
DSC 204A: Scalable Data Systems

Programming Assignment 3

Due Date: March 13, 2024

1 Introduction

The goal of this programming assignment is to train and tune a machine learning model with Ray. First,
we’ll perform feature engineering on the Amazon Reviews dataset. In the second part, we’ll train a machine
learning model and tune its hyperparameters with Ray. The setup is the same as PA 2, with a 3-node Ray
cluster on Datahub. As before, you should make sure to go through the setup instructions in Section 5 before
attempting the tasks.

Note: Please get started as early as you can. You have limited time to complete this assignment. Each
task in itself should not take long, but given that you might be familiar with Ray Train/Tune APIs, we
recommend that you plan early.

2 Preliminaries

2.1 Dataset

The schema for the dataset is given below:

1. product (metadata_header.csv)

|-- asin: string, the product id, e.g., ‘A00H8HVV6E’

|-- salesRank: map, a map between category and sales rank, e.g., {‘Home & Kitchen’: 796318}

| |-- key: string, category, e.g., ‘Home & Kitchen’

| |-- value: integer, rank, e.g., 796318

|-- categories: list, list of list of categories, e.g., [[‘Home & Kitchen’, ’Artwork’]]

| |-- element: list, list of categories, e.g., [‘Home & Kitchen’, ’Artwork’]

| | |-- element: string, category, e.g., ‘Home & Kitchen’

|-- title: string, title of product, e.g., ‘Intelligent Design Cotton Canvas’

|-- price: float, price of product, e.g., 27.9

|-- related: map, related information, e.g., {‘also_viewed’: [‘B00I8HW0UK’]}

| |-- key: string, the attribute name of the information, e.g., ‘also_viewed’

| |-- value: array, array of product ids, e.g., [‘B00I8HW0UK’]

| | |-- element: string product id , e.g., ‘B00I8HW0UK’

2. product_processed (product_processed.csv)

|-- asin: string, same as above

|-- title: string, title column after imputation, e.g., ‘Intelligent Design Cotton Canvas’

|-- category: string, category column after extraction, e.g., ‘Home & Kitchen’

1

datahub.ucsd.edu

3. review (user_reviews_train.csv)

|-- asin: string, same as above

|-- reviewerID: string, the reviewer id, e.g., ‘A1MIP8H7G33SHC’

|-- overall: float, the rating associated with the review, e.g., 5.0

For Task 1, we will be working mostly with the product information datasets - product for Task 1.1 -
1.3 and product processed for Task 1.4.

For Task 2, we’ll use the following preprocessed datasets:

1. ml_features_train

|-- feat_0-46: float, features (contiguous) from user and product data

|-- overall: integer, review rating

2. ml_features_test

|-- feat_0-46: float, same as above

|-- overall: integer, same as above

All the datasets have been placed in the shared course directory1. Thus, you do not have to move, modify
or download any of them.

2.2 Deliverables

As before, we’ll be using nbgrader for this assignment. For each task, there is an expected result with a
pre-defined schema. Each output is stored in a dictionary res:

res

| -- single_value: int --- an integer number

| -- list_of_values --- list of values

| -- element: float --- a float value

You can refer to the task-specific notebooks to get a better sense of how this looks. Make sure that the
datatypes for each entry matches the given scheme. In some cases, you might need to explicity cast the
result to the presented datatype (for example, np.int64 to int).

3 Task 1: Feature Engineering with Modin on Ray

3.1 Task 1.1: Flatten categories and salesRank

1. For the product table, each item in column categories contains a list of lists of hierarchical categories.
The schema is list(list(string)). We are only going to use the most general category, which is the
first element of the nested list: my categories[0][0]. For each row, put the first element of categories
in a new column category. If categories is null or empty (e.g., []), put a null in your new column.

2. On the other hand, each entry in column salesRank is a key-value pair: (bestSalesCategory, rank).
Your task is to flatten it into two columns. Put the key in a new column named bestSalesCategory

and the value in bestSalesRank. Put null if the original entry was null or empty.

The schema of output is as follows:

1∼/public/pa3

2

res

| -- count_total: int -- count of rows of the transformed table, including null rows

| -- mean_bestSalesRank: float -- mean value of bestSalesRank

| -- variance_bestSalesRank: float -- variance of ...

| -- numNulls_category: int -- count of nulls of category

| -- countDistinct_category: int -- count of distinct values of ..., excluding nulls

| -- numNulls_bestSalesCategory: int -- count of nulls of bestSalesCategory

| -- countDistinct_bestSalesCategory: int -- count of distinct values of ..., excluding nulls

3.2 Task 1.2: Flatten related

Each entry of related column is a map with four keys/attributes: also bought, also viewed, bought together,
and buy after viewing. Each value of these keys contains an array of product IDs (”attribute arrays”).
You need to calculate the length of the arrays and find out the average prices of the products in these arrays.

