
DSC 204A: Scalable Data Systems

Fall 2025

1

https://hao-ai-lab.github.io/dsc204a-f25/

Staff
Instructor: Hao Zhang

TAs: Mingjia Huo, Yuxuan Zhang

@haozhangml

haozhang@ucsd.edu

@haoailab

https://twitter.com/haozhangml

Logistics

• Please finish Beginning of Quarter survey by 10/10

• If >=80% finish it, all of you get 1 point

• TA will update completion percentage

• Enrollment approval and waitlist:

• I approve anyone in EASy

• If you are on enrollment list, wait until end of this week

• Normally we will have new slots because some students will

drop after seeing PA1

• PA1 will be posted by EoW

Where We Are

Foundations of Data Systems

Cloud

Machine Learning Systems

Big Data

1980 - 2000

Logistics

• Please finish Beginning of Quarter survey by 10/10

• If >=80% finish it, all of you get 1 point

• TA will update completion percentage

• Enrollment approval and waitlist:

• I approve anyone in EASy

• If you are on enrollment list, wait until end of this week

• Normally we will have new slots because some students will

drop after seeing PA1

• PA1 will be posted by EoW

Foundation of Data Systems

• Computer Organization

• Representation of data

• processors, memory, storage

• OS basics

• Process, scheduling

• Memory

6

Q: What is a computer?

7

What is a computer?

A programmable electronic device that

can store, retrieve, and process digital data.

Peter Naur

8

Basics of Computer Organization

• Hardware: The electronic

machinery (wires, circuits,

transistors, capacitors,

devices, etc.)

• Software: Programs

(instructions) and data

Ch. 1, 2.1-2.3, 2.12, 4.1, and 5.1-5.5 of CompOrg Book

Basics of Computer Organization

To store and retrieve data, we need:
• Disks

• Memory

• Why we need both? (we’ll come back in near

future)

To process data:

• Processors: CPU and GPU

To retrieve data from remote

• Networks

10

Key Parts of Computer Hardware

• Processor (CPU, GPU, etc.)

• Hardware to orchestrate and execute instructions to

manipulate data as specified by a program

11

Key Parts of Computer Hardware

• Main Memory (aka Dynamic Random Access Memory)

• Hardware to store data and programs that allows very fast

location/retrieval; byte-level addressing scheme

12

Key Parts of Computer Hardware

• Disk (aka secondary/persistent storage)

• Similar to memory but persistent, slower, and higher capacity /

cost ratio; various addressing schemes

13

Key Parts of Computer Hardware

• Network interface controller (NIC)

• Hardware to send data to / retrieve data over network of

interconnected computers/devices

14

Processor

Bus

Control

Unit

Arithmetic

& Logic

Unit

Caches

Dynamic Random

Access Memory

(DRAM)

Input

Devices

Output

Devices
Secondary Storage

(e.g., Magnetic hard

disk, Flash SSD, etc.)

Store; Retrieve

Store; Retrieve

Input; Output; Retrieve

Retrieve;

Process

Registers

Abstract Computer Parts and Data

15

In Reality

16

Parts of a Computer

• Hardware: The electronic

machinery (wires, circuits,

transistors, capacitors,

devices, etc.)

• Software: Programs

(instructions) and data

https://www.webopedia.com/TERM/C/computer.html

17

Key Aspects of Software

• Instruction

• A command understood by hardware; finite vocabulary for a

processor: Instruction Set Architecture (ISA); bridge between

hardware and software

• Program (aka code)

• A collection of instructions for hardware to execute

18

Key Aspects of Software

• Programming Language (PL)

• A human-readable formal language to write programs; at a

much higher level of abstraction than ISA

• Application Programming Interface (API)

• A set of functions (“interface”) exposed by a program/set of

programs for use by humans/other programs

• Data

• Digital representation of information that is stored, processed,

displayed, retrieved, or sent by a program

19

Main kinds of Software

• Firmware

• Read-only programs “baked into” a device to offer basic

hardware control functionalities

• Operating System (OS)

• Collection of interrelated programs that work as an intermediary

platform/service to enable application software to use hardware

more effectively/easily

• Examples: Linux, Windows, MacOS, etc.

20

Main kinds of Software

• Application Software

• A program or a collection of interrelated programs to manipulate

data, typically designed for human use

• Examples: Excel, Chrome, PostgreSQL, etc.

