https://hao-ai-1lab.github.1o/dsc204a-125/

DSC 204A: Scalable Data Systems
Fall 2025

Staift
Instructor: Hao Zhang
TAs: Mingjia Huo, Yuxuan Zhang

¢ @haozhangml) @haoailab
haozhang@ucsd. edu

https://twitter.com/haozhangml

LOoQistiCS

®* Please finish Beginning of Quarter survey by 10/10
* |[f >=80% finish it, all of you get 1 point
* TA will update completion percentage
* Enrollment approval and waitlist:
* | approve anyone in EASy
* [f you are on enrollment list, wait until end of this week
* Normally we will have new slotfs because some students will
drop affer seeing PAT
* PAT will be posted by EoW

Where We Are

Machine Learning Systems

Big Data

Foundations of Data Systems 1980 - 2000

LOoQistiCS

®* Please finish Beginning of Quarter survey by 10/10
* |[f >=80% finish it, all of you get 1 point
* TA will update completion percentage
* Enrollment approval and waitlist:
* | approve anyone in EASy
* [f you are on enrollment list, wait until end of this week
* Normally we will have new slotfs because some students will
drop affer seeing PAT
* PAT will be posted by EoW

Foundation of Data Systems

* Computer Organization

®* Representation of data

® Drocessors, memory, storage
* OS basics

®* Process, scheduling

* Memory

Q: Whatis a computere

What is a computere

A programmable electronic device that
can store, retrieve, and process digital data.

Peter Naur

Basics of Computer Organization

* Hardware: The electronic
machinery (wires, CIrcults,

fransistors, capacitors,

devices, etc.)

* Software: Programs

Mass Storage
Device

(Instructions) and dafo

Ch. 1, 2.1-2.3, 2.12, 4.1, and 5.1-5.5 of CompOrg Book

Basics of Computer Organization

To store and retneve datqg, we need:
o Disks
 Memory

« Why we need bothe (we'llcome back in near
future)

To process data:
» Processors. CPU and GPU

To retrieve data from remote
o Networks

10

Key Parts of Computer Hardware

®* Processor (CPU, GPU, etc.)
* Hardware 1o orchestrate and execute instructions to

manipulate data as specified by a program

11

Key Parts of Computer Hardware

* Main Memory (aka Dynamic Random Access Memory)
* Hardware to store data and programs that allows very fast

location/retrieval; byte-level addressing scheme

12

Key Parts of Computer Hardware

®* Disk (aka secondary/persistent storage)
* Similar to memory but persistent, slower, and higher capacity /

cost ratio; various addressing schemes

/ = o — e

- "’
!': el

13

Key Parts of Computer Hardware

* Neftwork interface controller (NIC)

* Hardware to send data to / retrieve data over network of

iInferconnected computers/devices

14

Abstract Computer Parts and Data

Processor Store; Retrieve

Arithmetic
Control .
Retri _ Unit & Logic
etrieve; Unit

Process

Dynamic Random

Access Memory
(DRAM)

Bus

Store; Retrieve

Input Output Secondary Storage
Devices Devices (e.g., Magnetic hard

Input; Output; Retrieve

disk, Flash SSD, etc.)

N Reality

SuperlO
Chip 24-pin ATX
Power Connector

Floppy Connector
IDE Connector (x1)

Rear Fan DIMM DDR2
Connector Memory Slots (x2)

CPU Fan CPU Socket
Connector (LGAT75) |

4-pin Chasis Fan
ATX Connecto Connecta

&\
9 AT
S S e
'\. -
— ““\ / :’
e g & U -
> » N
) S . A4 > 2 X
{ . A ’ \ > W
— N 5 =
J ? -
4 S A : 2.2
e W7 IR E RN E ' .
; g \ . | N A 1 \ 4
3‘ % LN | | o8
’ / ¢ i . | IN 1 ! I ar P >
> ” : 2 = | W [: e J > ¥4 -
: > s \ > INHAN IN 4 ¥ . _ SN 7’ T - z .
& s . N % S SRR | | : B ” PN NS %
= 7% 132 | {4 { . &> S y p. W
XSS WHEERERERR R WP L onnectors (X
0, 5 1 33 | . { P .
N 3 [R PARE , & % >~
D A SN\ 11N B A | 111) 5, < S

