DSC-204A: Scalable Data Systems, Fall 2025
10: Batch Processing, MapReduce

Lecturer: Hao Zhang Scribe: Tanvi Joshi, Sara Chaudhari, Sreetama Chowdhury, David Lurie

1 Two Primary Problems in Big Data Processing

1.1 Data Distribution

e How to distribute data among storages across computers in a cluster.

1.2 Compute Distribution

e Once data is distributed, the challenge is to coordinate computing functions across nodes and cores.

e This is the focus of the lecture (batch vs streaming).

2 Computing Paradigms

In distributed computing, two main paradigms:

2.1 Batch Processing (Offline)

e Operates on fixed input data known ahead of time.
e Processes the entire dataset and produces results once.
e Not sensitive to latency.

e Example: Printing papers, running benchmarks on 100 test cases.

2.2 Streaming Processing (Online)

e Responds to data as it arrives.

e Must handle requests quickly (e.g., user query in chat system).
e Focus on low latency and continuous availability.

e Example: GPT query service, online recommendation engine.

e Includes SLOs (Service Level Objectives) for response time.

2 10: Batch Processing, MapReduce

3 Metrics for Distributed Systems

When building large-scale systems, four core metrics are considered:

3.1 Scalability

e If more nodes are added, does performance increase (linearly or approximately)?

e Measures system growth efficiency (weak vs strong scaling).

3.2 Consistency and Correctness

e Ensures reading/writing data produces correct, up-to-date values.
e Requires synchronization — extracommunication — slowerper formance.

e Trade-off: High consistency reduces scalability.

3.3 Fault Tolerance / High Availability

e In large clusters, failures are expected.
e System should continue without losing data or availability.
e Goal: Failures isolated and recovered quickly.

e Excessive communication can harm fault tolerance.

3.4 Latency and Throughput

e Latency: Response time for a single request.
e Throughput: Number of requests processed per unit time.

e Often a trade-off depending on application type (interactive vs batch).

4 Batch Processing

4.1 Basic Computing System Paradigm

e Every computing system follows the pattern: Input — Process — Output.

e Applies to single machines and distributed clusters alike.
e Difference between batch and streaming lies in when and how data is processed.
e Batch: Fixed dataset, offline.

e Streaming: Continuous input, near real-time processing.

10: Batch Processing, MapReduce

4.2 Batch Processing in Unix Systems

4.2.1 Unix as the First Batch Processing System

e Early operating systems used batch commands for data processing.

e Unix provides primitive functions (chained by pipes) to form a pipeline.

4.2.2 Common Unix Commands

e File management:

mkdir, rm, mv, cp, cd, du, df

e Text processing:

cat, sort, uniq, tr, sed, awk
e Compression/Info:

gzip, tar, zip, uname, date, cut
e Help command:

man <command>

for manual pages.

4.2.3 Example Command Pipeline

. cat dups.txt | sort | uniq

Reads dups.txt, sorts the content, filters duplicates.

° cat z.txt | tr a e

Replaces ‘a’ with ‘e’ in file z.txt.

Each command acts as a primitive processing function.

e Pipes (—) connect the output of one command to the input of another.

These pipelines can be composed and debugged by inspecting intermediate outputs.

4 10: Batch Processing, MapReduce

4.3 Data Flow View of Unix Pipelines

e Each command = processing function (node).
e Arguments = input data.

e Pipes = edges connecting nodes.

e Forms a directed data flow graph.

e Design idea: Primitive operators that compose into a larger pipeline.

4.4 Example of Batch Processing with Unix Tools

e Read log file.

e Split lines into fields (by whitespace).

e Output 7th element (requested URL).

e Alphabetically sort results.

e Filter duplicates (uniq).

e Sort again numerically (-n).

e Output first five lines (head -n 5).

e Each step is a transformation in the pipeline.

e Data flows through a series of modular processing components.

4.5 Limitations of Unix Batch Tools

e Designed for small data on a single machine.
e Cannot scale to large-scale distributed data.
e Led to development of modern big-data frameworks such as: MapReduce and Spark

e These systems extend the same data-flow paradigm but execute on multi-node clusters with parallelism
and fault tolerance.

