DSC-204A: Scalable Data Systems, Winter 2024
15: Parallelism

Lecturer: Hao Zhang Scribe: Albert Zhong

1 3 Paradigms of Multi-Node Parallelism Implementations

e 3 paradigms: shared nothing, shared disk, shared memory

Interconnect

Interconnect Interconnect
L - - - - a - i -
- S . - W - S
Shared-Nothing Shared-Disk Shared-Memory
Parallelism Parallelism Parallelism

Figure 1: The 3 Paradigms

1.1 Shared Nothing Parallelism(Horizontal Scaling)
e Most popular
e Each node uses its CPUs, RAM, and disks independently

e The most vanilla but also most complex system

— Need to somehow maintain consistency, communication, coordination

Advantages: performance, cost

Disadvantages: complexity, involves many constraints and trade offs

e Database cannot hide any of the issues involved from you

2 15: Parallelism

2 DMetrics to Evaluate Distributed Big Data Systems

e Scalability - data volume and read/write/compute speed
e Counsistency and correctness - read /write sees consistent data, computations produce the correct results

e Fault tolerance/high availability - when one system fails (there is always a chance for failure, which
only increases as you add more machines), another can take over

e Latency - distribute machines worldwide and reduce network latency

3 Problems Distributed Systems Need To Solve

e Communication
e How to distribute data?
e How to distribute computations?

e How to coordinate/synchronize?

3.1 How to distribute data

e One of the problems distributed systems need to solve

e Two methods: replicate/partition the data

Replication versus Partitioning

Partition 1, Replica 1 Partition 2, Replica 1
136 - 211 — 377 —> 629 — 696 — 858 —
Four score Johannes Whereas Die Wiirde Whereas We hold
and seven Dei gracia recognition des Men- the Lords these truths
years ago Rex Anglie, of the schen ist Spiritual to be self-
our fathers Dominus inherent unantastbar and Tempo- evident
x x
| copy of | copy of
I the same 1 the same
san i I . . 1
Partition 1, Replica 2 , data Partition 2, Replica 2 \ dar
136 - 211 —> 377 —> 629 — 696 — 858 —
Four score Johannes Whereas Die Wiirde Whereas We hold
and seven Dei gracia recognition des Men- the Lords these truths
years ago Rex Anglie, of the schen ist Spiritual to be self-
our fathers Dominus inherent unantastbar and Tempo- evident

Figure 2: Replication vs Partitioning

o Key assumptions:

— We are using a distributed data or database system

15: Parallelism 3

3.1.1

3.1.2

User 1234
configures new
profile picture

X

— The computations are lightweight (like a SQL query or light computation)
— Core challenge - how to deal with distributed data
— These mainly apply to old fashioned systems before 2000

— Today, this isn’t as relevant due to ML systems

Replication
Is it good?

— Scalability - bad at dealing with high data volume because it cannot scale, good read speed,
writing speed is also good but more complex (since each replication needs to write)

— Consistency/correctness - also complex due to writing being complex

— Fault tolerance/high availability - very good due to the redundancy

Core challenge: How to handle changes to replicated data?

Single Leader Replication

Follower

Leader replica

replica

X . Replication streams
read-write queries .
> read-only queries

update users
set picture_url ='me-new.jpg’

Data change select * from users

. where user_id = 1234
where user_id = 1234 table: users <
primary key: 1234
column: picture_url Follower U 5345
old_value: me-oldjpg replica ser
new_value: me-new.jpg VIews user
1234's profile

transaction: 987654321

Figure 3: Single Leader Replication

Client sends requests to the leader to write to the db, which the leader saves locally
The leader then sends the data change to all of its followers
Clients read data from the leader or followers

This leader-follower idea is one of the big ideas in Computer Science and distributed message brokers
such as Kafka

Advantages - simplicity (easy to understand), easy to coordinate (making it consistent)

Disadvantage - single point of failure (if the leader fails everything falls apart)

4 15: Parallelism

- i P == == = = = = = = = = = — = = = 9

conflict
resolution

conflict
resolution

changes

read-write
queries

read-write
queries

Figure 4: Multi Leader Replication

3.1.3 Multi Leader Replication (Multi Datacenter Operation)

e Avoids the single point of failure problem

e Consistency is now more complex because things need to be submitted to multiple leaders (making it
not very popular)

e Advantages - performance, tolerance of data center outages and network problems

e Disadvantages - harder to coordinate due to potential write conflicts (since the same data can be
concurrently modified in two different data centers)

e Example: google docs undo-redo, which needs to have many replicas since there can be multiple people
concurrently writing on a single document

3.1.4 Leaderless Replication

-
]
Data Node =
Data Node
Client
-
Data Node
PUTK,A -
The client sends the Write - -
operation to all 5 data nodes S pata Node
and waits for ACK from at least
3 of them. Data Node

Figure 5: Leaderless Replication

e Client sends write operations to all data nodes

e Even more complex because we need to make distributed decision making

15: Parallelism

3.1.5 Concluding Replication

o Tradeoffs:

Simplicity

— Contflict across nodes (consistency)

