context: v1 = 2,v9 = 5)
Answer: Define adjoints v; = % and compute in reverse topological order starting from
output vy = y.
dy
5= 99 4
7 81}7
6’07
Vg =07 —=1-1=1
Ve (V%rd (9’()6
6’U7
vy =07 — =1-(-1)=-1
U5 =01 5 (1)
8’(}6
Vg =06 —=1-1=1
V4 Vg 6’04
(%6
Va—=Vp - — =1-1=1
V3 Ve 6’(}3
0 0
Vg = 1758—22 + ’l_)48—;);1 = 1_}5 COS(’UQ) =+ U401
= (—1)cos(5) + 1(2) = 1.716
_ _ (9’U4 _ 31}3 _ _
V] = V4= + U3— = VgV + U3—
oy ovy v1
1
=1(5)+1 (5) =5.5
dy
— =71 =55
8.’E1 o

Q4: Computation Graphs in ML

Question: What is missing from the computational graph below regarding ML training?

Answer: The parameter update step (the optimizer).

Explanation:
The graph likely shows the Forward and Backward pass to compute gradients. However, MLL

training requires updating the weights 6 based on those gradients:
0+ 0—nVyL(H)

Without this optimization step (e.g., SGD), the model parameters never change.

	Introduction
	Deep Learning Frameworks and Compilation
	Imperative vs. Symbolic Programming
	Just-In-Time (JIT) Compilation

	Automatic Differentiation (Autodiff)
	Mathematical Formulation
	Implementation Loop
	Explicit Graph Construction vs. On-the-Fly Execution

	The MLSys Stack
	Graph Optimization
	Parallelization
	Runtime and Scheduling
	Operator Optimization

	Q & A part