Foundation of Data Systems

• Computer Organization

• Representation of data

• Processors, memory, storage

• OS basics

• Process, scheduling

• Memory

22

Q: How is data represented in computers?

23

24

Digital Representation of Data

• Bits: All digital data are sequences of 0 & 1 (binary digits)

• high-low/off-on electromagnetism on disk.

• Data type: First layer of abstraction to interpret a bit sequence with a

human-understandable category of information; interpretation fixed by

the PL

• Example common datatypes: Boolean, Byte, Integer, “floating point”

number (Float), Character, and String

• Data structure: A second layer of abstraction to organize multiple

instances of same or varied data types as a more complex object with

specified properties

• Examples: Array, Linked list, Tuple, Graph, etc.

Digital Representation of Data

• Bits: All digital data are sequences of 0 & 1 (binary digits)

• high-low/off-on electromagnetism on disk.

• Data type: First layer of abstraction to interpret a bit sequence with a

human-understandable category of information; interpretation fixed by

the PL

• e.g.: Boolean, Byte, Integer, “floating point” number (Float),

Character, and String

• Data structure: A second layer of abstraction to organize multiple

instances of same or varied data types as a more complex object with

specified properties

• Examples: Array, Linked list, Tuple, Graph, etc.

26

Count everything in binary

• Use Base 2 to represent Number

• 0, 1, 10, 11, 100, 101, …

• Represent 1521310 as 0011 1011 0110 11012

• Represent 1.2010 as 1.0011 0011 0011 0011 [0011]…2

• Represent negative numbers as …?

• (we’ll come back to this)

27
(Capital) B (bytes) vs. (lower case) b (bits)

28

Encoding Byte Values

• Byte = 8 bits

• Why?

• Historical Development

• Practicality and Standardization

• A Byte (B; 8 bits) is typically the basic unit of data types

• CPU can't address anything smaller than a byte.

29

•The size and interpretation of a data type depends on PL

•Boolean:

•Examples in data sci.: Y/N or T/F responses

•Just 1 bit needed but actual size is almost always 1B, i.e., 7 bits are

wasted!

• Integer:

•Examples in data science: #friends, age, #likes

•Typically 4 bytes; many variants (short, unsigned, etc.)

•Java int can represent -231 to (231 - 1); C unsigned int can represent 0

to (232 - 1);

Bytes -> Data types: bool, int, float, string, …

30

Digital Representation of Data

Data Types in Python 3

31

• Given k bits, we can represent 2k unique data items

• 3 bytes = 24 bits => 224 items, i.e., 16,777,216 items

• Common approximation: 210 (i.e., 1024) ~ 103 (i.e., 1000); recall

kibibyte (KiB = 1024 B) vs kilobyte (KB = 1000 B) and so on

Q: How many unique data items can be represented by 3 bytes?

Q: How many bits are needed to distinguish 97 data items?

• For k unique items, invert the exponent to get

• But #bits is an integer! So, we only need

• So, we only need the next higher power of 2

• 97 ->128 = 27; so, 7 bits

Digital Representation of Data

32

Q: How to convert from decimal to binary representation?

• Given decimal n, if power of 2 (say, 2k), put 1 at bit position k; if k=0,

stop; else pad with trailing 0s till position 0

• If n is not power of 2, identify the power of 2 just below n (say, 2k);

#bits is then k; put 1 at position k

• Reset n as n - 2k; return to Steps 1-2

• Fill remaining positions in between with 0s

7 6 5 4 3 2 1 0 Position/Exponent of 2
128 64 32 16 8 4 2 1 Power of 2Decimal

510

4710

16310

1610

Q: Binary to decimal?

1 0 1

1 0 1 1 1 1

1 10 0 0 0 1 1

1 0 0 0 0

Digital Representation of Data

33

Digital Representation of Data

void show_squares()

{
 int x;

 for (x = 5; x <= 5000000; x*=10)
 printf("x = %d x^2 = %d\n", x, x*x);
}

x = 5 x^2 = 25

x = 50 x^2 = 2500
x = 500 x^2 = 250000

x = 5000 x^2 = 25000000
x = 50000 x^2 = -1794967296
x = 500000 x^2 = 891896832

x = 5000000 x^2 = -1004630016

34

Two-complement: Simple Example

10 =

-16 8 4 2 1

0 1 0 1 0

-10 =

-16 8 4 2 1

1 0 1 1 0

8+2 = 10

-16+4+2 = -10

35

Encoding Integers

short int x = 15213;

 short int y = -15213;

Unsigned Two’s Complement

Sign Bit

36

Two-complement Encoding Example (Cont.)

x = 15213: 00111011 01101101

 y = -15213: 11000100 10010011

37

Digital Representation of Data

• Float:

• Examples in data sci.: salary, scores, model weights

• IEEE-754 single-precision format is 4B long; double-
precision format is 8B long

• Java and C float is single; Python float is double!

