
DSC-204A: Scalable Data Systems, Fall 2025

1: Introduction (Cloud & Networking Foundations)

Lecturer: Hao Zhang Scribe: Felipe Lorenzi, Ryan Clement, Thuy Nguyen, Taylor Martinez

Course Context and Motivation

Where we are: This course spans three pillars of modern scalable data systems: (i) cloud & data centers, (ii)
networking primitives leading into collective communication, and (iii) distributed storage/compute with ML
workloads as recurring case studies. The first unit emphasizes networking because collective communication
for ML/HPC builds directly on these fundamentals.

Student feedback and focus: Class feedback requested more advanced, ML/LLM systems content (many
expect ≥ 30

Learning objectives for this lecture:

• Explain the evolution from Cloud 1.0 → Cloud 3.0 and why disaggregation is increasingly viable.

• Compare renting models (on-demand, reserved, spot) and the operational trade-offs they induce.

• Define core network concepts (addresses, ports, packets) and performance metrics (latency, throughput,
jitter, loss, reordering).

• Connect basic send/recv abstractions to collective communication patterns (reduce/all-reduce) used in
distributed deep learning.

Cloud Generations and Why They Matter

Cloud 1.0 (Past): Renting Whole Machines

What it is: Users rent entire, networked servers. The model offers strong isolation and conceptual simplicity,
but utilization is poor: you pay for idle capacity whenever your workload is bursty or imbalanced.

Implications: This model is easy to reason about operationally but expensive for variable or spiky work-
loads. It predates widespread virtualization.

Cloud 2.0 (Current): Virtualized Fleets

What it is: Providers virtualize servers into VMs/containers so many tenants share a physical host. Rent
resource capacity (e.g., vCPU, RAM, storage) rather than whole boxes. Compute and storage are routinely
decoupled to scale independently (e.g., compute on VMs, data on a shared store like S3).

1



2 1: Introduction (Cloud & Networking Foundations)

Implications: Cheaper than Cloud ∼ 1.0 and far more flexible (multi-tenancy, load balancing, elasticity),
but still wastes resources by forcing users to rent fixed-size “units.” Cross-node parallelism increasingly relies
on high-speed datacenter networks (100 GbE → TbE links) and hybrids of shared-disk plus shared-nothing
designs.

Figure 1: Parallelism in the Cloud (use Slide 7).

Cloud 3.0 (Ongoing Research): Fully Disaggregated & Serverless

What it is: Compute, memory, and storage are disaggregated and network-attached. The platform elasti-
cally composes the right mix per request. Users submit a function or program and provide resource hints
(e.g., CPU, DRAM). The provider manages provisioning transparently (Function-as-a-Service / serverless).

Why now? Very fast datacenter networks make remote memory/storage accesses practical at scale. For
certain workloads (e.g., online ML inference), serverless can deliver much higher utilization and significantly
lower cost (illustratively, often order-of-magnitude cheaper than spot for suitable patterns), at the price of
cold-starts, more complex scheduling, and stricter security/privacy boundaries.



1: Introduction (Cloud & Networking Foundations) 3

Figure 2: Cloud 3.0 disaggregation & serverless (Slides 8–10).

Renting Models in Practice

On-Demand. Pay-as-you-go; most flexible; highest unit cost. You are guaranteed the node while you pay.

Reserved. Commit to capacity & term (months/years) for discounts. Good for steady-state fleets; less
flexible for changing needs.

Spot/Preemptible. Deep discounts for spare capacity that can be reclaimed by the provider at any time.
Best for fault-tolerant jobs with checkpointing/migration.

Microservices vs. Cloud 3.0

Microservices represent a key trend in modern cloud computing, often associated with what is called ”Cloud
3.0.” This architectural approach breaks applications into smaller, loosely coupled services that are indepen-
dently deployable and highly scalable, making it easier to allocate computing resources flexibly for different
users and workloads.

While microservices offer significant advantages in terms of agility and scalability compared to traditional
monolithic architectures, they can still be challenging to coordinate due to the complexity of managing many
independent components.



4 1: Introduction (Cloud & Networking Foundations)

Figure 3: Spot vs. On-Demand trade-offs (Slides 10–11).

