DSC-204A: Scalable Data Systems, Fall 2025
12: Machine Learning Systems - I

Lecturer: Hao Zhang Scribe: Junda Su, Peng Wang, Shreejith Suthraye Gokulnath, Xiaotian Shao

1 Overview

This lecture introduces the evolution of Machine Learning (ML) Systems, discussing how ideas from large-
scale data systems (e.g., Spark) inspired new architectures for distributed ML training. The design is always
focusing on specification over ML algorithms, from granular to finer tuned models, representing by MapRe-
duce, followed by Spark, till Pytorch and Tensorflow, fulfilling the different requirements in computation.

2 ML System History

The ML era began roughly around 2008, before Spark took off. Early ML workloads were extremely diverse,
covering graphical models, topic models, random forests, and linear models. They require different compu-
tation paradigms and optimization methods, which offered great opportunities for researchers at time. The
disadvantage is that there was no unified programming abstraction or runtime that could efficiently support
all these diverse workloads. So it was extremely hard for system researchers to work out a general solution
for efficient machine learning frameworks.

Gradually, the ML ecosystem evolved from diversity to unification with a few dominant models and training
paradigms as in Figure
o Iterative-Convergent Algorithms: repeatedly update parameters until convergence (e.g., gradient de-

scent, EM, coordinate descent).

e Neural Networks (Especially Transformer and LLM): Unified model architecture trained using stochas-
tic gradient descent (SGD).

3 Gradient / backward computation

Most ML models can be expressed using the iterative update rule:
0t+1 = 0,5 — HVQL(Gt, iC)

where parameters 6 are updated via gradients of the loss L. These updates must be distributed across
multiple devices to scale training.

Challenges in expressing in Spark:

e ML is too diverse; hard to express their computation in coarse-grained data transformations.

2 12: Machine Learning Systems - I

Ad-hoc: diverse model family,

optimization algos, and data

Opt algo: iterative-convergent .
More and more unified

yet scope becoming

Model family: neural nets narower and narower

Mod
CMNNs/transformers

Figure 1: Evolution of ML systems: from diverse models to unified architectures

e Very heavy communication per iteration

e Compute time : communication time = 1:10 in the era of 2012

4 Consistency in ML Systems

When distributing gradient descent across devices, a decision must be made on how and when devices
synchronize their parameters.

4.1 Strict Consistency: Bulk Synchronous Parallel (BSP)

Represented by MapReduce, Spark, and early distributed ML systems. All workers compute updates in
lock-step and synchronize at iteration boundaries.

4.2 Asynchronous Communication

Removes global barriers entirely so that workers proceed independently and communicate whenever it’s
ready. The advantage is maximize throughput while the disadvantage is there is no consistency guarantees.
There might be divergence of model parameters.

4.3 Bounded Consistency: Stale Synchronous Parallel (SSP)

It was initially proposed as a middle ground between BSP and full asynchrony. Workers are allowed to drift
up to s iterations with ”Lazy” communication - only sync when staleness violated

e Reduces communication cost.

e Trades off strict convergence guarantees for higher system throughput.

e When s = 0, equivalent to BSP; when s — 00, equivalent to fully asynchronous.

12: Machine Learning Systems - I 3

5 Parameter Server Architecture

The Parameter Server (PS) is proposed to implement distributed iterative-convergent algorithms efficiently
while supporting flexible consistency.

It’s motivated to solve the following problems:

e Heavy communication per iteration in synchronous training.

e Scalable and fault-tolerant parameter aggregation.

It’s designed with Sharded Key-Value Store and has advantages such as:

e Handles iterative-convergent algorithms efficiently.
e Reduces communication bottlenecks.

e Scales to large models and clusters.
But it also has disadvantages:

e CPU-based; difficult to extend to GPU clusters.

e Convergence slows with excessive staleness or poor synchronization.

6 Deep Learning Era: The Second Unification
With the rise of neural networks (2012-2015), ML entered the deep learning era.

e Still iterative-convergent (via SGD).
e GPUs became mainframe for training.
e Models (CNNs, RNNs, Transformers) required expressing computation as fine-grained tensor opera-

tions.

Spark’s RDD operators were too coarse-grained for this workload, leading to the development of specialized
deep learning frameworks.

7 Deep Learning Libraries and Computational Graphs

The core design of deep learning frameworks (e.g., TensorFlow, Pytorch) are based on dataflow graph and
Auto-differentiable Libraries.

And the key components inclulde:

e Model architecture: connecting math primitives to define the forward computation.

