DSC-204A: Scalable Data Systems, Fall 2025
2: Computer Organization & Data Representation

Lecturer: Hao Zhang Scribe: Yuheng Zha, Yuyuan Wu, Brandon Hsu

Introduction and Logistics

e Outline: High-level introduction to the fundamentals of computer organization, followed by technical
content on computer data representation.

e Class recap: We emphasized how computers store, process, and retrieve data, the trade-offs across the
memory hierarchy (latency, bandwidth, capacity, cost), and how floating-point representations impact
numerical precision and performance (including mixed-precision in ML).

e Survey + extra credit detail: Please finish the Beginning of Quarter survey by 10/10; if > 80%
complete it, everyone receives +1 point. TAs will post completion percentages.

e Enrollment/waitlist: Instructor approves anyone in EASy. If you're on the list, wait until the end
of this week; new slots usually open because some students drop after seeing PA1.

e Course map (high level): Foundations of Data Systems — Cloud — ML Systems — Big Data
(historical arc touches 1980-2000 and onward).

1 Basics of Computer Organization

Computers are the foundation of modern data systems.

Question: What is a computer?
Answer: Programmable clectronic device that can store, retrieve, and process digital data.—Peter Naur

Question: What are computers composed of?
Answer: Hardware: Electronics (wires, circuits, transistors, capacitors, devices, etc.), Software: Programs
(instructions for how to process data) and data

From a data-centric perspective, our goal in building computers is to store and process data at scale.

e To store and retrieve data, we need Disk and Memory:

— Question: Why we need both?

— Answer: Because disk provides long-term storage but is slow, while memory is faster but only
retains data short-term. (We will introduce a core concept called memory hierarchy later in the
class to deal with these trade-offs.)

e To process data: Processors (CPU, GPU, etc.). Why we have different processors? Because different
applications have different computational requirements (parallel processing (GPU) is ideal for Deep
Learning applications).

e To retrieve data from remote: Networks (communication highway between many different computers)

2 2: Computer Organization & Data Representation

2 Hardware

2.1 Key Parts of Computer Hardware

e Processor (CPU/GPU,...):

— Orchestrates and executes low-level instructions (machine language defined by an ISA).

— Each processor architecture has its own finite instruction vocabulary (the ISA).

— CPUs are general-purpose; GPUs are specialized for massive parallelism (common in DL/ML
workloads); increased compute demand motivates reduced-precision arithmetic where appropriate.

e Main Memory (RAM / DRAM):

— Volatile storage for fast, random access to data/instructions during execution.
— Byte-addressable; all addresses are accessible at low latency (relative to disk/network).

— Sequential and random data access is low latency with main memory.
e Disk (Secondary / Persistent Storage):

— Non-volatile; higher capacity and lower cost/byte than RAM, but higher latency.

— Contrast with memory: memory is faster but volatile and expensive/byte; secondary storage is
slower, persistent, and cheaper/byte. Data must be loaded into memory before computation.

— Only sequential data access is low latency with disk storage.
e Network (Remote data):

— Enables sending/receiving data to/from remote machines and cloud storage.
— Typically highest latency but effectively unbounded capacity via remote resources.

— NIC (Network Interface Controller): hardware that transmits/receives data.

2.2 Abstract vs. Physical View

Putting all these components together results in Figure [Ta] which is implemented in every modern computer
system. All components communicate with each other through the bus/interconnect, which acts as the local
data transmission medium. In reality, computers are much more complicated and come with a variety of
additional components as depicted in Figure The board shown is called the motherboard and it contains
different components such as SATA connectors (interface for external storage), integrated Ethernet chip,
PCI express (PCI-E) slots (interface for external GPU), CPU socket, memory socket, etc.

3 Software

3.1 Key Aspects of Software

e Instruction: Command understood by hardware. The Instruction Set Architecture (ISA)
bridges hardware and software (x86, MIPS, RISC-V, etc.).

e Program(code): Collection of instructions for hardware to execute.