5 MapReduce

5.1 History of MapReduce / Hadoop

e Early 2000s clusters paired compute and storage on each node.

— CPU: few-core Intel processors.
— Memory: ~32 GB.
— Local storage: 1-2 disks.

10: Batch Processing, MapReduce 5

e Network: ~10 Gb/s within rack, ~100 Gb/s across racks.

e Compared to today’s NVLink (400+ Gb/s) or InfiniBand, these were very slow.

e Systems were designed to read data from local disks and avoid expensive inter-node communication.
e Design principle: move computation to data, not data to computation.

e Hardware capabilities historically drive software system design.

e 20 years ago, goal: make many slow unreliable machines work together instead of a single supercom-
puter.

e This philosophy led to Google’s MapReduce model and the open-source Hadoop implementation.

Compute + Storage Nodes

[cpu]| |[cPu]

[Mem || [[Mem |

08 O

Network

(Figure — Compute + Storage Nodes connected via Network, Slide 15.)

5.2 Data-Intensive System Challenge

e Example: computation accessing 1 TB in 5 minutes.

e A single HDD ~ 100 MB/s read speed. = need & 100 disks in parallel.
e Each machine = 1 disk = 100 processors + 100 disks.

e Machines must be co-located to minimize cross-network traffic.

e Requirements:

— Many disks and processors.

— High-speed local network.
e To achieve near-interactive performance, cluster design must reduce communication cost.

e These design pressures motivated MapReduce a programming model that coordinates many mediocre
nodes for large-scale data processing.

6 10: Batch Processing, MapReduce

5.3 Hadoop Project
e Hadoop combines distributed storage and computation.
e HDFS (Hadoop Distributed File System):

— Files are split into blocks and replicated (default: 3 copies).
— Failure of a node does not cause data loss.

— Scheduler runs tasks where the data resides (locality optimization).
e MapReduce environment:

— Executes tasks on nodes.

— Manages fault tolerance, retries, and load balancing.

| Local Network |
$ $ $
Node 1 Node 2 Node n

(Figure — Local Network with CPU Nodes and Map/Reduce Environment, Slide 17.)

5.4 Count the Number of Occurrences of a Word

e Task: count occurrences of each word across a collection of documents.

Historical context: before embeddings (2014), web search relied on TF-IDF.

— TF (Term Frequency): frequency of a word within a document.

— IDF (Inverse Document Frequency): penalizes very common words.

High TF-IDF word important in one document but rare in others.

Google computed TF-IDF for every webpage massive parallel task.

MapReduce made this computation feasible at web scale.

5.5 Data Models
e Each document is treated as a record.
e Goal: create a word index mapping words — frequency across all documents.

e Map: tokenizes text into (word, 1) pairs. Reduce: aggregates counts per word.

10: Batch Processing, MapReduce 7

5.6 MapReduce Example
e Goal: create a word index of a set of documents.

e Input documents:

1. Come, Dick
Come and see.
Come, come.

Come and see.

oL W

Come and see Spot.
e Each document is processed independently by a Map function.

e The Map phase scans and tokenizes text, emitting intermediate pairs (word, 1) for each word occur-
rence.

e These pairs are the fundamental key—value elements that will later be grouped and reduced.

e After mapping, system performs Shuffle / Group step: all emitted pairs with the same key (word) are
sent to the same reducer.

¢ Reduce phase: each reducer aggregates all counts for a key.

e Example output:

Word Count

dick 1
and 3
come 6
see 3
spot 1

e Functional pattern:

— Map: generate (word, count) pairs for all words in documents.

— Reduce: sum word counts across documents.
e Each function is stateless — no shared memory, easy parallelization.

e Demonstrates complete MapReduce dataflow: many mappers feed into fewer reducers for global ag-
gregation.

8 10: Batch Processing, MapReduce

Sum

Word-Count
Pairs

Extract

Come, Come Come, Come Come
Dick and come. and and
see

Spot.

(Figure — Map — Shuffle — Reduce Pipeline for Word Count, Slide 25.)