4 12: Machine Learning Systems - I

e Objective function: Defines loss (e.g., MSE, cross-entropy).
e Optimizer: Algorithm that updates parameters (e.g., SGD).

e Data: Training inputs and labels.

A typical example is TensorFlow v1 on Logistic Regression

8 After here is Xiaotian’s version of last 20 min lecture
To recap, the process involves building up a data flow graph (Figure [2) through the following steps:

1. We generate the model prediction.
2. We compute the cross entropy loss.

3. We perform automatic differentiation (Autodiff). Note that this part builds the backward graph
precisely and will be discussed in a later lecture.

4. Lastly, sess.run gets the graph to execute in the most optimal way.

1 2

assign W

y
matmult softmax] log
sub i \

w_gr‘ad(matmult- ! - L
mul transpose softmax-grad H log-grad H mul J+— 1 / batch_size

cross_entropy
—>

learning_rate 3

4

Figure 2: Data Flow Graph Behind the Code

Dissucsion
Q: What are the benefits of computational graph abstraction?

A:

e You can automatically obtain the backward pass (gradient computation), which is difficult to
implement manually.

e It is universal, regardless of how the neural network architecture changes.

12: Machine Learning Systems - I 5

Q: What are possible implementations and optimizations on this graph?
A:
e For example, you can make each operator run faster.

e You can fuse one path (combine sequential operations) to reduce I/O overhead.

e You can also distribute the computation across many devices, but you must also consider the
communication problem.

Q: What are the cons of computational graph abstraction?
A:

e No intermediate values makes debugging difficult.

e The graph is static, but neural networks are often not. However, there are ways to improve this, which
will be discussed later.

9 PyTorch, Another flavor

TensorFlow learned a lot from Spark’s design, but nowadays we prefer another framework, PyTorch, which
does not use symbolic execution. For example, we directly get the result from torch.mm. Instead, PyTorch
dynamically creates the graph and copes well with the imperative programming style used by
Python.

Symbolic vs. Imperative

Here, we simply summarize the key characteristic of symbolic and imperative programming;:

Symbolic Style: Define-then-Run.

Imperative Style: Define-and-Run.

Symbolic Programming:

— Pros: Easy to optimize. Users get a global view of the computation, making it clear where
to optimize. As a result, it can be significantly more efficient (e.g., 10 times) than imperative
programming.

— Cons: Counter-intuitive, as Python itself is imperative. It is also hard to debug and less
flexible, as you need to define the entire computation carefully beforehand.

Imperative Programming:

— Pros: More flexible and easy to program and debug.

— Cons: Less efficient and more difficult to optimize globally.

6 12: Machine Learning Systems - I

In-class Quiz

Here we categorize some famous programming languages:
e Symbolic: C++, SQL
e Imperative: Python

9.1 Something Interesting

An interesting point is that TensorFlow used a symbolic style while having Python as the primary interface
language. What happens behind the scenes is that you are essentially using a Domain-Specific Language
(DSL) built on top of Python. The PyTorch DSL is considered more ”Pythonic” than the original
TensorFlow DSL.

10 History of ML Frameworks

In history, people built different kinds of ML frameworks (Figure [3)).

e Torch was an early version using Lua.

PyTorch borrowed many ideas from DyNet and Chainer.

DMLC MXNet once had a large community but was acquired by Amazon and died in the end.

e Caffe was a very early framework before TensorFlow.

Caffe2 was an evolved version and later merged into PyTorch.

In 2024, only JAX, PyTorch, and TensorFlow survive (Figure .

After-Class Question: Why PyTorch took more market share than TensorFlow
despite being a later framework.

The lecturer gave two comments:

1. Imperative programming is more convenient, and academia prefers it.

2. It is related to compilation and will be discussed in the next lecture.

12: Machine Learning Systems - I

v
b
DyN et Tensor!
+Q+’ Caffe?
I torch i
Chainer theano
| dmic Caffe
PYTHRCH mxnet
Imperative Symbolic
Figure 3: ML Frameworks in 2016
N r\
Tensor
y A
I 4
PYTORCH
Imperative Symbolic

Figure 4: ML Frameworks in 2024

	Overview
	 ML System History
	 Gradient / backward computation
	 Consistency in ML Systems
	 Strict Consistency: Bulk Synchronous Parallel (BSP)
	 Asynchronous Communication
	 Bounded Consistency: Stale Synchronous Parallel (SSP)

	 Parameter Server Architecture
	 Deep Learning Era: The Second Unification
	 Deep Learning Libraries and Computational Graphs
	After here is Xiaotian's version of last 20 min lecture
	PyTorch, Another flavor
	Something Interesting

	History of ML Frameworks