2: Computer Organization & Data Representation 3

In Reality
Abstract Computer Parts and Data Superio
Rear Fan DIMM DDR2 Chip 24-pin ATX
X Connector Memory Slots (x2) " Power Connector
Processor Store; Retrieve CPU Fan { > Floppy Connector

By " Connector (LGA775) X 1 IDE Connector (x1)

Control AQ‘E;"?EC Dynamic Random 4epin ¥ Chasis Fan
Retrieve; Unit 9 Access Memory ATX Connector. \ \ 3 2 Connegto
Unit PR Vo ® SATA
Process (DRAM) L e Connectors (x4)
~
§ Panel Header
1/O Panel USB Headers
Connectors Southbridge
Bus | | (without heatsink)
. Northbridge Chipset
Store; Retrieve [ntegrated Ethernet CMOS Battery
PCI Express x16 PCI Slots (x2)
Input Output Secondary Storage Siot Front Audio
Devices Devices i PCI Express x1 Header
(e'g" Magne“c hard Slot Integrated HD-Audio
- disk, Flash SSD, etc.) codec chip
Input; Output; Retrieve
(a) Abstraction (b) Reality

Figure 1: Computer organization. (a) Abstract blocks: processors, memory (DRAM), secondary storage,

1/0,

connected by buses and interconnects (communication highway). (b) Real motherboards/systems are

much more complex.

e Programming Language (PL): Human-readable language to write programs at a higher abstraction

than the ISA.

e Application Programming Interface (API): Set of functions/interfaces exposed by software for

3.2

4.1

use by developers or other programs.

Data: Digital representations of information that software stores, processes, displays, retrieves, or
transmits.

Main Kinds of Software

Firmware: Read-only code ”baked into” devices for basic control.

Operating Systems: Programs that enable application software to use hardware more efficiently
(process, memory, and device management). Famous examples: Linux, Windows, macOS, etc.

Applications: Collection of interrelated programs to manipulate data, typically designed for human
use (e.g., Excel, Chrome, PostgreSQL).

Digital Representation of Data

Basic Concepts

Bit: All digital data are sequences of 0 and 1 (binary digits).

Data type: First layer of abstraction to interpret a bit sequence with a human-understandable cate-
gory of information; interpretation fixed by the programming language. e.g.: Boolean, Byte, Integer,
Float, Character, and String.

Data structure: A second layer of abstraction to organize multiple instances of same or varied data
types as a more complex object with specified properties. e.g.: Array, Linked list, Tuple, Graph.

4.2

4.4

2: Computer Organization & Data Representation

Bits and Bytes

All digital data are sequences of bits (0 or 1). We “count” in base 2.
— e.g.: represent 152131 as 00111011011011015 (16-bits)
Byte = 8 bits (why? because of historical development and practical standardization).

A Byte is typically the basic unit of data types, and most CPUs are byte-addressable (cannot address
units smaller than a byte).

Notation: lowercase b for bits, capital B for bytes.

How to represent negative numbers? (will discuss later)

Bytes and Data types

Data types assign semantics to bit patterns (e.g., bool, int, float).
The size and interpretation of a data type depends on programming language.
Data structures organize multiple values into richer objects (arrays, structs, tuples, strings, etc.).

Example: Boolean, just 1 bit needed but actual size is almost always 1B; Integer, typically 4 bytes;
many variants (short, unsigned, etc.)

Type Bytes | Notes

bool 1 Boolean value

int32 4 32-bit integer

float16 2 IEEE half precision
bfloat16 2 Brain floating point 16-bit
float32 4 IEEE single precision
float64 8 IEEE double precision

Table 1: Common numeric data types and their sizes.

Concept Checks (final exam)

Q1: How many unique data items can be represented by 3 bytes?

— Answer:2%

224

— Because given k bits, we can represent 2¢ unique data items. 3 bytes = 24 bits = items.