38

• Float:

• Standard IEEE format for single (aka binary32):

Digital Representation of Data

39

Digital Representation of Data

• More float standards: double-precision (float64; 8B) and half-precision (float16;

2B); different #bits for exponent, fraction

• Float16 is now common for deep learning parameters:

• Native support in PyTorch, TensorFlow, etc.; APIs also exist for weight

quantization/rounding post training

https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html

https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html

New magical float standards

What’s the difference between bf16 and fp16?

Fp16 vs. Fp32

NVIDIA Deep Learning SDK support mixed-precision training; 2-3x speedup with

similar accuracy!

43

Digital Representation of Data

• Representing Character (char) and String:

• Letters, numerals, punctuations, etc.

• A string is typically just a variable-sized array of char

• C char is 1B; Java char is 2B; Python does not have a char
type (use str or bytes)

• American Standard Code for Information Interchange

(ASCII) for encoding characters; initially 7-bit; later
extended to 8-bit

• Examples: ‘A’ is 61, ‘a’ is 97, ‘@’ is 64, ‘!’ is 33, etc.

• Unicode UTF-8 is now common, subsumes ASCII; 4B for
~1.1 million “code points” incl. many other language
scripts, math symbols, , etc. 

44

Digital Representation of Data

• All digital objects are collections of basic data types (bytes,

integers, floats, and characters)

• SQL dates/timestamp: string (w/ known format)

• ML feature vector: array of floats (w/ known length)

• Neural network weights: set of multi-dimensional arrays

(matrices or tensors) of floats (w/ known dimensions)

• Graph: an abstract data type (ADT) with set of vertices

(say, integers) and set of edges (pair of integers)

• Program in PL, SQL query: string (w/ grammar)

• Other data structures or digital objects?

Practice Qs (will appear in Final)

Q1: How many space do I need to store GPT-3 ?

Q2: Deep Dive: what does exponent and fraction control in float

point representation?

Q3: What is the difference between BF16 and FP16?

Q1: How many space do I need to store GPT-3 ?

• What is GPT-3

• An ML model with trained weights

• = a software with some built-in data

GPT-3 = +

A few KBs?
Parameters:

How large is this?

Q1: How many space do I need to store GPT-3 ?

Parameters:
How large is this?

Data type?
Bf16: 16-bit 175B

data

2 bytes x 175B

= 350 B bytes

= 350 GB

Practice Qs (review next class)

Q1: How many space do I need to store GPT-3 ?

Q2: What do exponent and fraction control in float point

representation?

Q3: What is the difference between BF16 and FP16?

49

50

Let’s design a fix-point FP6

Sign Integer Fraction

+ 2 1 1/2 1/4 1/8

1+1/4= 1.25

Can represent numbers from -3.875 (111111) to 3.875 (011111).

51

An Example

52

An Example (Cont.)

53

• Float:

• Standard IEEE format for single (aka binary32):

Digital Representation of Data

54

Q2: What does exponent and fraction control?

• Exponent controls: range, offset

• Fraction controls: actual value, precision

Q2: What does exponent and fraction control?

Any problem about floating point (compared to fixed point)?

• More complex (to both human and computers)

• Inconsistent precision

Q3: What is the difference between BF16 and FP16?

Less exponent -> smaller range -> easier to overflow

more exponent -> larger range -> harder to overflow

More fraction -> more precise

less fraction -> less precise

Why BF16 is better in ML/AI?