\ - A \ g N NE l 4 / . - & y
N B Y
\ R % < \ \ | . 0] 3 <
- S | D | N 8 { p SV} /7 PR 2 o
v 1 < y - B 4 ® . e
\ 5 \ P - | S| [y % P S
> - e | R R 2.) > f ‘4
) | - 3 &

Panel Header

USB Headers

Southbridge
(without heatsink)

Northbridge Chipset

CMOS Battery

PCI Slots (x2)

Front Audio
Header

Integrated HD-Audio
codec chip

/O Panel
Connectors

Integrated Ethernet
chip

PCIl Express x16
Slot

PCIl Express x1
Slot

TS e PO

Parts of a Computer

* Hardware: The electronic
machinery (wires, CIrcults,

fransistors, capacitors,

devices, etc.)

® Software: Programs

Mass Storage
Device

(instructions) and data

https: / /www.webopedia.com/TERM /C/computer.html

17

Key Aspects of Software

® |nstruction
* A command understood by hardware; finite vocabulary for a
processor: Instruction Set Architecture (ISA); bridge between
hardware and software
®* Program (aka code)

® A collection of instructions for hardware to execute

18

Key Aspects of Software

* Programming Language (PL)
* A human-readable formal language to write programs; at o
much higher level of abstraction than ISA
* Application Programming Interface (API)
* Aset of functions (“interface”) exposed by a program/set of
programs for use by humans/other programs
* Dara
* Digital representation of information that is stored, processed,
displayed, retrieved, or sent by a program

19

Main kinds of Software

* Frmware
®* Read-only programs “baked into” a device to offer basic
hardware control functionalities
* Operating System (OS)
® Collection of interrelated programs that work as an intermediary
olatform/service to enable application software 1o use hardware
more effectively/easily
* Examples: Linux, Windows, MacQOs, eftc.

20

Main kinds of Software

* Application Software
* A program or a collection of interrelated programs to manipulate
data, typically designed for human use
* Examples: Excel, Chrome, PostgreSQL, efc.

Foundation of Data Systems

* Computer Organization

* Representation of data

® Processors, memory, storage
* OS basics

®* Process, scheduling

* Memory

22

Q: How is data represented in computerse

LS

] R — . B & L ..F...ﬂ-...._“l.lT i = F ..-ll...l.L.l-. L...l.-l!..j‘ = § i L i e .1I1.I|...-I_TL|II-,..I1. L .|“ ...+..|.. ..ul.ll.lﬁ....h.lmll.

TH " MmN
- “ il PR A SEATEBEL

DEFH NP R WA
. . WA Ao Em ol eSS Wad OV TAET THEY LS AR WY I UL

- . e S LD e
= - K - AT JETHL WL - & AR Al TED
S 2lE T YT LW o sk W o . W L L TR s R C Vi Y
| - : A RIS O
Far U W o o 71 2 b B e I W L
i s W B = IR I : - =
L g :.++LL.| " m _._.l..._.IJl...'..I.-IH .-....-..-_. = g |H = ||.|....:_.._J1..||..n....-||
W CO0EsiMAdbdir g N LR
b | e e [Tl nu._.....l .I.l....|..“..1|....'-
e s L...l. .-I.......lll.-.... ...1..‘...I|;...|...II

.. .ulu.__..lr.nu..n-ll.....f..........H...H.qﬂ._...r.
HLUL v ity SRF R TLTRITRY PRI A A0 AR AR |
-

-
e & o - [’ . —_ = L -
Ll - " T e e Y e = ™ ¥ | = LA ! £ - E & (g _.._ .

R Ry I SR = T . Ve AMTAY J S L M EP . A HTlES W= SIS E
| = i = : . ; e iAo a7 FREECEAAUSOCTUN

=
|If # RBUEN A v iHb SN W T &Y
I WEB LWL E A g € g 1 I - e TNMrEE A T VYNd o
SN I EWF AP E Ul ODF B FC X -
| --

T YT I = 2 - . »
|I|_ - e 2 L ™ ¥ |

; |.._+...._-..I,....l..__|.w EETTRF S i wUTT

I EnPaS ULy 4+ ROB=9

- . A A N AT XA Hal L U

I IkIHlH....”II.lnuk....lml.l..llld-l.h.lv

L ET AN v B A A YT EM Ak NTFS
. . L L L A AUNUHEFIE SRS S U

s A E Oy v HEr— =P

nn...r_lx.rﬁ_-lu.:-ul,.u.n___
n & Tl
i - = - ll+
S VAL s Ly,
B4 S rEVUNIST AV ECWEZN ra - o LF binETEED HWL ZaSs M- 2l
J -]] L.l..llW..I.“...l..-.-.l..r.l.ﬂll..l.ﬂl.
e rElE L OBE WA TELVEL & i 4IlY—+~Lo THEWMHEFE M.~ F -
..Ix...t.k.“.l....ll.-ln.l..r.l...l.L.“u..n I |

