
DSC-204A: Scalable Data Systems, Fall 2025

9: Parallelism

Lecturer: Hao Zhang Scribe: Yu Han, Yifei Chen, Yuchen Xiong, Jingwen Zhang

1 Parallelism

Parallel computing addresses the central issue that workloads take too long for a single processor
by splitting the workload across multiple processors or workers, following the classic “divide and conquer”
principle. In data systems, there are several key parallelism paradigms, including task parallelism, data
parallelism, and hybrid parallelism, each corresponding to different ways of organizing data and func-
tions:

• Task parallelism uses shared or replicated data while partitioning the function. In other words, all
workers access the same dataset (or a copy of it), but different workers execute different tasks or parts
of the computation.

• Data parallelism uses shared or replicated functions while partitioning the data. This means each
worker runs the same task or model but operates on different subsets of the data.

• Hybrid parallelism combines both data and function partitioning, allowing different workers to
handle different data and different functions at the same time for better scalability and flexibility.

1.1 Terminology

In system architecture, different domains use different terminologies: SIMD (Single Instruction Multiple
Data), MIMD (Multiple Instruction Multiple Data), and SIMT (Single Instruction Multiple Threads) de-
scribe single-node multi-core execution, while distributed systems focus on multi-node, multi-core clusters.

In machine learning, data parallelism distributes data across workers running the same model, whereas
model parallelism partitions the model itself into different components that are processed in parallel.
Depending on how the model is partitioned, model parallelism can be further categorized into:

• Inter-operator parallelism: Different operators (e.g., layers or modules in a neural network) are
assigned to different devices or workers.

• Intra-operator parallelism: The computation within a single operator is further partitioned and
parallelized across multiple devices or workers.

This distinction allows model parallelism to scale to larger models and make better use of hardware resources.

1



2 9: Parallelism

2 Task parallelism

In task parallelism, different tasks are assigned to different workers, which can be cores, threads, or
entire nodes.

Advantages:

• Conceptual simplicity: The idea of assigning separate tasks to different workers is straightforward
and easy to understand.

• Low software complexity: Since workers can operate relatively independently, the overall system
design and implementation can be simpler compared to other parallelism strategies.

Disadvantages:

• Difficult to implement: Tasks must often be topologically sorted to respect dependency constraints
in the task graph, and efficiently scheduling tasks across heterogeneous workers can be non-trivial.

• Potential idle time: Idle time may occur when tasks have uneven execution times or when the number
of available tasks is smaller than the number of workers, leading to underutilization of resources.

2.1 Degree of parallelism

A central concept in task parallelism is the degree of parallelism, which represents the maximum number
of tasks that can be executed concurrently at any given point. Increasing the number of workers beyond
this degree does not lead to additional performance gains because there are no extra tasks that can be
run in parallel. This makes efficient scheduling and workload balancing critical to achieving good parallel
performance. Basic idea. Split up tasks across workers. If tasks read the same dataset, make copies of the
dataset to each worker (aka replication) to avoid read-time contention and remote I/O.

Setup. Given three workers (W1, W2, W3) and a task DAG:

T1 → T4 → T6, T2 → T5 → T6, T3 → T6,

all reading the same dataset D.

Step-by-step schedule (as in the slide).

1. Replicate data: Copy the whole dataset D to all workers.

2. Parallel wave 1: Run T1 on W1, T2 on W2, T3 on W3 (three tasks in parallel).

3. Parallel wave 2 (respecting dependencies):

• After T1 finishes, run T4 on W1.

• After T2 finishes, run T5 on W2.

• After T3 finishes, W3 becomes idle (no ready successors for T3 except T6, which also depends
on T4 and T5).

4. Final wave: After T4 and T5 both finish, run T6 (e.g., on W1). During this time, W2 (and W3) are
idle.



9: Parallelism 3

Why idleness occurs. Even with three workers, the degree of parallelism is not constant across time:

• In the first wave, three independent sources (T1, T2, T3) permit full utilization.

• In later waves, the DAG limits concurrency (only T4 and T5 are ready; T6 requires both to finish), so
at least one worker must be idle.

This illustrates two common realities of task parallelism: (i) replication enables local reads to keep early waves
fast; (ii) dependency structure, not just the number of workers, ultimately bounds achievable parallelism
and can create idle periods. Quantifying the Benefit of Parallelism: Speedup

2.2 Speedup

The speedup of a parallel system is defined as:

Speedup =
Completion time with 1 worker

Completion time with n workers
.

Ideally, speedup increases linearly with the number of workers n (e.g., doubling the number of workers halves
the runtime). However, in practice, the achievable speedup is constrained by several key factors:

• The degree of parallelism, which limits how many tasks can actually run concurrently at each stage.

