
DSC-204A: Scalable Data Systems, Fall 2025

10: Batch Processing, MapReduce

Lecturer: Hao Zhang Scribe: Tanvi Joshi, Sara Chaudhari, Sreetama Chowdhury, David Lurie

1 Two Primary Problems in Big Data Processing

1.1 Data Distribution

• How to distribute data among storages across computers in a cluster.

1.2 Compute Distribution

• Once data is distributed, the challenge is to coordinate computing functions across nodes and cores.

• This is the focus of the lecture (batch vs streaming).

2 Computing Paradigms

In distributed computing, two main paradigms:

2.1 Batch Processing (Offline)

• Operates on fixed input data known ahead of time.

• Processes the entire dataset and produces results once.

• Not sensitive to latency.

• Example: Printing papers, running benchmarks on 100 test cases.

2.2 Streaming Processing (Online)

• Responds to data as it arrives.

• Must handle requests quickly (e.g., user query in chat system).

• Focus on low latency and continuous availability.

• Example: GPT query service, online recommendation engine.

• Includes SLOs (Service Level Objectives) for response time.

1

2 10: Batch Processing, MapReduce

3 Metrics for Distributed Systems

When building large-scale systems, four core metrics are considered:

3.1 Scalability

• If more nodes are added, does performance increase (linearly or approximately)?

• Measures system growth efficiency (weak vs strong scaling).

3.2 Consistency and Correctness

• Ensures reading/writing data produces correct, up-to-date values.

• Requires synchronization → extracommunication→ slowerperformance.

• Trade-off: High consistency reduces scalability.

3.3 Fault Tolerance / High Availability

• In large clusters, failures are expected.

• System should continue without losing data or availability.

• Goal: Failures isolated and recovered quickly.

• Excessive communication can harm fault tolerance.

3.4 Latency and Throughput

• Latency: Response time for a single request.

• Throughput: Number of requests processed per unit time.

• Often a trade-off depending on application type (interactive vs batch).

4 Batch Processing

4.1 Basic Computing System Paradigm

• Every computing system follows the pattern: Input → Process→ Output.

• Applies to single machines and distributed clusters alike.

• Difference between batch and streaming lies in when and how data is processed.

• Batch: Fixed dataset, offline.

• Streaming: Continuous input, near real-time processing.

10: Batch Processing, MapReduce 3

4.2 Batch Processing in Unix Systems

4.2.1 Unix as the First Batch Processing System

• Early operating systems used batch commands for data processing.

• Unix provides primitive functions (chained by pipes) to form a pipeline.

4.2.2 Common Unix Commands

• File management:

mkdir, rm, mv, cp, cd, du, df

• Text processing:

cat, sort, uniq, tr, sed, awk

• Compression/Info:

gzip, tar, zip, uname, date, cut

• Help command:

man <command>

for manual pages.

4.2.3 Example Command Pipeline

• cat dups.txt | sort | uniq

Reads dups.txt, sorts the content, filters duplicates.

• cat z.txt | tr a e

Replaces ‘a’ with ‘e’ in file z.txt.

• Each command acts as a primitive processing function.

• Pipes (—) connect the output of one command to the input of another.

• These pipelines can be composed and debugged by inspecting intermediate outputs.

4 10: Batch Processing, MapReduce

4.3 Data Flow View of Unix Pipelines

• Each command = processing function (node).

• Arguments = input data.

• Pipes = edges connecting nodes.

• Forms a directed data flow graph.

• Design idea: Primitive operators that compose into a larger pipeline.

4.4 Example of Batch Processing with Unix Tools

• Read log file.

• Split lines into fields (by whitespace).

• Output 7th element (requested URL).

• Alphabetically sort results.

• Filter duplicates (uniq).

• Sort again numerically (-n).

• Output first five lines (head -n 5).

• Each step is a transformation in the pipeline.

• Data flows through a series of modular processing components.

4.5 Limitations of Unix Batch Tools

• Designed for small data on a single machine.

• Cannot scale to large-scale distributed data.