- L a - 5 . —_—
.T.I.III|1.-. ..Hl.l-ll-ll.l... .‘

OHWLL € & o el & Faf &1 L

“IH+# el -l do&n W

d T RO | $ iy - } FHEm®E S WS AL
- . LTSS A A ST WA WL
- ..I = : = Ih.-.rl .-I|1...||.._.1_

L w12l e+] L LWl Ay RS A A0

. o P g i .
AT VA0SR LR

24

Digital Representation of Data

* Bits: All digital data are sequences of 0 & 1 (binary digits)
* high-low/off-on electromagnetism on disk.
* Data type: First layer of abstraction to interpret a bit sequer

ce with o

human-understandable category of information; interpreta
the PL

lon fixed by

* Example common datatypes: Boolean, Byte, Integer, “floating point”

number (Float), Character, and String
®* Data structure: A second layer of abstraction 1o organize m

ultiple

INnstances of same or varied data types as a more complex object with

specified properties
* Examples: Array, Linked list, Tuple, Graph, efc.

Digital Representation of Data

* Bits: All digital data are sequences of 0 & 1 (binary digits)
* high-low/off-on electromagnetism on disk.

* Data type: First layer of abstraction to interpret a bit sequence with a
human-understandable category of information; interpretation fixed by
the PL
®* c.g.. Boolean, Byte, Integer, “tloating point” number (Float),

Character, and String

* Data structure: A second layer of abstraction to organize multiple
INnstances of same or varied data types as a more complex object with
specified properties
* Examples: Array, Linked list, Tuple, Graph, etc.

26

Count everything in binary

® Use Base 2 to represent Number
® (0,1, 10,11, 100, 101, ...
® Represent 15213,,as0011 1011 01101101,

® Represent 1.20,0as1.0011 0011 0011 0011 [0011]...,

®* Represent negative numbers as ...¢

® (we’ll come back to this)

Internet speed test

Name Sizev Kind
HB50 cupcakes.JPG 2 MB JPEG image
#* Roller Skating.JPG 1.3 MB JPEG image
& 50HBJukebox2.jpg 720 KB JPEG image
== Facebook.tiff 399 KB TIFF image
1 7_days_to_enrol.png 173 KB PNG image
¥ JoggingShoes.jpg 71 KB JPEG image

(Capital) B (bytes) vs. (lower case) b (bifs)

28

Encoding Byte Values

®* Byte = 8 bits
* Whye
* Historical Development
®* Practicality and Standardization
* A Byte (B; 8 bits) is typically the basic unit of data types

* CPU can't address anything smaller than a byte.

Bytes -> Data types: bool, int, float, string, ...

®* The size and inferpretation of a data type depends on PL
® Boolean:
* Examples in data sci.: Y/N or T/F responses

® Just 1 bit needed but actual size I1s almost always 1B, I.e., 7 bits are
wasted!

®* Infeger:
* Examples in data science: #friends, age, #likes
* Typically 4 bytes; many variants (short, unsigned, etc.)

* Java int canrepresent -23'to (231- 1); C unsigned int can represent O
fo (232-1);

30

Digital Representation of Data

(class NoneType)

— v T

Data Types in Python 3

Set types

Integral Real Complex
A (class float) (class complex) /\

Integer Booleans Sets Frozen sets
(Class int) (Class bool) (class set) (class frozenset)
JL]
 Seguences.
Immutable Mutable EEI_LEI;HSE%S
Strings Tuples Bytes Lists Byte Arrays
(class str) (class tuple) (class bytes) (class list) (class bytearray) Callable