Faulty nodes

— Network interruption

— Latency spikes

e Overall, replication is only good for small data since it cannot scale

3.1.6 Partitioning

e Can be combined with replication

Node 1 Node 2
Partition 1 Partition 2 Partition 3 Partition 2 Partition 3 Partition 4
Leader Follower Follower Follower Leader Follower
Partition 1 Partition 2 Partition 4 Partition 1 Partition 3 Partition 4
Follower Leader Follower Follower Follower Leader

£
Node 3 F/ Node 4

» =replication streams (per partition)

Figure 6: Combining Replication and Partitioning

e Used when the dataset is too big for a single machine

Writing to
partition 4

A

e Used when a large dataset has to be distributed across many disks (the extra storage is needed)

e Used when the query load can be distributed across many processors (allows for more computing)

e Challenges: how to partition and index? How to add or remove nodes (rebalancing)? How to route

the requests and execute queries?

e How to partition - key metric = load balancing (and query efficiency)

e Query efficiency - ideally a system that is good at performing range queries

— In reality there are tradeoffs and need to find workarounds

e Load balancing - ideally hope to spread the data and query load evenly across nodes with all nodes
having balanced workloads

— In reality there will often be hot spots (a popular partition with a high load)

6 15: Parallelism

3.1.7 Partitioning by Key Range

S
2 o
3 5 gl s <
2 gllslgll=] 2] o (]
Sliollellall>IlLIENE]N2IzZI
slsl 2l EN2HLt=l81ElEl|ls
2l @ [} | [} I’y 2 T [} |
k) o [a} T a € | & S |
@ c 4 o >
| | g | c |l 2 o | » 3]
| 2 5 <] =) = ©
3 © @ < (7 c © P | > 7}
~ [= =] o o @ c 7] = o o
© > © = ke = 2
b B o] o (] o L £] (] =
<||lafloflc]lc|= 2 || = Oflx ||w]l F
1 2PU3HAYUSUONT7THYBHYO NI0YTTYI12
R N A e

Figure 7: Partitioning by Key Range

e Advantage - can do range queries

e Problems:

ranges of keys are not necessarily evenly spaced (some ranges can have a lot more data, creating
unbalanced workloads)

It is a manual process that requires domain expertise to build the semantic keys

Hard to rebalance (what happens if you want to add or remove nodes? Requires new key ranges)

Hot spot issues (ex: for a list of names, some letters like T are much more common)

e Common keys: name, titles, dates

3.1.8 Partition by hash of key

“2014-04-1917:08:10" —— 7,372
“2014-04-1917:08:11" —> 18,805 —————————
“2014-04-19 17:08:12" — 50,537
“2014-04-1917:08:13" — 31,579
“2014-04-19 17:08:14" —> 62,253

“2014-04-19 17:08:15" —> 24,510
hash ¥
(here: first 2 bytes ‘ po ‘ p1 ‘ p2 ‘ p3 | p4 ‘ p5 ‘ p6 ‘ p7 |
of MDS hash) F 1
0 16,383 32,767 49,151 65,535

Figure 8: Partition by hash of key

e Advantage - automatic (only need to develop a good hash function), easy to balance (since the hash
does it for you)

e Problems - cannot efficiently perform range queries anymore (hash doesn’t preserve key values without
being called first)

15: Parallelism 7

Composite Primary Key

o Hashkey oK e
' i
' Page-1 !
: i
l 1
i i
‘ ,
RS P]
1 1
Hash Key Sort Key
Local Secondary Key
user_id update_timestamp

Figure 9: Partitioning by hash of key + key range

3.1.9 Partitioning by hash of key + key range

e Trying to combine the best of both worlds of methods 1 and 2

Makes the system more complicated, but it might enjoy the benefits of both (and suffer both the
weaknesses)

Challenge: How to add or remove nodes?

Rebalancing - move the load from one node in a cluster to another

— Motivations: when the query throughput increases we want to add more CPUs, when the dataset
size increases we want to add more disks and RAM, when a machine fails we want its workload
given to functional machines

— Goals: share the load fairly after rebalancing, service needs to still be live while rebalancing,
minimize data moving

Strawman Solution: hash mod N (N = amount of nodes)

— Main issue: is very slow if lots of data is needed at once

|—> Node 0

Load
Balancing

key=foo
key=bar hash(foo) % 3 =2 Node 1
key=baz hash(bar) % 3=0
hash(baz) % 3 =2
L—»| Node2

Figure 10: Hash mod N

e Better solution: consistent hashing ring (hashing data keys and node names)

15 131115

14/(16
13 4

2)(4])(6

13 115

681

Figure 11: Hashing ring

Done by hashing both machines and objects in the same range

7)(10) {Servera’

10)12) 4
i ServerB |

9

11

fSoer}

Server D

| Server E

15: Parallelism

— To assign an object to a machine, you first computer the object’s hash and then traverse right

until you find a machine mash. That object is then assigned to that machine.

This means you only have to move data from one server instead of all servers

Searching can be done in log(n) time when using binary trees

Used to address technical challenges that arise in peer to peer networks (helps deal with the issue of

finding file locations)

