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1 Memory Management in Operating Systems

1.1 Motivation: Virtualizing CPU Resources

To support multiple processes efficiently, we need to virtualize CPU resources both temporally (time-sharing)
and spatially (distributing across cores). This leads to the challenge of concurrency: multiple processors
or cores running different or the same set of instructions simultaneously on different or shared data.

1.2 The Placement Problem

Placement refers to how we assign processes to different processors or cores to achieve optimal performance.
Unlike scheduling (which determines when tasks run), placement determines where tasks run. The primary
objective is Load Balancing: ensuring that different cores/processors remain roughly equally busy to reduce
idle time and minimize overall completion time. This idle time is also referred to as bubble time. Below is
an example of a Gantt chart which shows how 3 processes may be distributed across two CPUs in a way
that minimizes idle time. Modern approaches use reinforcement learning algorithms to dynamically optimize

CPU 1: P1 P1 P3 P3 P3 P3 P1 P1 P1

CPU 2: P2 P2 P2 P1 P1 P2 P2 P3 P3
0 10 20 30 40 50 60 70 80

Figure 1: Gantt chart which shows how placement problem may be solved for 2 devices

placement strategies.

To illustrate the placement challenge in ML, Fig. 2 shows pipeline parallelism, which partitions a large model
into stages across multiple GPUs. The grey areas are bubbles and this algorithm minimizes the bubbles.

1.3 Memory Management Challenge

Once we place processes on cores, a new problem emerges: How do we assign memory to each process?
Particularly when total memory demand exceeds the physical memory capacity?
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Figure 2: Pipeline parallelism across 4 GPUs.

1.4 Iterative Solutions to Memory Allocation

e V0: Sequential Hardware (Straw Man Solution) Given 3 processes with known memory requirements,
allocate exactly the requested amount of memory to each process. Problem: If a process needs only
part of a memory unit, the unused portion within that unit remains unused, resulting in internal
fragmentation.

e V1: Smaller Chunks Reduce allocation granularity by dividing memory into smaller chunks (e.g., halves,
quarters). Improvement: Reduces internal fragmentation. Maximum possible internal fragmentation:
Still 1 unit (in the worst case). Still causes External Fragmentation: Wasted space between allocated
blocks that cannot accommodate new processes requiring contiguous memory.

One potential solution is moving memory around to consolidate free space, but this is extremely expensive
and inefficient.

1.5 The Dynamic Memory Problem

An even more fundamental issue: When we start a process, we don’t know how much memory it will need.
For example, opening Chrome results in memory usage that grows and shrinks dynamically based on:

e Number of tabs opened
e Content being loaded

e Active processes

1.6 The Problem with Reserving Memory

One approach is to predict memory needs and reserve accordingly (e.g., ask Chrome to reserve 2 GB upfront).
Major problem: This suffers significant Reservation Overhead. Memory is reserved for a process that
may not actually use it, while other processes that could use it immediately are blocked. Even if we know
exact memory requirements in advance, reservation is still inefficient:

e Reserved memory remains unused until needed by the allocated process

e A smaller, faster job might arrive that could complete quickly but must wait because memory is already
reserved
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e This reduces overall system throughput

Conclusion: Always allocate memory on demand rather than reserving it in advance.

1.7 Three Main Problems in Memory Allocation

e Internal Fragmentation: Wasted space within allocated memory blocks due to fixed-size allocation.

e External Fragmentation: Wasted space between allocated blocks that cannot be efficiently reused
for contiguous allocation.

e Reservation Overhead: Memory is blocked for processes that may not use it immediately, creating
opportunity costs.

1.8 Solution: Virtual Memory

V2: Virtual memory solves these problems by introducing a mapping between virtual addresses (used by
processes) and physical memory (actual hardware) process perceives a large, contiguous block of memory
even if it is physically fragmented or stored partially on disk This virtualization allows the OS to provide an
abstraction of virtual hardware for each process to run on, enabling multiple processes to run concurrently
without needing dedicated physical memory for each.

Key Concepts

e Granularity: Virtual memory uses the same granularity as physical memory to ensure one-to-one
mapping.

e Pages: Fixed-size chunks of memory that form the basic unit of virtual memory.
e Page Frames: Slots in physical memory (DRAM) where pages are stored.

e Having too many small pages increases overhead due to more address translations, adding computa-
tional cost.