< Functions, Methods, Classes >

31

Digital Representation of Data

Q: How many unique dafa items can be represented by 3 bytese

* Given k bits, we can represent 2% unique data items

* 3 bytes = 24 bits => 2?4 items, i.e., 16,777,216 items

* Common approximation: 2'0 (i.e., 1024) ~ 10° (i.e., 1000); recall
kibibyte (KiB = 1024 B) vs kilobyte (KB = 1000 B) and so on

Q: How many bits are needed to distinguish 97 dafa itemse

* For k unique items, invert the exponent to get log, (k)
® But #bits Is an infeger! So, we only need ﬂogz(kﬂ

®* S0, we only need the next higher power of 2

® 97 ->128 = 27; 50, 7 bits

Digital Representation of Data

Q: How to convert from decimal fo binary representatione

* Given decimal n, if power of 2 (say, 2¥), put 1 at bit position k; if k=0,
stop; else pad with trailing Os ftill position O

* |f nis not power of 2, identify the power of 2 just below n (say, 2X);
#bits Is then k; put 1 at position k

®* Reset n as n - 2% return to Steps 1-2
* Fill remaining positions in between with 0s

7] 6 5 4 3
Decimal 128 64 32 16 8

910

4710 T 0 1
1630 1 0 1T 00
1 0

1610

Position/Exponent of 2
Power of 2

0
1
1
1 Q: Binary to decimal?
1
0

33

Digital Representation of Data

void show_squares()

{

Nt X;
for (x = 5; x <= 5000000; x*=10)
orintf("x = %d xA2 = %d\n", X, X*x);

X =5xN\2 =25

X = 50 xA\2 = 2500

X = 500 xA\2 = 250000 §
x = 5000 x/A2 = 25000000 -
X = 50000 xA\2 =-1794967296

X = 500000 xN\2 = 891896832

X = 5000000 xA2 =-1004630016

staeroverflow

34

Two-complement: Simple Example

-16 8 4 2 1
10 = 0 1 O 1 O 8+2

10

-10=1 0 1 1 O -16+4+2

-10

35

Encoding Infegers

Unsigned

w-1 .
i=0

Two’s Complement

short int x
short int y

Sign Bit

w-2 .

B2T(X) = -x,,°2" " + Yx 2’
15213;
-15213;

36

Two-complement Encoding Example (Cont.)

=X

15213: 00111011 01101101

-15213:

11000100 10010011

Weight 15213 -15213
1 1 1 1 1
2 0 0 1 2
4 1 4 0 0
3 1 3 0 0
16 0 0 1 16
32 1 32 0 0
64 1 64 0 0
128 0 0 1 128
256 1 256 0 0
512 1 512 0 0
1024 0 0 1 1024
2048 1 2048 0 0
4096 1 4096 0 0
8192 1 8192 0 0
16384 0 0 1 16384
-32768 0 0 1 -32768
Sum 15213 -15213

37

Digital Representation of Data

* Float:
* Examples in data sci.: salary, scores, model weights

* |[EEE-754 single-precision format is 4B long; double-
precision format is 8B long

* Java and C floaf is single; Python float is double!

33

Digital Representation of Data

* Float:
* Standard |EEE format for single (aka binary32):

5|gn exponent (8 bItS) fraction (23 bits)
EIEIIIIIEIEEIEEEEEEEEEEEEEEEEEEEEE
31 30 23 22 (bit index)

(_1)sign « 9erponent—127 (1 4 Zb23—i2_z

(—1)? x 28471270 5 (1 +1-272%) = (1/8) x (1 + (1/4)) = 0.15625

39

Digital Representation

* More float standards: double

of Dato

-precision (floaté4; 8B) and half-precision (floatlé;

2B); different #bits for exponent, fraction

* Floatléis now common for deep learning parameters:

®* Native support in PyTorch,

‘ensorfFlow, etc.; APIs also exist for weight

guantization/rounding pos

- training

https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html

https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html

New magical float standards

Sign 1 bit
Exponent 8 bits Precision 23 bits
Fraz [HHEEEEE
Exponent 8 bits Precision 7 bits
sricatic [HEEERE
Exponent 5 bits Precision 10 bits
Frie [HIHHEHEE

What's the difference between bf16 and fp 162

Fo16 vs. Fp32

NVIDIA Deep Learning SDK support mixed-precision training; 2-3x speedup with
similar accuracy!

