DSC 204A: Scalable Data Systems

Programming Assignment 1

January 2024

1 Introduction

The objective of this programming assignment is to acquaint you with processing large datasets using Ray
and Modin. Task 1 guides you in setting up Ray and Modin on your local system. Task 2 introduces you
to computing descriptive statistics on a large dataset and parallelizing fundamental dataframe operations.
Task 3 aims to enhance your comprehension of the Ray Core API and parallelizing computations.

2 Task 1: Setting up Ray and Modin

In this section, we show how to set up Ray and Modin. We recommend to use the scipy-ml-notebook
environment on [DataHub, but you can also do this on your local machine. If you’re working on Win-
dows, we recommend using WSL to operate a Linux environment on your machine instead of Windows itself.
This is because Ray is still in its beta phase for Windows. The setup instructions for WSL are available here.

We suggest that you use Anaconda to create an environment with it’s Python version set to 3.10 or lower
(Ray on Python 3.11 and above is experimental, and may cause issues). The instructions on Anaconda
installation can be found here.

Once Anaconda is installed, create a new environment:

conda create -n ray_env python=3.10

and activate it:

conda activate ray_env

Once you're in the ray_env environment, install Ray:

pip install ray==2.9.1

To check if Ray has been installed successfully, you can run the following command -
python -c "import ray; print(ray.__version_.)"

Similarly, to install Modin, use the command -


https://datahub.ucsd.edu/
https://learn.microsoft.com/en-us/windows/wsl/install
https://docs.anaconda.com/free/anaconda/install/index.html

pip install modin

and verify it’s version out as well, similar to how we checked the Ray installation.

3 Task 2: Data Manipulation with Modin (45)

In this question, you will be required to perform some basic data manipulation with Modin| (Pandas on Ray).
Modin is a library that allows users to perform Pandas workloads at scale. In this assignment, we will focus
on parallelizing dataframe operations with Modin.

We will use a subset of the Amazon Reviews dataset. if you're working locally, please download the
dataset from here. On DataHub, the dataset is provided to you at public/modin dev_dataset.csv The
dataset has the schema shown in Table [I]

Column name | Column description
reviewerID ID of the reviewer

vote Helpful votes of the review
overall Rating of the product
unixReviewTime | Time of the review (unix time)
reviewTime Time of the review (raw)

Table 1: The Amazon Reviews Dataset

3.1 Task 2.1

Perform a few data manipulation operations on this dataset and generate a new table with the schema shown
in Table [2l We have provided expected output statistics for you so that you can verify your work. Please
use the output function we provided to save the table you generated.

Column name Column description

reviewerlD ID of the reviewer

num_product_reviewed | Total number of products reviewed by this reviewer

mean_rating The average rating this reviewer has given across all reviewed products
latest_review_year The latest year this reviewer has given a review

num_helpful_votes The total number of helpful votes this reviewer has gotten

Table 2: Schema for the processed dataframe

3.2 Task 2.2

Change the number of cpus used by Modin or the Ray backend (documentation here) on your instance and
run your data manipulation code. Document the execution times you see with 2, 3 and 4 CPUs. Is it a
linear speedup? If not, why?


https://docs.ray.io/en/latest/ray-more-libs/modin/index.html
https://drive.google.com/file/d/1TBmCScEnR1ui6qyQSS5OwfVki4hDs_uR/view?usp=sharing
https://modin.readthedocs.io/en/stable/getting_started/using_modin/using_modin_locally.html#advanced-configuring-the-resources-modin-uses

3.3 Grading Rubric

For Task 2.1, there are 4 columns (apart from the ID) in the output table. If all descriptive stats (mean, std
dev, min, and max) with 1% error margin match the ground truth, we award 10 points per column. Task
2.2 is worth 5 points.

4 Task 3: The Ray Core API (55)

This question will focus on becoming familiar with the Ray Core API, with the three key abstractions: Ray
tasks, Ray actors and Ray objects. Strictly speaking, you only need to know about parallelizing computations
with Ray tasks to solve this question.

4.1 Task 3.1

We will implement a distributed merge sort algorithm in Python. The standard merge sort algorithm uses
a divide and conquer strategy to partition a given sequence into two halves, and then recursively sorts these
two halves. The crucial phase is the merge step, where two sorted halves are merged to get a final sorted
list. We will focus on a slightly modified version of the algorithm :

e In the first stage, the input sequence is partitioned into 4 subsequences.

e Next, each subsequence is sorted through a call to the standard merge sort algorithm (i.e 2 partitions
recursively sorted and merged).

e Finally, the 4 sorted subparts are merged using a heap-based merge algorithm.

A plain implementation of this algorithm is provided to you (plain merge_sort). Your task is to use Ray
to parallelize computations to utilize all 4 CPUs (merge_sort_ray). The file to modify is merge_sort_ray.py.
Parts of the code that can and cannot be modified are also highlighted in the comments. Your goal should
be to get a speedup (measured as the ratio of time taken for plain sorting/ time taken with Ray) of around
1.64 (but this can be higher depending on the machine; we observe around 2.0 speedup on DataHub).

P.S: You're not supposed to make algorithmic changes here (i.e change the heap-based algorithm to
something else, etc). Focus on what tasks can and can’t be parallelized and use Ray. For sorting calls within
your Ray implementation, you should use plain merge_sort - this is to clearly see what speedup you get
with Ray. Using the built-in Python sorting function sorted() in merge_sort_ray will, of course, give you
a speedup with simply algorithmic improvements (which is not our intention).

4.2 Task 3.2

The ideal speedup you can get for a task with 4 workers is, of course, 4. Can you estimate the theoretical
maximum speedup you can get for the above merge sort algorithm (in terms of the time for sorting sublists,
and the time for merging)? How do you account for the difference between theoretical result and the observed
speedup with Ray?

4.3 Grading Rubric

Task 3.2 is worth 5 points. For Task 3.1, your merge sort code will first be checked for accuracy: We expect
the code to accurately sort the given list. Incorrect code will not receive any points. For runtime, we will
run your scripts thrice and get the average runtime. We will use the following rubric for runtime:



Speedup Score
Atleast 1.5 50
Between 1.3 and 1.5 | 40
Between 1 and 1.3 20

1 or less 0

Table 3: Rubric for Task 3.1

5 Deliverables

For Task 2.1 and 3.1, you will need to fill in the code in the respective .py files. For Task 2.2 and 3.2, please
write down your answers in a document titled ”Report” (can be a word document or latex formatted) and
submit it along with your code.

6 Tips

Since you are running the assignment locally, it may require a substantial amount of RAM. We suggest
that you do not have any other RAM-heavy processes running on your computer while your code is
running, to avoid Out-of-Memory errors. In the event that Out-of-Memory errors persist despite your
code being the sole process running on your machine, please reach out to the TAs during their office
hours.

While testing your code, it might be helpful to operate on a smaller version of the given data (for
example, a smaller list in Task 3) in order to catch errors and iterate faster.

Use separate columns for raw and processed data in Task 2 to prevent accidental data corruption.

For Task 3, we expect you to analyse the plain merge_sort algorithm and modify it to add in paral-
lelization with Ray. Nothing more!



	Introduction
	Task 1: Setting up Ray and Modin
	Task 2: Data Manipulation with Modin (45) 
	Task 2.1
	Task 2.2
	Grading Rubric

	Task 3: The Ray Core API (55)
	Task 3.1
	Task 3.2
	Grading Rubric

	Deliverables
	Tips