1. For each row of related: calculate the mean price of all products from the also viewed attribute array.
Put it in a new column meanPriceAlsoViewed. Remember to ignore the product IDs if they do not
match any record in product. Or if they match records in product, but the records have null in the
price column. Do not ignore products if they have price = 0.

2. Similarly, put the length of that array in a new column countAlsoViewed. In this case, you do not
need to check if the product IDs in that array are dangling references and do not have matching records
in product. Put null (instead of zero) in the new column, if the attribute array is null or empty.

3. The schema of the output dictionary res should be -

res

| -- count_total: int -- count of rows of the transformed table, including null rows

| -- mean_meanPriceAlsoViewed: float -- mean value of meanPriceAlsoViewed

| -- variance_meanPriceAlsoViewed: float -- variance of ...

| -- numNulls_meanPriceAlsoViewed: int -- count of nulls of ...

| -- mean_countAlsoViewed: float -- mean value of countAlsoViewed

| -- variance_countAlsoViewed: float -- variance of ...

| -- numNulls_countAlsoViewed: int -- count of nulls of ...

3.3 Task 1.3: Impute price

You may have noticed that there are lots of nulls in the table. Now your task is to impute them with
meaningful values that can be used to train machine learning models. You need to impute the numerical
column price as well as a string column title.

1. For column price, first cast every entry to float type. Then impute the nulls with the mean of all
the non-null values. Store the outputs in a new column meanImputedPrice.

2. Same as above, but this time impute with the median value. Store the imputed data in a new column
medianImputedPrice. For both these numerical imputation tasks, you may use the SimpleImputer

from sklearn.impute.

3

3. For column title: As for the string-typed columns, we want to impute nulls and empty strings sim-
ply with a special string ‘unknown’. Store the imputed data in a new column unknownImputedTitle.

4. Schema of res should look like

res

| -- count_total: int -- count of rows of the transformed table, including null rows

| -- mean_meanImputedPrice: float or None -- mean value of meanImputedPrice

| -- variance_meanImputedPrice: float -- variance of ...

| -- numNulls_meanImputedPrice: int -- count of nulls of ...

| -- mean_medianImputedPrice: float or None -- mean value of medianImputedPrice

| -- variance_medianImputedPrice: float -- variance of ...

| -- numNulls_medianImputedPrice: int -- count of nulls of ...

| -- numUnknowns_unknownImputedTitle: float -- count of ’unknown’ value

entries in unknownImputedTitle

3.4 Task 1.4: Process title and one-hot encode category

For this task, we will use the imputed dataset product processed.csv. You need to perform the following:

1. For each row, convert title to lowercase, then split it by whitespace (‘ ’) to an array of strings. Store
this array in a new column titleArray.

2. Calculate the mean length of the array in titleArray.

3. One-hot encode the category column. In this case, make sure to use the sorted order of the unique
categories to form the one-hot vector. That is, in the resultant one-hot vector, the array indices should
correspond to the category names in sorted order.

The output schema is below:

res

| -- count_total: int, count of rows of the transformed table,

| -- meanLength_titleArray: float, mean length of the array titleArray

| -- mean_categoryOneHot: list, mean value of one-hot encoding vectors

4 Task 2: Training and Tuning with Ray

In this task, you will train a machine learning model using the preprocessed data using Ray Train. We’ll
then tune hyperparameters with Ray Tune. We are providing you with the final processed dataframes for
training and testing your models.

4.1 Task 2.1: Distributed Xgboost with Ray Train

You need to train an Xgboost model to predict the user rating for a product.

1. Follow the instructions in Task2.ipynb. The model should be trained with a regression objective to
minimize the mean squared error.

4

https://xgboost.readthedocs.io/en/stable/index.html

2. The max depth parameter of the model must be set to 3, the eta value to 0.3. All other parameters
of the model should be left to default values.

3. For the Ray trainer, set the ScalingConfig appropriately with a limit of 6 cpus per worker (you can
make this smaller if your container limits are smaller).

4. After training, you also need to write inference code to get predictions for the test dataset.

The schema of the output would be:

res

| -- test_rmse: float --- RMSE of the test set predictions

| -- train_rmse: float --- RMSE of the train set predictions

4.2 Task 2.2: Tuning with Ray Tune

We’ll now perform a grid search for 3 Xgboost hyperparameters - max depth, eta and subsample. Given
our limited computational budget, we’ll focus on a small grid of values:

• max depth: [3, 4, 5]

• eta: [0.3, 0.5]

• subsample: [0.8, 1.0]

Your task is as follows:

1. Create a new training and validation set from the original training data - with a random split of 75/25.

2. Train Xgboost models with 12 hyperparameter trials over the given grid using Ray Tune.

3. Select the best model with the lowest validation RMSE.

The schema of the output is as follows:

res

| -- test_rmse: float --- RMSE of the test set predictions for

the best model

| -- valid_rmse: float --- RMSE of the validation set

predictions for the best model

| -- valid_depth_5_eta_0 .3 _subsample_0 .8: float --- RMSE of the

validation set predictions for max_depth =5, eta=0.3,

subsample =0.8

| -- valid_depth_4_eta_0 .3 _subsample_1: float --- RMSE of the

validation set predictions for max_depth =4,

| -- valid_depth_3_eta_0 .5 _subsample_1: float --- RMSE of the

validation set predictions for max_depth =3,

Some helpful resources:

5

Figure 1: Datahub server selection

• Distributed Xgboost with Ray train

• Offline Batch Inference with Ray Data

• Ray Tune with Xgboost

5 Development Instructions

We’ll be using the same setup on DataHub as PA 2 for this assignment. A quick summary of instructions is
given below:

• Select the ray-notebook environment with 8 CPUs, 32GB RAM in the head node, as shown in Figure
1. We’re providing increased memory and CPUs to help with large dataset processing and training for
this assignment.

• As before, you should check the Ray dashboard to verify that all the nodes are online.

• You can fetch the assignments under the ”Assignments” tab on DataHub. Your task is to complete
the notebooks Task1.ipynb and Task2.ipynb in the appropriate sections.

5.1 Restarting the cluster

If you want to restart your cluster, you should navigate to the ”Control Panel” button shown in the top
right and click on ”Stop My Server”. Logging out (”Logout”) does not stop your Ray cluster.

6

https://docs.ray.io/en/latest/train/examples/xgboost/xgboost_example.html
https://docs.ray.io/en/latest/data/batch_inference.html#batch-inference-home
https://docs.ray.io/en/latest/tune/examples/tune-xgboost.html
https://hao-ai-lab.github.io/dsc204a-w24/assets/assignments/Assignment_2.pdf

Sometimes, you might want to clear out occupied memory from a previous code block, in which case you
should run ray.shutdown() and, if possible, restart the notebook. With Ray, you should not try to stop
the Ray instance running on the head node (that is, do not run ray stop in the terminal). Stick to using
ray.init() (which connects to the existing Ray instance) and ray.shutdown() (which disconnects from
the Ray instance) while developing your solutions. If you do end up running ray stop, simply restart your
cluster as mentioned above.

5.2 Package installations

All the required packages have been installed for you in the Ray cluster. Thus, you do not need to install
any libraries yourself for completing this assignment. With DataHub, it is better to exercise caution here
even if you want to do some experimentation: libraries you install via pip will be a user installation, saved
in your private directory. Installations will thus remain even if you restart your cluster. If you do end up
installing a package that breaks your environment, then a simple restart will not solve the issue! In such a
case, make sure to review the user installed libraries via pip list --user and uninstalling them through
pip uninstall <package>

5.3 Verifying your solution

For this assignment do not use nbgrader’s ”Validate” button. Instead, to verify the correctness of your
submission: Do the following:

• Run all the cells in both the notebooks. This will write out your results to json files. Verify that all
the cells have successfully ran! If your code errors out during grading, you will not receive any points!

• Use the notebook PA3Test to run tests for each task.

7

6 Grading scheme

We will follow the grading scheme in Table 1. Your code must pass all the tests to be counted pass for a
given subtask.

Task No. Task Description Score (Pass/Fail)
Task 1.1 Flatten schema and handle list/dict types 15/0
Task 1.2 Flatten schema and perform self-joins 15/0
Task 1.3 Data imputation 10/0
Task 1.4 Apply one hot encoding 10/0
Task 2.1 Distributed Xgboost with Ray Train 25/0
Task 2.2 Tuning with Ray Tune 25/0

Table 1: Grading Rubric for Programming Assignment 3

The runtime for our Task 1 and Task 2 notebooks are about 10 minutes. We will first run your notebooks
with a maximum timeout of 40 minutes per task. If your notebook exceeds the given time limit, or if the
code errors out, you will not receive any points for that task/subtask.

7 Acknowledgements

This assignment draws extensively from the PySpark programming assignment from DSC 102.

8

	Introduction
	Preliminaries
	Dataset
	Deliverables

	Task 1: Feature Engineering with Modin on Ray
	Task 1.1: Flatten categories and salesRank
	Task 1.2: Flatten related
	Task 1.3: Impute price
	Task 1.4: Process title and one-hot encode category

	Task 2: Training and Tuning with Ray
	Task 2.1: Distributed Xgboost with Ray Train
	Task 2.2: Tuning with Ray Tune

	Development Instructions
	Restarting the cluster
	Package installations
	Verifying your solution

	Grading scheme
	Acknowledgements