HOME BLOG NEWS FORUMS DOCS DOWNLOADS TRAINING Q

FP64 34 teraFLOPS
FP64 Tensor Core 67 teraFLOPS TRAINING LAYER AUTOMATIC MIXED PRECISION ACCELERATED BY GPU
FP32 67 teraFLOPS % | e .
TF32 Tensor Core 989 teraFLOPS: - X f"

(5 Pooll ’ " .'
BFLOAT]G Tensor COI’E],979 tera FLO P82 Run On Tensor Cores
FP16 Tensor Core 1,979 teraFLOPS?

Using Automatic Mixed Precision for Major Deep Learning Frameworks

FP8 Tensor Core 3,958 teraFLOPS?

43

Digital Representation of Data

* Representing Character (char) and String:
® | efters, numerals, punctuations, etc.

* A string is typically just a variable-sized array of char
® C charis 1B; Java charis 2B; Python does not have a char

type (use str or bytes)
* American Standard Code for Information Ir

(ASCII) for encoding characters; initially 7-bi
extended o 8-bit

* Examples: ‘A’ is 61, '‘a’ is 97, '@" is 64, 'I' s

terchange
I, later

33, etcC.

* Unicode UTF-8 iIs now common, subsumes ASCII; 4B for
~1.1 million “code points” Incl. many other language

scripts, math symbols, &, etc.

44

Digital Representation of Data

* All digital objects are collections of
iIntegers, floats, and characters)

basic data types (bytes,

* SQL dates/timestamp: string (w/ known format)

* ML feature vector: array of floats

(w/ known length)

* Neural network weights: set of multi-dimensional arrays

(matrices or tensors) of floats (w/
* Graph: an abstfract data type (A

known dimensions)

DT) with sef of vertices

(say, integers) and set of edges (pair of integers)
* Program In PL, SQL query: string (w/ grammar)
* Other data structures or digital objectse

Practice Qs (will appear in Final)

Q1: How many space do | need to store GPT-3 ¢
Q2: Deep Dive: what does exponent and fraction conftrol in float

poIiNt representatione
Q3: What is the difference between BF16 and FP16%¢

Q1: How many space do | need to store GPT-3 ¢

* What is GPT-3
* An ML model with trained weights

* = g software with some built-in data

4 C
GPT-3 @ ——
Parameters:

A tew KBs¢ How large is this?

Q1: How many space do | need to store GPT-3 ¢

Data type? # data
- Bf16: 16-bit
g | 1/5B
Parameters: 2 b)’fes X] 75B
How large is this?
= 350 B bytes

= 350 GB

Practice Qs (review next class)

Q1: How many space do | need to store GPT-3 ¢
Q2: What do exponent and fraction conirol in float point

representation?
Q3: What is the difference between BF16 and FP16%¢

49

Fractional Binary Numbers

2:
zf-l
4
e @ @ 2
— 1
bi |bis|eee | b | b bglb-l b.o|bs|eee | b,
12 — I
1‘/4 e o 0
1/8
m Representation 27
" Bits to right of “binary point” represent fractional powers of 2
" Represents rational number: :
P Z bk X 2k
k=—3

Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

50

Let’s design a fix-point FP6

Sign Integer Fraction
0 0o 1 o 1 0
Bit index: 5 4 3 2 1 0
+ 2 1 1/2 1/4 1/8
1+1/4=1.25

Can represent numbers from -3.875 (111111) to 3.875(011111).

ol

An Example

0.62510 —
0.62510 — 01012

0.625,0=0.101,=1.01-2"

52

An Example (Cont.)

0.625,0=0.101,=1.01-2"

1)°- 202140 5+1- 740 5)

sign exponent fraction
(1 bit) (2 bits) (3 bits)
0 0 1 0 1

Bit index: 5 4 3 2 1

53

Digital Representation of Data

* Float:
* Standard |EEE format for single (aka binary32):

5|gn exponent (8 bItS) fraction (23 bits)
EIEIIIIIEIEEIEEEEEEEEEEEEEEEEEEEEE
31 30 23 22 (bit index)

(_1)sign « 9exponent—127 o (1 Zb23—i2_z

(—1)? x 28471270 5 (1 +1-272%) = (1/8) x (1 + (1/4)) = 0.15625

54

Q2: What does exponent and fraction control?

®* Exponent controls: range, offset

®* Fraction conftrols: actual value, precision

5|gn exponent (8 bItS) fraction (23 bits)

31 30 23 22 (bit index)

Q2: What does exponent and fraction control?