Benefits

e Allows scheduling of processes with memory requirements larger than physical memory by mapping
overflow to disk.

e Internal Fragmentation: Reduced via small, uniform pages.

o External Fragmentation: Eliminated through continuous mapping in virtual memory.

2 ML Analogy: Virtual Memory in ChatGPT

Consider three prompts being processed by ChatGPT:

1. Summarize these readings.
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2. Tell me a joke in 1,000 words.

3. Help me with my assignment.

If we reserved 100,000 tokens for each prompt (like memory reservation), resources would be underutilized.
Instead, tokens are allocated dynamically as each prompt executes; similar to on-demand memory allocation
in an OS.

Analogy Mapping

OS Concept ML / ChatGPT Analogy
Process Prompt

CPU Memory GPU Memory

Memory Reservation Token Preallocation

Virtual Memory Allocation Dynamic GPU Computation

Computation in modern ML models (like ChatGPT) shifts from CPU-based to GPU-based tensor compu-
tation, which similarly benefits from efficient, on-demand memory allocation.

3 File Systems

3.1 Purpose

File systems virtualize the disk and manage persistent data storage. They provide:

e Abstraction: Hides hardware-level complexity.

e Persistence: Ensures data remains after shutdown or restart.

3.2 What is a File?

A file is a persistent, logically coherent sequence of bytes representing a digital object (e.g., .gif, .pdf,
.docx, .mp4).

Files also contain metadata, such as:

e File size, compression type, creation or modification time, etc.

e For images (e.g., JPEG): compression method, dimensions, color depth.

3.3 Directories

Directories (folders) organize files and may contain subdirectories. In many OS implementations, a directory
is also a file, storing a list of entries and metadata pointers.
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3.4 File System Operations

The file system component of the OS manages file creation, deletion, modification, and access.

e Logical Level: Exposes file and data abstractions to applications (APIs, system calls).

e Physical Level: Interfaces with disk drivers and firmware to manage how and where bytes are stored.

3.5 File System Types

Common types include ext2, ext3, and NTFS. Each defines its own data structures, journaling, and fault
recovery mechanisms.

4 Databases vs. File Systems

Feature File System Database

Structure Unstructured (directory hierarchy) Structured (tables, schemas)

Access File-level APIs Query language (SQL)

Serialization  Basic (file-by-file) Optimized for storage efficiency

Use Case General-purpose storage Structured data management, analytics

Databases build on top of file systems but provide structure, queryability, and efficient data access.

5 Why Cloud Computing

5.1 Need-Based Argument
The need for cloud computing arises when:

e Workloads outgrow single-machine capacity.
e Distributed computing becomes essential for scale and reliability.

e On-premise or HPC systems such as UCSD SDSC’s Expanse / Nova clusters, while powerful,
require manual scaling and maintenance.

Cloud offers elastic resources without the need for physical expansion.

5.2 Utility-Based Argument
Cloud computing follows the idea of public utilities such as electricity:

e Use more when needed; pay only for what you consume.

e No need to buy or install new hardware.
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Figure 3: UC San Diego Supercomputer Center (SDSC) as an example of large-scale on-premise infrastruc-
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e Scaling up or down happens automatically.

This utility computing model provides on-demand access to compute and storage. (With exceptions like
GPUs, where hardware supply can still limit instant scaling.)

5.3 Traditional vs Cloud Model

Aspect Traditional (On-Premise) Cloud (Utility)
Planning Must estimate demand ahead of | Scale dynamically
time
Cost Pay for capacity (even if unused) | Pay per use
Responsibility Security, power, maintenance Managed by cloud provider

5.4 Evolution of Cloud Infrastructure

Cloud infrastructure has evolved through several stages:

e Past Cloud 1.0: Basic virtual machines and centralized data centers.
e Current Cloud 2.0: Containers, DevOps, and automation-driven deployment.

e Future Cloud 3.0: Al-powered, edge, and decentralized architectures.

This progression can be illustrated using a car analogy

Rent a car City car-sharing

(Bare metal servers) (VPS) (SEEESS)

Cars are parked 95% of the time (loige.link/car-parked-95)
How much do you use the car?

Figure 4: Car analogy illustrating different levels of cloud abstraction and resource sharing.