• Led to development of modern big-data frameworks such as: MapReduce and Spark

• These systems extend the same data-flow paradigm but execute on multi-node clusters with parallelism
and fault tolerance.

5 MapReduce

5.1 History of MapReduce / Hadoop

• Early 2000s clusters paired compute and storage on each node.

– CPU: few-core Intel processors.

– Memory: ∼32 GB.

– Local storage: 1–2 disks.

10: Batch Processing, MapReduce 5

• Network: ∼10 Gb/s within rack, ∼100 Gb/s across racks.

• Compared to today’s NVLink (400+ Gb/s) or InfiniBand, these were very slow.

• Systems were designed to read data from local disks and avoid expensive inter-node communication.

• Design principle: move computation to data, not data to computation.

• Hardware capabilities historically drive software system design.

• 20 years ago, goal: make many slow unreliable machines work together instead of a single supercom-
puter.

• This philosophy led to Google’s MapReduce model and the open-source Hadoop implementation.

(Figure – Compute + Storage Nodes connected via Network, Slide 15.)

5.2 Data-Intensive System Challenge

• Example: computation accessing 1 TB in 5 minutes.

• A single HDD ≈ 100 MB/s read speed. ⇒ need ≈ 100 disks in parallel.

• Each machine ⇒ 1 disk ⇒ 100 processors + 100 disks.

• Machines must be co-located to minimize cross-network traffic.

• Requirements:

– Many disks and processors.

– High-speed local network.

• To achieve near-interactive performance, cluster design must reduce communication cost.

• These design pressures motivated MapReduce a programming model that coordinates many mediocre
nodes for large-scale data processing.

6 10: Batch Processing, MapReduce

5.3 Hadoop Project

• Hadoop combines distributed storage and computation.

• HDFS (Hadoop Distributed File System):

– Files are split into blocks and replicated (default: 3 copies).

– Failure of a node does not cause data loss.

– Scheduler runs tasks where the data resides (locality optimization).

• MapReduce environment:

– Executes tasks on nodes.

– Manages fault tolerance, retries, and load balancing.

(Figure – Local Network with CPU Nodes and Map/Reduce Environment, Slide 17.)

5.4 Count the Number of Occurrences of a Word

• Task: count occurrences of each word across a collection of documents.

• Historical context: before embeddings (2014), web search relied on TF–IDF.

– TF (Term Frequency): frequency of a word within a document.

– IDF (Inverse Document Frequency): penalizes very common words.

• High TF–IDF word important in one document but rare in others.

• Google computed TF–IDF for every webpage massive parallel task.

• MapReduce made this computation feasible at web scale.

5.5 Data Models

• Each document is treated as a record.

• Goal: create a word index mapping words → frequency across all documents.

• Map: tokenizes text into 〈word, 1〉 pairs. Reduce: aggregates counts per word.

10: Batch Processing, MapReduce 7

5.6 MapReduce Example

• Goal: create a word index of a set of documents.

• Input documents:

1. Come, Dick

2. Come and see.

3. Come, come.

4. Come and see.

5. Come and see Spot.

• Each document is processed independently by a Map function.

• The Map phase scans and tokenizes text, emitting intermediate pairs 〈word, 1〉 for each word occur-
rence.

• These pairs are the fundamental key–value elements that will later be grouped and reduced.

• After mapping, system performs Shuffle / Group step: all emitted pairs with the same key (word) are
sent to the same reducer.

• Reduce phase: each reducer aggregates all counts for a key.

• Example output:

Word Count
dick 1
and 3
come 6
see 3
spot 1

• Functional pattern:

– Map: generate 〈word, count〉 pairs for all words in documents.

– Reduce: sum word counts across documents.

• Each function is stateless → no shared memory, easy parallelization.

• Demonstrates complete MapReduce dataflow: many mappers feed into fewer reducers for global ag-
gregation.

8 10: Batch Processing, MapReduce

(Figure – Map → Shuffle → Reduce Pipeline for Word Count, Slide 25.)

5.7 Discussion

• MapReduce system handles task distribution, scheduling, and fault tolerance.

• User defines only two interfaces: map() and reduce().