1. Precision is enough. ML/AI is error-tolerant (why? what is not error-

tolerant?)
2. Deep learning is easy to overflow

3. Conversion between fp32 and bf16 is less effortless

58

Examples in the final exam: FP8

GPT Again

Parameters:
350 GB

GPT = +

A few KBs

Disk

str

[0, 500, 32768, 1008, 922, ….] List[integers]

[0, 25116, 1234, 5984, 6, …]
List[integers]

str

Foundation of Data Systems

• Computer Organization

• Representation of data

• processors, memory, storage

• OS basics

• Process, scheduling

• Memory

61

Basics of Processors

• Processor: Hardware to orchestrate and execute instructions to

manipulate data as specified by a program

• Examples: CPU, GPU, FPGA, TPU, embedded, etc.

• ISA (Instruction Set Architecture):

• The vocabulary of commands of a processor

Program in PL

Compile/Interpret

Program in Assembly Language

Assemble

Machine code tied to ISA

Run on processor

62

Basics of Processors

• Most common approach: load-store architecture

• Registers: Tiny local memory (“scratch space”) on proc. into which

instructions and data are copied

• ISA specifies bit length/format of machine code commands

• ISA has several commands to manipulate register contents

Q: How does a processor execute machine code?

63

Instruction

Register names

addq %rbx, %rax

rax += rbx

is

Bus interface

ALU

Register file

CPU chip

%rax
%rbx

How Fast is Processor

• Instruction / second: number of instructions a processor can do

• Data science: We care more about computation on floating

point numbers

• FLOPS: number of floating point operations a process can do

Problem?

CPU

Magnetic Hard Disk Drive (HDD)

100 GFLOPs/s

1. Assume we use 0.5s to perform 50 FLOPs
2. We need to read 50x2=100 GB in the rest of 0.5s to keep the CPU busy
3. We need the CPU to read at a speed of 100GB / 0.5s = 200 GB/s

80 – 160 MB/s

66

Memory/Storage Hierarchy

Flash Storage

CPU

Main
Memory

Magnetic Hard Disk Drive (HDD)

Cache

Non-Volatile RAM

~GB/s

~10GB/s

~100GB/s
~MBs

 ~$2/MB

~10GBs

 ~$5/GB

~TBs

~$200/TB

~PBs; ~$10/TB

~10TBs

~$30/TB~200MB/s

~50MB/s

67

Writing & Reading Memory Instructions

• Write

• Transfer data from memory to CPU

movq %rax, %rsp

• “Store” operation

• Read

• Transfer data from CPU to memory

movq %rsp, %rax

• “Load” operation

68

Processor

Bus

Control

Unit

Arithmetic

& Logic

Unit

Caches

Dynamic Random

Access Memory

(DRAM)

Input

Devices

Output

Devices
Secondary Storage

(e.g., Magnetic hard

disk, Flash SSD, etc.)

Store; Retrieve

Store; Retrieve

Input; Output; Retrieve

Retrieve;

Process

Registers

Abstract Computer Parts and Data

69

Bus Structure Connecting CPU and Memory

• A bus is a collection of parallel wires that carry address, data, and control

signals.

• Buses are typically shared by multiple devices.

Main
memory

I/O
bridge

Bus interface

ALU

Register file

CPU chip

System bus Memory bus

70

Memory Read Transaction (1)

• CPU places address A on the memory bus.

ALU

Register file

Bus interface

A
0

Ax

Main memory
I/O bridge

%rax

Load operation: movq A, %rax

71

Memory Read Transaction (2)

• Main memory reads A from the memory bus,

retrieves word x, and places it on the bus.

ALU

Register file

Bus interface

x 0

Ax

Main
memory

%rax

I/O bridge

Load operation: movq A, %rax

72

Memory Read Transaction (3)

• CPU reads word x from the bus and copies it into register %rax.

ALU

Register file

Bus interface x

Main memory
0

A

%rax

I/O bridge

Load operation: movq A, %rax

x

73

Memory Write Transaction (1)

• CPU places address A on bus. Main memory reads it and

waits for the corresponding data word to arrive.

y
ALU

Register file

Bus interface

A

Main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A

74

Memory Write Transaction (2)

• CPU places data word y on the bus.

y
ALU

Register file

Bus interface

y

Main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A

75

Memory Write Transaction (3)

• Main memory reads data word y from the bus

and stores it at address A.

y
ALU

Register file

Bus interface y

Main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A

76

Basics of Processors

• Types of ISA commands to manipulate register contents:

• Memory access: load (copy bytes from a DRAM address to

register); store (reverse); put constant

• Arithmetic & logic on data items in registers: add/multiply/etc.;

bitwise ops; compare, etc.; handled by ALU

• Control flow (branch, call, etc.); handled by CU

• Caches: Small local memory to buffer instructions/data

If interested in more details: https://www.youtube.com/watch?v=cNN_tTXABUA

Q: How does a processor execute machine code?

https://www.youtube.com/watch?v=cNN_tTXABUA

What is GPT doing?