Any problem about floating point (compared to fixed point)?
* More complex (to both human and computers)

® [nconsistent precision

Q3: What is the difference between BF16 and FP16¢

IEEE half-precision 16-bit float
sign exponent (5 bit) fraction (10 bit)
L | || |
o(o0|1]1] 0]/ 0o HNONEEEONEOEEOCRNONEONNGRNONEON T Loatl6

15 14 10 9 0

Less exponent -> smaller range -> easier to overflow
More fraction -> more precise

bfloat16
sign exponent (8 bit) fraction (7 bit)
| | |
ojlo |1 1|1 1|1 0] 0 NSNS DT loatl6

15 14 /7 6 0
more exponent -> larger range -> harder to overtlow

less fraction -> less precise

Why BF16 is better in ML/AIZ

1. Precision is enough. ML/Al is error-tolerant (whye what is not error-
folerante)

2. Deep leamning is easy to overtlow

3. Conversion between fp32 and bfl1é Is less effortless

IEEE half-precision 16-bit float
sign exponent (5 bit) fraction (10 bit)
| I l
o0]|1(1]|0]| 0 HOEEEINEEINNIEETRNORNGEEGE Tloatlo

15 14 10 9 0

IEEE 754 single-precision 32-bit float
sign exponent (8 bit) fraction (23 bit) float32

I l I I l
O U I I y Ry (S o Pl o 0 1 O] SO BSOS 0 | SO O SO O [ROS O [0 LR QR EO: RO e O LEON OM IO O] 10

31 30 23 22 0

bfloat16
sign exponent (8 bit) fraction (7 bit)
| - 1
oo |1 |1[1]1]1] 0] o EENEEEGNEOREONEONEON Dfloatl6

15 14 7 6 0

53

Examples in the final exam: FP8

1 4-bits

frac

3-bits

@ You

| cannot believe Artificial general intelligence is just a few Python files and 350GB of S-l-r

GPT Again |

[O, 500, 32768,] 008, 922, .o ..] Lisf[infegers]

1

Disk

PY —

Parameters:

A few KBs 350 GB
'

[0, 25116, 1234, 5984, 6, ...]

Q ChatGPT

It's understandable to be amazed by the progress in artificial intelligence, especially

GPT o

List{integers]

when considering something as advanced as Artificial General Intelligence (AGI). S'I'r
However, the reality is a bit more complex than just a few Python files and a large

dataset.

Foundation of Data Systems

* Computer Organization

®* Representation of data

® processors, memory, storage
* OS basics

®* Process, scheduling

* Memory

61

Basics of Processors

® Processor: Hardware 1o orchestrate and execute insfructions 1o
manipulate data as specified by a program

* Examples: CPU, GPU, FPGA, TPU, embedded, etc.
® [SA (Instruction Set Architecture):
®* The vocabulary of commands of a processor

Program in PL

Compile/Interpret ‘

Program in Assembly Language

Assemble ‘

28483
a0483
28483
BR483
50483
BR483
50483
BR483
58483
BR483
50483
00483

=

Machine code tied to ISA

1

Run on processor

62

Basics of Processors

Q: How does a processor execute machine codee

* Most common approach: load-store architecture

® Registers: Tiny local memory (“scratch space”) on proc. info which
INstructions and data are copied

* |SA specifies bit length/format of machine code commands
* [SA has several commands to manipulate register contents

INstruction

CPU chip
Register file Register names
$rax : ALU | ///A\\
Srbx §
z addq %rbx, Z%rax
—_— T~
IS

. rax += rbx
Bus interface

oo

How Fast Is Processor

[Ill'\h'l'lf'l IA'I':I'\II'\ I hf\’\/\lf\/\l' ™\ 1 IMI"\AI" "\'F :I"\h"'rL

intel cpu floating point per seconds? X !_,) Q

JT

All Images Shopping Videos News More ~ Tools

Generative Al is experimental. Learn more

The floating-point operations per second (FLOPS) of an Intel Core i7 el
processor can vary depending on the model and clock speed. On average, a

mid-range Intel Core i7 processor can perform around 100-200 GFLOPS

(billion floating-point operations per second). v

CPUs can execute floating point calculations, similarly to GPUs, but are
typically one or two orders of magnitude slower. For example, a modern GPU
can do up to ~2 Teraflops while an Intel is ~80 Gigaflops. ~

Form Factor

FP64

FP64 Tensor Core

FP32

TF32 Tensor Core

BFLOATI16 Tensor Core

FP16 Tensor Core

FP8 Tensor Core

H100 SXM

34 teraFLOPS

67 teraFLOPS

67 teraFLOPS

989 teraFLOPS?