• Operates entirely on 〈key, value〉 pairs; keys and values may be any type.

• Applicable to text, logs, images, graphs—any data that can be represented as key–value pairs.

• Performance depends on how map/reduce functions are designed (e.g., shuffle cost, data balance).

• Key idea: MapReduce abstracts away complex system logic and provides a simple, flexible program-
ming model for large-scale data processing.

5.8 Execution

MapReduce execution involves processing partitioned input files into the desired results. The components
are:

• input files: data is partitioned into blocks and stored on different nodes

• task manager: schedules mapper and reducer tasks

• mapper: each mapper processes input blocks, transforming it into key-value pairs

• shuffle: collect data from mappers and distribute across reducers

• reducer: receives subset of data and executes reduce action

• final results: stored in distributed storage

10: Batch Processing, MapReduce 9

5.8.1 Mapping

• each mapper reads input file blocks, generates key-value pairs < K,V >, and writes to a (intermediate)
local file

• a hash function h maps each key K to an integer i s.t. 0 ≤ i ≤ R (R is the number of local files)

• each mapper creates R files, one for each reducer

5.8.2 Reducing

• each reducer is given 1 of the R key values to process

• the reducer function is executed

• output values are written to parallel file system

In sum, MapReduce consists of reading a set of files from a file system and producing a new set of files.

5.9 Dataflow

5.9.1 Sparse Matrix Multiplication Example

Matrix multiplication with sparse matrices is common but can be difficult to parallelize efficiently.

A =

10 0 20
0 30 40
50 60 70

 , B =

−1 0
−2 −3
0 −4



C = A×B =

 −10 −80
−60 −250
−170 −460


Goal: Compute C = A ·B using sparse representations.

1. Represent each matrix as a list of nonzero entries in the form

⟨row, col, value,matrixID⟩

Example: ⟨1, 1, 10, A⟩.

2. Compute all products ai,k · bk,j .
Group by shared index k:

k = 1

10 · (−1) = −10→ c1,1, 50 · (−1) = −50→ c3,1

k = 2

10 10: Batch Processing, MapReduce

30 · (−2) = −60→ c2,1

30 · (−3) = −90→ c2,2

60 · (−2) = −120→ c3,1

60 · (−3) = −180→ c3,2

k = 3

20 · (−4) = −80→ c1,2

40 · (−4) = −160→ c2,2

70 · (−4) = −280→ c3,2

3. Sum partial products for each output entry.

c1,1 : − 10

c1,2 : − 80

c2,1 : − 60

c2,2 : − 90− 160 = −250

c3,1 : − 50− 120 = −170
c3,2 : − 180− 280 = −460

C =

 −10 −80
−60 −250
−170 −460



6 Beyond MapReduce

6.1 MapReduce System Architecture

(Figure – Diagram from original MapReduce paper, slide 44.)

10: Batch Processing, MapReduce 11

6.2 Map/Reduce Summary

• Typical Map/Reduce applications

– Most are sequences of steps, each of which require a map and a reduce and are a series of data
transformations

• Strengths

– User-written functions are very simple – it’s up to the system to manage the complexities of things
like mapping, synchronization, fault tolerance

– General and good for large-scale data analysis

– First successful system behind ”big data”; many companies worked on variations of MapRe-
duce/Hadoop with specific applications in the 5-10 years after its publication

• Cons

– Disk I/O overhead is super high (the way the mapper and reducer must communicate is reading
and writing from local disks, to maintain fault tolerance – this slows the process down, especially
in longer/more complicated pipelines)

– Inflexible (each step must be completed before the next one)

• Not suitable for workloads (iterative and real-time processing)

• Still difficult to program with

6.3 PageRank Computation

• Initially assign a weight of 1.0 to each page

• Iteratively select an arbitrary node and update its value

• They converge to unique results regardless of selection ordering

12 10: Batch Processing, MapReduce

(R1 ← 0.1 + 0.9(
1

2
R2 +

1

4
R3 +

1

3
R5).

Slide 48.)

Question: How to express PageRank using MapReduce?