• The task dependency graph structure, which may force some tasks to wait for others to finish.

• Intermediate data sizes and communication overhead, which can reduce effective parallel effi-
ciency.

These constraints are well captured by Amdahl’s Law, which expresses the theoretical maximum speedup
as:

S(n) =
1

(1− p) + p
n

,

where p is the parallelizable portion of the workload, and (1− p) is the serial portion.

Even if n → ∞ (infinite processors), the speedup is limited by:

lim
n→∞

S(n) =
1

1− p
.

This means that the serial part of the computation imposes a hard upper bound on parallel performance.
Therefore, simply increasing the number of workers does not guarantee linear speedup.

2.3 Weak and Strong Scaling

Scaling behavior can be analyzed in two ways.

Strong scaling refers to fixing the total data size and increasing the number of workers, observing how the
runtime decreases. Under ideal conditions, strong scaling achieves linear speedup:

S(n) = n.



4 9: Parallelism

Weak scaling involves increasing both data size and the number of workers proportionally and observing
whether the runtime remains constant.

In reality, sublinear speedup is common because of synchronization costs, data transfer overhead, and
serial computation bottlenecks.

An interesting phenomenon is superlinear speedup or scaleup, where the observed speedup exceeds the
number of workers. This can occur when adding more workers improves memory locality, reduces cache
misses, or decreases overhead in specific tasks such as language model inference. For example, using 4
workers may result in a 5× or 6× speedup, exceeding the linear expectation.

2.4 Idle Time in Task Parallelism

In any parallel setup, you first want to quantify what causes idle time, periods when some workers sit
idle while others are still busy. Reducing idle time improves overall utilization, leading to lower costs and
higher efficiency.

Idle time appears because task completion times differ and workloads exhibit varying degrees of parallelism.
These unused periods are often visualized in Gantt charts as gray segments called bubbles.

To study them, we assign six tasks (T1–T6) to three workers (W1–W3):

• Each task has its own processing time (not all equal).

• The x-axis represents time; the y-axis represents workers.

Assigning a task to a worker is known as the placement problem.

• W1: Executes T1 (10 units) → unblocks T4 (5 units). T6 must wait until T5 finishes.

• W2: Runs T2 (5 units) → unblocks T5 (20 units).

• W3: Handles T3 (3 units) → then mostly idle.

Bubble = idle time between tasks.

Our goal is to design better placement and partition schemes to minimize bubbles. In machine-learning
systems, bubble minimization can even be formalized as an optimization problem.



9: Parallelism 5

2.5 The Critical Path

In general, total completion time for a task-parallel workload is lower-bounded by the longest path in
its task graph, which is the critical path.

• Optimizing the critical path removes bottlenecks.

• In debugging distributed systems, always identify and shorten the critical path to cut runtime.

Example:

• Sequential completion = 65 units

• Parallel (3 workers) = critical-path length = 5 + 20 + 10 = 35 units

• Speedup = 65
35 ≈ 1.9×

This sublinear speedup reflects idle bubbles and dependency limits.

3 Data Parallelism

Modern ML frameworks (Transformers, GPT) parallelize entire data-flow graphs across GPUs. Each
worker holds:

• An identical copy of model weights

• A distinct partition of data (D1, D2, D3)

During training:

1. Each worker performs forward + backward passes locally.

2. Gradients are synchronized via all-reduce.

3. The next iteration begins.

In simpler, non-ML systems (e.g., Spark, Ray, Hadoop), each worker processes its data shard independently
and writes results to disk for later aggregation and no synchronization needed.

Speedup formula remains:

Speedup =
Completion time (1 core)

Completion time (n cores)

3.1 Amdahl’s Law

Even with unlimited cores, speedup is capped by the serial portion of the program.

Let



6 9: Parallelism

• Tyes: parallelizable portion

• Tno: serial portion

• f = Tyes/Tno

Then:

Speedup =
n(1 + f)

n+ f

Implications:

• Even 95% of code parallelizable ⇒ speedup ≤ 20×

• Beyond that, adding cores yields diminishing returns.

• Helps estimate realistic limits before allocating more workers.

Efficient parallel systems aren’t just about adding more workers. They depend on how tasks are divided, how
data is partitioned, and how dependencies are handled. Idle bubbles waste compute; critical paths define
limits. Even perfect code hits the ceiling set by Amdahl’s Law, so understanding these fundamentals is key
to designing scalable ML and distributed systems.

4 Hardware Parallelization

4.1 Built-in Data Parallelism in Modern Processors

At the lowest level of a computer, parallel processing is already built into the CPU. Single-Instruction
Multiple-Data (SIMD) is a norm in processor community. The programs your operating system submits to
the chip are actually executed in parallel. Adding more ALUs is the main theme of chip design in the past
30 years.