1,979 teraFLOPS®

1,979 teraFLOPS®

3,958 teraFLOPS?

Problem?¢

100 GFLOPs/s A

1. Assume we use 0.5s to perform 50 FLOPs
2. We need to read 50x2=100 GB in the rest of 0.5s to keep the CPU busy

3. We need the CPU to read at a speed of 100GB / 0.5s = 200 GB/s

80 — 160 MB/s

Magnetic Hard Disk Drive (HDD)

Memory/Storage Hierarchy
=

~100GB/s

~$5/GB
Non-Volatile RAM

~1Bs
~GB/s Flash Storage $200/TB

=
~200\?B s Magnetic Hard Disk Drive (HDD) :%g‘(fl'sB

~50MB/s ~PBs; ~$10/TB

6/

Writing & Reading Memory Instructions

* Write
* Transfer data from memory to CPU

Movq %rax, %rsp
* “Store” operation

* Read
* Transfer data from CPU to memory
Mmovq %rsp, Jerax
* “Load” operation

68

Abstract Computer Parts and Data

Processor Store; Retrieve

Arithmetic
Control .
Retri _ Unit & Logic
etrieve; Unit

Process

Dynamic Random

Access Memory
(DRAM)

Bus

Store; Retrieve

Input Output Secondary Storage
Devices Devices (e.g., Magnetic hard

Input; Output; Retrieve

disk, Flash SSD, etc.)

Bus Structure Connecting CPU and Memory

* A busis a collection of parallel wires that carry address, data, and control
signails.

® Buses are typically shared by multiple devices.

oo

Register file

: ALU

System bus Memory bus

Main
memory

17

Bus interface

oo

Memory Read Transaction (1)

Register file

srax

10

: ALU

Bus interface

Load operation: movg A, %rax

1/0O bridge

A
N

* CPU places address A on the memory bus.

/0

/

A

Main memory

N\

N
/

0

A

Memory Read Transaction (2)

Register file

srax

10

: ALU

Bus interface

/1

N

N

/

Load operation: movg A, %rax

1/0 bridge

4

X

N

N\

/

Main
memory
0
X A

* Main memory reads A from the memory bus,

retrieves word X, and places it on the bus.

/1

Memory Read Transaction (3)

Register file

: ALU

X
i E Main memory
I/O bridge 0
Bus interface < > < > X A

Load operation: movg A, %rax

srax

* CPUreads word x from the bus and copies it iInto register $rax.

Memory Write Transaction (1)

Register file

srax y

10

: ALU

Bus interface

Store operation: movqg %rax, A

1/0O bridge

A
N

/

A

Main memory
0

N
e A

N\

* CPU places address A on bus. Main memory reads it and

walits for the corresponding data word o arrive.

/3

Memory Write Transaction (2)

Register file

$rax

JIC

: ALU

Bus interface

N
/

A
N

Store operation: movqg %rax, A

1/0 bridge

y

Main memory
0

N
e A

/
N\

* CPU places data word y on the bus.

/4

Memory Write Transaction (3)

Register file Store operation: movg %$rax, A
: ALU

srax y

ﬁ Main memory
1/O bridge 0
Bus interface < > < > y A

* Main memory reads data word y from the bus

and stores It at address A.

/6

Basics of Processors

Q: How does a processor execute machine codece

* Types of ISA commands to manipulate register contents:

* Memory access: load (copy bytes from a DRAM address 1o
reqgister); store (reverse); put constant

* Arithmetic & logic on data items in registers: add/multiply/etc.;
bitwise ops; compare, etc.; handled by ALU

* Control flow (branch, call, etc.); handled by CU
® Caches: Small local memory to butter instructions/dato

If interested in more details: https://www.youtube.com/watch?v=cNN_tTXABUA

https://www.youtube.com/watch?v=cNN_tTXABUA

What is GPT doinge

GPT

a You

| cannot believe Artificial general intelligence is just a few Python files and 350GB of

weights

[0, 500, 32768, 1008, 922, ...]

!