— Common approximation: 219210%; KiB (1024B) vs KB (1000 B), often approximated as equal
for back-of-the-envelope math.

Q2: How many bits are needed to distinguish 97 data items?

— Answer:7 bits

— Because for k unique items, invert the exponent to get log, (k). But the number of bits must be an
integer. So, we only need [log,(k)]. So, we only need the next higher power of 2. 97 — 128 = 27,
and the result is 7 bits.

2: Computer Organization & Data Representation 5

Data Types in Python 3

(class NoneType)

Integral Real Complex m
/K‘ (class float) (class complex) /\

Integer Booleans Sets Frozen sets
(class int) (class bool) (class set) (class frozenset)
PP U
Immutable Mutable D(::T;ISDSI'I:II"!?)S
Strings Tuples Bytes Lists Byte Arrays
(class str) (class tuple) (class bytes) (class list) (class bytearray) Callable

< Functions, Methods, Classes >

Figure 2: Data Types in Python 3

e Q3: How to convert from decimal to binary representation?

— Answer: Repeatedly subtract highest powers of 2 (or use division by 2 with remainders)

— To convert decimal n to binary: find the largest 2¥ < n, set bit k, subtract, and repeat; fill
remaining lower bits with 0s. Example values discussed in class: 519, 4719, 16319, 1610 (Figure|3).

FAMNE "B = e

Decimal 128 64 3216 8 4 2 1
510 10 1

4710 (1 GBSt St =i
16310 P] e e
1610 | T] e e

Figure 3: Conversion Examples

— For fractional decimals like 1.201¢, binary may repeat (e.g., repeating 0011 pattern).
e Q4: How to convert from binary to decimal?

— Answer: Multiply each binary digit by 2" according to its position and sum the results.

4.5 Integers

e Encoding Integers:

6 2: Computer Organization & Data Representation

— Unsigned: standard base-2 representation (if you are pretty sure that you are only going to work
on positive Integers or only work on negative Integers, you can use Unsigned).

— Signed (two’s complement): negate by inverting bits and adding 1 (if you are going to use
positive and negative Integers).

e For n bits, two’s-complement range is [—2"~1, 27~ —1].

e Example: —5 in 8-bit two’s complement is 1111 10115. short int x=15213 encodes as 00111011011011015;
short int y=-15213 encodes as 11000100 1001 00115.

e Worked example (positives/negatives): with bit weights {—16,8,4,2,1}: 10 = 01010, = 8 + 2, and
—10 = 101102 = —16 + 4 4 2 (illustrates signed weights in two’s complement) (Figure [4)).

-16 8 2 1
i0=0 1 0 1 O 8+2 = 10
-16 8 2 1
-i10=1 0 1 1 o0 -16+4+2 = -10

Figure 4: Two-complement Example

e Overflow: selecting a type with insufficient range can cause overflow and lead to unexpected results
(language-dependent), so choose types carefully.

4.6 Floating-Point
A floating-point number encodes: sign bit, exponent (with bias), and fraction/mantissa.

e Sign: 0 for positive, 1 for negative
e Exponent primarily controls range (how large/small values can be).

e Fraction (mantissa) primarily controls precision (how many significant digits you can represent).

sign exponent (8 bits) fraction (23 bits)
| I |

0j0|1|1/1f1|1|{0|0|Of1|0|O(O|OfO|O|O|O|OfjO|O|OfO|O|O|O|OfO|O|O(O

Oe

31 30 2322 (bit index)

Figure 5: Standard TEEE format for single (aka binary32)

Precision: IEEE-754 single-precision format is 4B long; double-precision format is 8B long.

e Precision is non-uniform across magnitudes: large values lose absolute fractional detail; subnormals
extend range at reduced precision.