5.5 Open Question

Google has pioneered and created many distributed systems and technologies that shape today’s cloud
computing, but why have Amazon (and even Microsoft) won over Google Cloud (GCP) in cloud computing
market shares?
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6 File System

6.1 Definition

A file system is a persistent sequence of bytes that stores logically coherent digital objects for applications.
It is part of the operating system (OS) that provides the mechanisms for creating, organizing, accessing, and
managing files.

Core component:

e File: A collection of related data identified by a name. It is interpreted by an application as structured
content (e.g., text, image, or executable).

Directory (Folder): A cataloging structure that organizes files hierarchically. It contains references to
files or subdirectories.

6.2 Logical vs. Physical Levels

Logical Level: The abstraction provided to users and programs—ifile names, directories, and file paths.

Physical Level: The organization of data on storage devices (blocks, inodes, sectors, etc.).

6.3 Examples of File Systems

e Linux: ext2, ext3, ext4

Windows: NTFS

macOS: APFS

Cross-platform: FAT, exFAT

A file system can also be mounted onto an OS, making its files accessible under a specific directory path.

6.4 File Systems vs. Databases

Aspect File System Database

Structure Unstructured or semi-structured — Structured (tables, schemas, in-
(byte streams) dexes)

Access File-based (open/read/write) Query-based (SQL, APIs)

Concurrency Limited (file locks) Built-in (ACID transactions)

Use Case Documents, binaries, media files  Analytical or transactional data

A database builds on top of a file system, providing organization, indexing, transactions, and query capability.



5: Memory, Cloud Computing 9

7 Cloud and Distributed Systems

7.1 Historical Context

In the lecture the professor offered a economical aspect of the history of Cloud and distributed system.
Early computing relied on increasingly powerful single machines, following Moore’s Law—transistor density
doubling every 18-24 months. As Moore’s Law plateaued (due to physical and economic limits), computing
performance stopped scaling exponentially, while data volumes continued to grow.

To keep up, engineers began scaling out instead of scaling up, combining many commodity machines into
clusters—leading to distributed systems and later cloud computing. This is the need-base argument
for the development of cloud computing.

7.2 Distributed Systems

A distributed system is a loosely coupled collection of computers communicating through message passing
(usually over a network) to achieve a common goal.

Key Challenges

e Partial Failures: Some nodes or network links may fail while others continue operating.

e Asynchrony: Communication delays and timing differences make synchronization difficult.

Relationship between distributed computing and parallel computing:

DistributedComputing = ParallelComputing + Partial Failures

7.3 Historical Distributed Programming Models

MPI (Message Passing Interface): High-performance computing; explicit message passing.

DSM (Distributed Shared Memory): Provides a shared-memory abstraction across nodes.

RPC (Remote Procedure Calls): Allows calling remote functions as if local.

e Modern Frameworks: Ray, Dask, Spark, and others simplify distributed computation with higher-level
APIs.

Remark: Distributed programming is very hard even with the simplification with mordern frameworks.

7.4 Datacenter as the “New Computer”

If an entire datacenter is treated as one large computer, then its Operating System comprises distributed
resource management frameworks, with distributed storage and disk, distributed and shared Memory, dis-
tributed CPU and GPU to process data, and networks to retrieve data from remote.
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7.5 Core Components in Cloud/Distributed Infrastructure

Category Examples Purpose

Data Storage GFS, HDFS, S3, Ceph Reliable distributed file systems

Data Sharing / KV Bigtable, DynamoDB, Low-latency distributed data access

Stores Cassandra

Programming Abstrac- MapReduce, Hive, Pig, Distributed data processing

tions Spark, Ray

Resource Management YARN, Kubernetes, Scheduling and resource orchestration
Mesos

Coordination Services  ZooKeeper, BookKeeper, Metadata management and synchro-
eted nization

7.6 Milestones

e Google File System (GFS, 2003): Foundation for HDFS.
e Google MapReduce (2004): Inspired Hadoop MapReduce.

¢ Google Bigtable (2006): Inspired HBase and Cassandra.

These works established the core ideas behind modern cloud data processing.

7.7 Utility argument for cloud computing
There are two major solution for cloud computing for IT companies:

e On-premise/supercomputer : Buying and maintaining physical servers in their own company.

e Cloud sevice: Renting compute, storage, and networking resources on demand. This model provides
elasticity, scalability, and global accessibility.

Somehow, computation is like utility such as electricity, network, we use everyday, and uneven in different
time (on demand). Managing and storing computers spent a lot of cost, which might not be practical for
smaller companies. This is the utility argument for developing massive cloud services.