Advantages and Disadvantages (At a Glance)

• Cloud 1.0: + Simple, strong isolation; − Expensive (idle waste).

• Cloud 2.0: + Cheaper than 1.0; − Some resource waste persists due to fixed unit sizes.

• Cloud 3.0: + Often cheapest (utilization wins); − Cold starts; security/privacy complexity; harder
operations.

Ecosystem and Strategic Notes

Stack view. Hardware → cloud infrastructure → platforms (e.g., data services) → applications (e.g., web
apps, LLM-backed services). In today’s “AI-heavy” landscape, a large share of immediate value accrues
to hardware vendors and clouds, with applications racing to improve utilization and unit economics. This
hierarchy technology hierarchy can be found reflected in the profit chain of Silicon Valley.



1: Introduction (Cloud & Networking Foundations) 5

Figure 4: Profit chain (Slide 15).

Trends. Capacity is scarce for top-tier accelerators; large users increasingly reserve long-term fleets. Some
organizations are exploring on-prem “supercomputer-style” builds to better control cost and dependency.

Architecture & culture. The lecture highlights that microservice-centric organizations aligned naturally
with the rise of disaggregated services. As an open question, students are asked why AWS (and even
Azure) outpaced GCP in market share despite Google’s historical systems leadership; one suggested factor
is organizational architecture and productization around microservices.

Figure 5: Today’s cloud trend: disaggregated resources and services (Slide 20).



6 1: Introduction (Cloud & Networking Foundations)

From Cloud to Networking

A ChatGPT Request as a Motivating Example

A single user request may traverse DNS, internet paths, load balancers, and GPU-backed compute nodes;
responses may stream tokens while accessing caches or storage. This end-to-end path underscores why
networking performance is a first-order concern for ML systems and cloud services.

Figure 6: “What’s in a ChatGPT query?” (Slide 23).

Why Networking Matters

Nearly all modern apps are networked, with a significant fraction of functionality running remotely in provider
data centers. Connectivity problems and datacenter incidents manifest directly as user-visible failures. The
OS and datacenter stack therefore prioritize robust connectivity, throughput under load, and predictable
latency for quality of service.

Networking Basics

Hardware and Identifiers

NICs: A network interface card/controller connects a host to the network.

Addresses: Each NIC has a hardware MAC address (48-bit). Hosts are also assigned IP addresses (IPv4
or IPv6), and user-space processes are identified by port numbers at transport endpoints. A connection is a
channel between two processes, identified by a tuple including ports.



1: Introduction (Cloud & Networking Foundations) 7

Figure 7: Network communication (Slide 27).

Links, Switching, and Multiplexing

At scale, we share link capacity among many flows using switches. Historically, circuit switching reserved
a dedicated path for each session (telephone-era). Modern packet-switched networks instead split messages
into packets (bounded-size frames with headers/trailers) that carry source/destination/type and payload;
switches forward each packet independently (store-and-forward), keeping links busy whenever there is traffic.

Figure 8: Packet switching (Slide 35).

Congestion, Buffers, and Control

Each link has finite bandwidth. Switch/host ingress buffers absorb bursts, but when queues overflow, packets
are dropped. Rising losses trigger congestion control at senders to back off rates until aggregate load matches
available resources. This dynamic explains phenomena like “Wi-Fi collapse” in dense venues when buffers
and links saturate.

Figure 9: Buffering and congestion control under overload (Slide 38).



8 1: Introduction (Cloud & Networking Foundations)

Performance Metrics and Delay Components

Latency: (time to first bit),
Throughput/capacity: (bits/s),
Jitter: (variation in latency),
Loss/reliability: (drop rate),
Reordering: characterizes network behavior.

End-to-end delay is the sum of:

• Propagation delay (distance-limited per hop),

• Transmission delay (packet size / link speed),

• Processing delay (router/switch speed),

• Queuing delay (load and queue size dependent).

Figure 10: Packet delay components (Slide 40).

Worked Example: Latency and Effective Throughput

A back-of-the-envelope calculation illustrates latency dominance for small transfers across long distances.
With an illustrative cross-country path of ≈ 5 × 106 m and propagation ≈ 2 × 108 m/s (fiber), one-way
propagation is ≈ 25 ms (RTT ≈ 50 ms). For 100 Mbps link rate and 10 kbit packets, transmission is
≈ 0.1 ms, negligible against propagation. Effective throughput for a single-packet exchange with an ACK
can thus be only ∼ 200 kbit/s, limited by RTT rather than nominal link speed.