2: Computer Organization & Data Representation 7

23
(—1)s4n x gerponent—12T o (1 4 Z ba3—i27")
i=1

(—1)% x 28247127 % (14 1-272%) = (1/8) x (1 + (1/4)) = 0.15625
Figure 6: How to Calculate

e Precision—performance trade-off (discussion highlight): lower-precision formats can yield more
FLOPs/watt and higher throughput (e.g., mixed-precision training) at the cost of numerical precision;
stability depends on task and algorithm.

e Language note: Java/C float is single precision (4B); Python float is double precision (8B).
Mixed precision speedups: industry practice reports ~2-3x speedups when using mixed precision
with appropriate kernels while maintaining similar accuracy (task-dependent).

More Common formats: float16, bfloat16, float32, float64 (and, in ML contexts, £p8 variants).

e bfloat16 vs. float16: both are 16-bit; bfloat16 keeps an 8-bit exponent (like £loat32) for wide range
but fewer mantissa bits (less precision), while IEEE float16 has a smaller exponent (narrower range)
but more mantissa bits (more precision). float16 is now common for deep learning parameters.

Exponent 8 bits Precision 7 bits
ericatic B NERENR
Exponent 5 bits Precision 10 bits

Fee [HIHEHER

Figure 7: Difference between bfl6 and fp16

e bfl6 vs. fp32: Conversion between fp32 and bfl6 is effortless. bf16 has an 8-bit exponent while fp32
also has an 8-bit exponent.

e Hardware (NVIDIA GPUs): By reducing the precision (e.g., from fp64 to fp8), you would observe
almost a linear increase in FLOPs. Major deep learning frameworks use mixed-precision training.

4.7 Character (char) and String

e A string is typically just a variable-sized array of char.

e ASCII was originally 7-bit (later 8-bit extensions). UTF-8 (Unicode) is now standard and backward-
compatible with ASCII, supporting ~1.1M code points (often up to 4 B per code point).

2: Computer Organization & Data Representation

4.8 Digital Objects

o All digital objects are collections of basic data types (bytes, integers, floats, and characters)

e Everything from SQL rows to ML model weights is ultimately bits-on-disk.

e Storing/processing large models highlights RAM vs. disk cost/latency differences; reduced precision
can lower memory/computation costs in practice (with care).

5 Practice Questions (final exam)

e Q1:

How many space do I need to store GPT-37

Answer: 175 x 10° x 2 bytes = 350 B bytes = 350 GB .

GPT-3 is an ML model with trained weights, so the question is the same as how much space do
I need to store the Python files and weights.

The data type of GPT-3 is bf16(16-bits, 2 bytes/param) and GPT-3 is a model with 175B
parameters. Therefore, the answer is 175 x 109 x 2 bytes = 350 GB (weights only).

e Q2: What do exponent and fraction control in float point representation?

Answer: Exponent controls range/scale (how large/small values can be). Fraction controls
precision (detail/resolution of values).

Any problem about floating point (compared to fixed point)? Answer: More complex (to both
human and computers); Inconsistent precision.

Fixed vs. Floating Point (discussion highlight): Fixed point splits integer and fractional parts
at a fixed position (simple and fast but inflexible, limited dynamic range). Floating point offers
wide dynamic range with magnitude-dependent precision, which better fits many scientific/ML
workloads despite added complexity.

e Q3: What is the difference between BF16 and FP16? (will discuss in next lecture)

bfloat16: keeps a larger exponent (like float32) and a smaller fraction = wider range,
lower precision.

float16: uses a smaller exponent and a larger fraction = narrower range, higher preci-
sion.

	Basics of Computer Organization
	Hardware
	Key Parts of Computer Hardware
	Abstract vs. Physical View

	Software
	Key Aspects of Software
	Main Kinds of Software

	Digital Representation of Data
	Basic Concepts
	Bits and Bytes
	Bytes and Data types
	Concept Checks (final exam)
	Integers
	Floating-Point
	Character (char) and String
	Digital Objects

	Practice Questions (final exam)