Notion Full Name Description
SIMD Single Instruction, Multiple

Data
One instruction operates on multiple
data elements simultaneously (vector-
ized execution).

SIMT Single Instruction, Multiple
Threads

Extends SIMD to multiple threads.
Each thread may be assigned a core or
processing unit.

SPMD Single Program, Multiple Data Higher-level abstraction generalizing
SIMD; each thread/process runs the
same program on different data chunks.

Table 1: Comparison of SIMD, SIMT, and SPMD Parallel Processing Notations

4.2 The Post–Moore’s Law Era

But we are approaching the limits of Moore’s Law. Apple is already producing chips using a 3 nm process,
and if we try to make ALUs even smaller, we’ll enter the quantum realm—where an entirely new computer



9: Parallelism 7

Figure 1: we are approaching the limits of Moore’s Law

architecture will be required. Moreover, we can’t simply add more ALUs either, since power consumption
and heat dissipation impose physical constraints on computational power.

4.3 Specialized Hardware for Enhanced Computational Power

4.3.1 GPU

The space for cache is difficult to squeeze. But we can reduce the space for control units. This makes the
chip less universal but more specialized and powerful for specific types of computations. This is basically
the design philosophy behind GPUs. As shown in Figure 2, the control unit and L1 cache are shared
among a group of ALUs, thereby increasing the degree of data parallelism. This design enables GPUs to
achieve significant acceleration in matrix computations. In the era of image processing, 3D rendering, and
machine learning, most computations are highly parallelizable and simple, making this architecture especially
effective.

Figure 2: Comparison of CPU and GPU



8 9: Parallelism

4.3.2 NVIDIA and CUDA

The design of GPU was popularized by NVIDIA in early 2000s for video games, graphics, and multimedia,
and now ubiquitous in Deep Learning.

NVIDIA released CUDA in 2007, followed by a series of higher-level libraries and APIs such as cuDNN (for
CNN), cuSPARSE (for sparse tensors), cuDF (RAPIDS AI), NCCL (for communications), CUTE.

4.3.3 TPU

The design of the Tensor Processing Unit (TPU) follows a similar rationale to that of the GPU. For example,
Google removes most of the control logic and focuses on building tensor cores that are optimized exclusively
for tensor computations, as these are the primary workloads in deep learning.

The development trajectory of processing units has evolved from first minimizing the size of Arithmetic Logic
Units (ALUs), to then reducing the area occupied by control units. This leads to the creation of increasingly
specialized processing units that target specific workloads, thereby achieving higher computational efficiency.

There are several ways to specialize a processing unit:

• Designing specialized ALUs for tensor computations;

• Combining heterogeneous specialized cores;

• Reducing the precision of floating-point numbers;

• Optimizing the balance between memory capacity, bandwidth, and processing power.

Compared with other types of processors, GPUs offer superior computational throughput but are generally
less power-efficient.

4.4 Case Study

4.4.1 Nvidia GPU Specifications

To achieve higher computational performance, some Nvidia GPUs are specialized for handling low-precision
floating-point operations, while others are optimized for matrix computations with the so-called “224” spar-
sity pattern. As illustrated below, such matrices contain two non-zero and two zero values within each orange
block. Although this kind of sparsity is difficult to obtain naturally in machine learning, the robustness of
modern ML models allows for reduced numerical precision in exchange for substantially higher computational
throughput.

4.4.2 Apple Silicon

Apple’s M-series chips are also highly specialized. They integrate both CPU ALUs and GPU ALUs onto a
single die. CPU ALUs are designed for general-purpose computations, whereas GPU ALUs are optimized for
tensor-based workloads. By sharing the same power and memory infrastructure between these two domains,
Apple effectively balances graphical and general-purpose processing performance. The M-series chips are
actually powerful enough to run models such as LLaMA on a single laptop.



9: Parallelism 9

Figure 3: 224 sparsity

Since Apple designs both the hardware and the operating system, it can perform deep co-optimization
between the two. This allows the chip to intelligently direct operating system tasks to the most suitable
cores for execution, thereby maximizing performance while minimizing power consumption.

4.4.3 Leading Chip Startups

Due to the increasing demand from deep learning (DL) and machine learning (ML) workloads, many startups
are developing chips that are even more specialized than GPUs, achieving superior performance in certain
highly specific applications. Three startups are particularly noteworthy:

• groq: Develops chips that are claimed to be up to ten times faster than Nvidia GPUs in large language
model (LLM) inference.

• cerebras: Produces chips specifically designed for machine learning workloads.

• SambaNova: Innovates not only in chip design but also in the system-level integration of hardware and
software for enterprise customers such as banks, with a strong focus on machine learning applications.