5.7 Discussion
e MapReduce system handles task distribution, scheduling, and fault tolerance.
e User defines only two interfaces: map() and reduce().
e Operates entirely on (key, value) pairs; keys and values may be any type.
e Applicable to text, logs, images, graphs—any data that can be represented as key—value pairs.
e Performance depends on how map/reduce functions are designed (e.g., shuffle cost, data balance).

e Key idea: MapReduce abstracts away complex system logic and provides a simple, flexible program-
ming model for large-scale data processing.

5.8 Execution

MapReduce execution involves processing partitioned input files into the desired results. The components
are:

e input files: data is partitioned into blocks and stored on different nodes

e task manager: schedules mapper and reducer tasks

e mapper: each mapper processes input blocks, transforming it into key-value pairs
e shuffle: collect data from mappers and distribute across reducers

e reducer: receives subset of data and executes reduce action

e final results: stored in distributed storage

10: Batch Processing, MapReduce 9

5.8.1 Mapping

e cach mapper reads input file blocks, generates key-value pairs < K,V >, and writes to a (intermediate)
local file

e a hash function h maps each key K to an integer ¢ s.t. 0 < i < R (R is the number of local files)

e cach mapper creates R files, one for each reducer

5.8.2 Reducing

e cach reducer is given 1 of the R key values to process
e the reducer function is executed

e output values are written to parallel file system

In sum, MapReduce consists of reading a set of files from a file system and producing a new set of files.

5.9 Dataflow
5.9.1 Sparse Matrix Multiplication Example

Matrix multiplication with sparse matrices is common but can be difficult to parallelize efficiently.

10 0 20 -1 0

A=10 30 40|, B=|-2 -3

50 60 70 0 —4
-10 =80
C=AxB=|-60 -250
—170 —460

Goal: Compute C' = A - B using sparse representations.

1. Represent each matrix as a list of nonzero entries in the form
(row, col, value, matrixID)
Example: (1,1,10, A).
2. Compute all products a; - by ;.

Group by shared index k:

k=1
10-(=1) = =10 = 11, 50-(=1) = —50 — ¢34

k=2

10 10: Batch Processing, MapReduce

30 - (=2) = —60 — co4
30+ (=3) = —90 — a9
60 - (—2) = —120 — ¢34
60 - (—3) = —180 — 3.9

20 (—4) = —80 — c1,2
40 (—4) = —160 — co
70 - (—4) = —280 — c3

3. Sum partial products for each output entry.

C1,1 ¢ — 10

C1,2 - — 80

C21 - — 60

c22: —90—160 = —250

c31: —50—120=—-170

32 — 180 — 280 = —460
—-10 =80

C=|-60 —250

—170 —460

6 Beyond MapReduce

6.1 MapReduce System Architecture

User
Program

(1) fork .°

“);n:,k £1) fork

split 0)

- (6) write output
split 1 file 0
split 2

. output
split 3 file 1
split 4

<> 1l
Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

(Figure — Diagram from original MapReduce paper, slide 44.)

10: Batch Processing, MapReduce 11

6.2

Map/Reduce Summary

Typical Map/Reduce applications

— Most are sequences of steps, each of which require a map and a reduce and are a series of data
transformations

Strengths

— User-written functions are very simple — it’s up to the system to manage the complexities of things
like mapping, synchronization, fault tolerance

— General and good for large-scale data analysis

— First successful system behind ”big data”; many companies worked on variations of MapRe-
duce/Hadoop with specific applications in the 5-10 years after its publication

Cons

— Disk I/O overhead is super high (the way the mapper and reducer must communicate is reading
and writing from local disks, to maintain fault tolerance — this slows the process down, especially
in longer/more complicated pipelines)

— Inflexible (each step must be completed before the next one)
Not suitable for workloads (iterative and real-time processing)

Still difficult to program with

PageRank Computation

Initially assign a weight of 1.0 to each page
Tteratively select an arbitrary node and update its value

They converge to unique results regardless of selection ordering

value

12 10: Batch Processing, MapReduce

1 1 1
(R <+ 0.1+ 0.9(§R2 + ZR?) + §R5)

Slide 48.)

Question: How to express PageRank using MapReduce?