1: Introduction (Cloud & Networking Foundations) 9

Figure 11: Simple RTT and throughput example (Slide 42).

Layering and End-to-End Abstractions

A canonical five-layer model (Physical, Datalink, Network, Transport, Application) provides common ab-
stractions. The lower three layers exist on all network elements; the top layers live at hosts. Each layer
speaks to its peer via well-defined headers and semantics, allowing applications to rely on simple APIs while
the stack handles reliability, routing, and flow control.

Figure 12: Five-layer network stack (Slide 43).

Programming Model: Point-to-Point to Collectives

Point-to-Point (P2P) Send/Recv

At the application level, a basic model is one sender and one receiver, with corresponding send() and recv()

operations and receive buffers. In distributed runtimes like Ray, a straightforward baseline is to put data into
an object store and send a reference for the receiver to get. This baseline is simple but adds an extra hop
through the store, which can double latency; an optimization path is to approach direct process-to-process
transfers.



10 1: Introduction (Cloud & Networking Foundations)

Figure 13: P2P communication with Ray (Slide 45).

Case Study: Gradient Aggregation in Distributed ML

In data-parallel training, P workers compute gradients on different data shards and must aggregate them
to update the global model parameters. A naive “funnel” design that routes all gradients into a single node
and then fans out the result creates a hotspot both inbound and outbound.

We can see this in figure 14, where even though we only need to generate the gradient once, out worker node
still needs to send this updated gradient to all previous nodes, which represents the ”funnel” bottleneck
previously mentioned

Figure 14: Collective Primitive Reduce and why naive aggregation bottlenecks (Slides 47–50, 52–53).

Collective Primitives: Reduce and All-Reduce

Reduce: Each worker sends its gradient; the receiver aggregates (e.g., sum) and produces a single result.
Message cost with a single aggregator is roughly 3N for N inputs (N sends into, one result out to N? —
motivating better patterns).



1: Introduction (Cloud & Networking Foundations) 11

All-Reduce: Every worker needs the aggregated result. Structured collectives (e.g., tree- or ring-based)
avoid a central hotspot by arranging communication so each participant contributes/receives partial results
in rounds, improving scalability over the naive design.

Figure 15: Motivation for all-reduce in synchronized training (use Slide 54).

Operational Takeaways

• Utilization dominates cost: Disaggregation + fast networks enable serverless patterns that squeeze
idle time, often lowering cost materially for the right workloads.

• Choose renting models by risk tolerance: On-demand is simple but pricey; reserved trades
flexibility for savings; spot offers lowest price if you can tolerate preemption (checkpoint/migrate).

• Performance is pipeline-limited: Throughput follows the slowest link/stage; latency has immutable
components (speed-of-light propagation).

• From send/recv to collectives: Understanding P2P costs clarifies why structured collectives (re-
duce, all-reduce) are essential in ML training backends.

Checklist / What You Should Be Able to Do After This Lecture

• Sketch the three cloud generations and articulate pros/cons of each.

• Given a workload description, pick a plausible renting model and justify it.

• Decompose end-to-end latency into propagation, transmission, processing, and queuing; identify when
RTT dominates.

• Explain how packetization, buffering, and congestion control interact under load.

• Describe why naive gradient aggregation hotspots appear and how all-reduce mitigates them.



12 1: Introduction (Cloud & Networking Foundations)

Glossary (Selected)

Disaggregation: Separating compute, memory, and storage into network-attached pools that can be re-
combined elastically. Serverless / FaaS: A model where users submit functions and the platform handles
provisioning; billing generally tracks fine-grained usage. On-Demand / Reserved / Spot: Three broad
renting paradigms with a price–flexibility–risk trade-off. NIC (Network Interface Card): Hardware that
connects a host to the network and exposes MAC/IP addressing to the stack. Latency / Throughput /
Jitter / Loss: Standard metrics for network performance and quality. Reduce / All-Reduce: Collective
communication patterns for aggregating values across many workers.


