PA2 Discussion Session
DSC 204a, Winter 2024

Programming Assignment 2

e Introduction to Ray Data: simple ops on a multi-node setup (20, Easy)
e MapReduce with Ray Actors (40, Easy)
e Collective Communication with Ray (40, Medium/Hard)

Ray Data

sooi) BE 1 MARS K

I

ray.data.Dataset| 1F O

T l O XGBoost

JSON, CSV, Parquet, numpy, binary
files, custom datasources

Standard way to load and
exchange data in Ray

hhnh Wiw |

Basic distributed ops:
map, filter, and repartition

Source

ds = ray.data.read_parquet(...)

Pass datasets to tasks and actors
func.remote(ds)

Split datasets into shards
shards = ds.split(xgboost.num_workers,
locality_hints=xgboost.workers)

Distributed training on datasets
for i, s in enumerate(shards):
xgboost.workers[i].train.remote(s)

Seamless interop with Ray tasks,
actors, and libraries

https://docs.ray.io/en/latest/data/data.html

Ray Data: Transform Internals

Map Task

— 2

Map Task

—

Map Task

— 2

Map Task

.

ds.map_batches(stateless_fn)

Source

KX —
K
| Blook

K —

Actor Pool
(min_size=10,
max_size=20)

BN
-
B

—

ds.map_batches(callable_cls,
compute=ActorPoolStrategy(
min_size=10, max_size=20,

))

https://docs.ray.io/en/latest/data/data-internals.html

Revisiting Ray Core: Ray Actors

Python —RayAPIs ¢ . .3

. ; Task Distributed

ef £(x): @ray.remote

do something with x: —.- def f(x): —_— [f()] eoe [f()]
yE . # do something with x: Node Node
return y y= ..

return y

lass C1 ; @ray.remote o .

5 a:: :,(,it (self, class Cls(): Distributed

x): - - Actor def —_— Cls T C|S()
def f(self, a): —Anit_(self, x): Node Node

—_— def F(self, a):

ok Lo i def g(self, a):
, a):

a; ﬁp arange(l, 10e6) Distributed " . . D t b t d

b=a*2 e = np. (1, 10e6) Istripute
immutable obi_a = ray.put(a)
object e Node Node
—'

B 57 2Sou rce

SUMMIT 22

https://github.com/ray-project/ray-educational-materials

Motivation

e Come back to single-process land Iclas: SRl i
e init__ (se :
o How would asimple Counter look like? e o N
e How can you use this in a multi-process e
Setting? setf.valui;»: 1
reurn se Value
e Multi-process: How do you handle concurrent
def get_counter(self):
UpdateS? return self.value
L MUIti_proceSS: HOW can we dO this in d # Create an instance from this class.
multi-node Setting? counter = Counter()

e Multi-process: Can | keep code complexity to a
minimum?

Motivation

import ray

|class Counter: @ray.remote
def __init__(self): class Counter:
self.value = 0 def __init__ (self):
self.value = @

def increment(self):
self.value += 1 def increment(self):

return self.value - > self.value += 1
return self.value
def get_counter(self):

def get_counter(self):
return self.value

return self.value

Create an instance from this class. # Create an actor instance |from this class.
counter = Counter() counter = Counter.remote()

Ray Actors: Checks all the boxes!

Ray Actors

Recall: Ray tasks are remote functions. Executed asynchronously.
Internals: A worker process handles the execution of a ray task.

Ray Actor: A worker process with state.

Counter.remote()
(o] o

o

Python Driver

Ray Core Worker

(4]

Python Werker Actor

et
(2) ExecuteTask RPC

Ray Core Worker

(1) GetWorkerlLease RPC

hJ

Raylet

Creating an actor is done by scheduling the __init__ task for the actor. That actor creation task leases the worker

forever until the actor is destroyed.

Source

https://github.com/ray-project/ray-educational-materials

Ray Actors

e The actor process handles all executions of methods and updates its state.

c.increment.remote() self.value += 1
O

O

o]
Python Driver Python Actor
Ray Core Worker > Ray Core Worker
ExecuteTask RPC

Once created, actor tasks translate into direct gRPC calls to the actor process. An actor can handle many
concurrent calls, though here we only show one.

Source

https://github.com/ray-project/ray-educational-materials

Task 2

e Implement MapReduce with Ray Actors

e Prereq-MapReduce basics:
o References: Definition, Whitepaper, Ray task implementation
o Coveredinclass on Friday (Feb 23)

e Prereq- Ray Actors:

o Moreinthe discussion notebook

https://www.databricks.com/glossary/mapreduce
https://hao-ai-lab.github.io/dsc204a-w24/assets/readings/mapreduce.pdf
https://github.com/maxpumperla/learning_ray/blob/main/notebooks/ch_02_ray_core.ipynb

Task 3

Implement AlIReduce with Ray’s Collective Communication Lib
Fun Fact: This lib was written by Prof. Hao Zhang!

CPU-only communication with GLOO backend

More in the discussion notebook

References

https://docs.ray.io/en/latest/data/data-internals.html
https://docs.ray.io/en/latest/data/data.html
https://docs.ray.io/en/latest/ray-core/actors.html
https://github.com/ray-project/ray-educational-materials

https://docs.ray.io/en/latest/data/data-internals.html
https://docs.ray.io/en/latest/data/data.html
https://docs.ray.io/en/latest/ray-core/actors.html
https://github.com/ray-project/ray-educational-materials