Parameters:
350 GB

GPT = +

A few KBs

Disk

[0, 500, 32768, 1008, 922, ….] List[integers]

[0, 25116, 1234, 5984, 6, …]

List[integers]

78

Example

Bus

CU ALU

Caches

DRAM

Disk

Store; Retrieve

Store; Retrieve

Retrieve;

Process
Registers

CPU

Commands interpreted

Arithmetic done within Processors

Monitor
I/O for Display I/O for code I/O for data

	Slide 1: DSC 204A: Scalable Data Systems Fall 2025
	Slide 2: Logistics
	Slide 3: Where We Are
	Slide 4: Logistics
	Slide 5: Foundation of Data Systems
	Slide 6
	Slide 7: What is a computer?
	Slide 8: Basics of Computer Organization
	Slide 9: Basics of Computer Organization
	Slide 10: Key Parts of Computer Hardware
	Slide 11: Key Parts of Computer Hardware
	Slide 12: Key Parts of Computer Hardware
	Slide 13: Key Parts of Computer Hardware
	Slide 14: Abstract Computer Parts and Data
	Slide 15: In Reality
	Slide 16: Parts of a Computer
	Slide 17: Key Aspects of Software
	Slide 18: Key Aspects of Software
	Slide 19: Main kinds of Software
	Slide 20: Main kinds of Software
	Slide 21: Foundation of Data Systems
	Slide 22
	Slide 23
	Slide 24: Digital Representation of Data
	Slide 25: Digital Representation of Data
	Slide 26: Count everything in binary
	Slide 27: (Capital) B (bytes) vs. (lower case) b (bits)
	Slide 28: Encoding Byte Values
	Slide 29: Bytes -> Data types: bool, int, float, string, …
	Slide 30: Digital Representation of Data
	Slide 31: Digital Representation of Data
	Slide 32: Digital Representation of Data
	Slide 33: Digital Representation of Data
	Slide 34: Two-complement: Simple Example
	Slide 35: Encoding Integers
	Slide 36: Two-complement Encoding Example (Cont.)
	Slide 37: Digital Representation of Data
	Slide 38: Digital Representation of Data
	Slide 39: Digital Representation of Data
	Slide 40: New magical float standards
	Slide 41: Fp16 vs. Fp32
	Slide 43: Digital Representation of Data
	Slide 44: Digital Representation of Data
	Slide 45: Practice Qs (will appear in Final)
	Slide 46: Q1: How many space do I need to store GPT-3 ?
	Slide 47: Q1: How many space do I need to store GPT-3 ?
	Slide 48: Practice Qs (review next class)
	Slide 49
	Slide 50: Let’s design a fix-point FP6
	Slide 51: An Example
	Slide 52: An Example (Cont.)
	Slide 53: Digital Representation of Data
	Slide 54: Q2: What does exponent and fraction control?
	Slide 55: Q2: What does exponent and fraction control?
	Slide 56: Q3: What is the difference between BF16 and FP16?
	Slide 57: Why BF16 is better in ML/AI?
	Slide 58: Examples in the final exam: FP8
	Slide 59: GPT Again
	Slide 60: Foundation of Data Systems
	Slide 61: Basics of Processors
	Slide 62: Basics of Processors
	Slide 63: Instruction
	Slide 64: How Fast is Processor
	Slide 65: Problem?
	Slide 66: Memory/Storage Hierarchy
	Slide 67: Writing & Reading Memory Instructions
	Slide 68: Abstract Computer Parts and Data
	Slide 69: Bus Structure Connecting CPU and Memory
	Slide 70: Memory Read Transaction (1)
	Slide 71: Memory Read Transaction (2)
	Slide 72: Memory Read Transaction (3)
	Slide 73: Memory Write Transaction (1)
	Slide 74: Memory Write Transaction (2)
	Slide 75: Memory Write Transaction (3)
	Slide 76: Basics of Processors
	Slide 77: What is GPT doing?
	Slide 78: Example