Disk

o

PY

A few KBs

-+ —_

Parameters:

350 GB

!

[0, 25116, 1234, 5984, 6,...]

Q ChatGPT

It's understandable to be amazed by the progress in artificial intelligence, especially

when considering something as advanced as Artificial General Intelligence (AGI).

However, the reality is a bit more

dataset.

complex than just a few Python files and a large

List{integers]

&

List{integers]}

/8

Example

Retrieve; | |Registers

Process

Caches |&F D

Commands interpreted

Bus

/O for Display

ChatGPT

It's understandable to be amazed by the progress in artificial intelligence, especially
when considering something as advanced as Artificial General Intelligence (AGI).
However, the reality is a bit more complex than just a few Python files and a large

dataset.

Arithmetic done within Processors

Store; Retrieve

/O far code .

Store; Retrieve

| cannot believe Artificial
weights

	Slide 1: DSC 204A: Scalable Data Systems Fall 2025
	Slide 2: Logistics
	Slide 3: Where We Are
	Slide 4: Logistics
	Slide 5: Foundation of Data Systems
	Slide 6
	Slide 7: What is a computer?
	Slide 8: Basics of Computer Organization
	Slide 9: Basics of Computer Organization
	Slide 10: Key Parts of Computer Hardware
	Slide 11: Key Parts of Computer Hardware
	Slide 12: Key Parts of Computer Hardware
	Slide 13: Key Parts of Computer Hardware
	Slide 14: Abstract Computer Parts and Data
	Slide 15: In Reality
	Slide 16: Parts of a Computer
	Slide 17: Key Aspects of Software
	Slide 18: Key Aspects of Software
	Slide 19: Main kinds of Software
	Slide 20: Main kinds of Software
	Slide 21: Foundation of Data Systems
	Slide 22
	Slide 23
	Slide 24: Digital Representation of Data
	Slide 25: Digital Representation of Data
	Slide 26: Count everything in binary
	Slide 27: (Capital) B (bytes) vs. (lower case) b (bits)
	Slide 28: Encoding Byte Values
	Slide 29: Bytes -> Data types: bool, int, float, string, …
	Slide 30: Digital Representation of Data
	Slide 31: Digital Representation of Data
	Slide 32: Digital Representation of Data
	Slide 33: Digital Representation of Data
	Slide 34: Two-complement: Simple Example
	Slide 35: Encoding Integers
	Slide 36: Two-complement Encoding Example (Cont.)
	Slide 37: Digital Representation of Data
	Slide 38: Digital Representation of Data
	Slide 39: Digital Representation of Data
	Slide 40: New magical float standards
	Slide 41: Fp16 vs. Fp32
	Slide 43: Digital Representation of Data
	Slide 44: Digital Representation of Data
	Slide 45: Practice Qs (will appear in Final)
	Slide 46: Q1: How many space do I need to store GPT-3 ?
	Slide 47: Q1: How many space do I need to store GPT-3 ?
	Slide 48: Practice Qs (review next class)
	Slide 49
	Slide 50: Let’s design a fix-point FP6
	Slide 51: An Example
	Slide 52: An Example (Cont.)
	Slide 53: Digital Representation of Data
	Slide 54: Q2: What does exponent and fraction control?
	Slide 55: Q2: What does exponent and fraction control?
	Slide 56: Q3: What is the difference between BF16 and FP16?
	Slide 57: Why BF16 is better in ML/AI?
	Slide 58: Examples in the final exam: FP8
	Slide 59: GPT Again
	Slide 60: Foundation of Data Systems
	Slide 61: Basics of Processors
	Slide 62: Basics of Processors
	Slide 63: Instruction
	Slide 64: How Fast is Processor
	Slide 65: Problem?
	Slide 66: Memory/Storage Hierarchy
	Slide 67: Writing & Reading Memory Instructions
	Slide 68: Abstract Computer Parts and Data
	Slide 69: Bus Structure Connecting CPU and Memory
	Slide 70: Memory Read Transaction (1)
	Slide 71: Memory Read Transaction (2)
	Slide 72: Memory Read Transaction (3)
	Slide 73: Memory Write Transaction (1)
	Slide 74: Memory Write Transaction (2)
	Slide 75: Memory Write Transaction (3)
	Slide 76: Basics of Processors
	Slide 77: What is GPT doing?
	Slide 78: Example

