
DSC-204A: Scalable Data Systems, Winter 2024

15: Parallelism

Lecturer: Hao Zhang Scribe: Albert Zhong

1 3 Paradigms of Multi-Node Parallelism Implementations

• 3 paradigms: shared nothing, shared disk, shared memory

Figure 1: The 3 Paradigms

1.1 Shared Nothing Parallelism(Horizontal Scaling)

• Most popular

• Each node uses its CPUs, RAM, and disks independently

• The most vanilla but also most complex system

– Need to somehow maintain consistency, communication, coordination

• Advantages: performance, cost

• Disadvantages: complexity, involves many constraints and trade offs

• Database cannot hide any of the issues involved from you

1



2 15: Parallelism

2 Metrics to Evaluate Distributed Big Data Systems

• Scalability - data volume and read/write/compute speed

• Consistency and correctness - read/write sees consistent data, computations produce the correct results

• Fault tolerance/high availability - when one system fails (there is always a chance for failure, which
only increases as you add more machines), another can take over

• Latency - distribute machines worldwide and reduce network latency

3 Problems Distributed Systems Need To Solve

• Communication

• How to distribute data?

• How to distribute computations?

• How to coordinate/synchronize?

3.1 How to distribute data

• One of the problems distributed systems need to solve

• Two methods: replicate/partition the data

Figure 2: Replication vs Partitioning

• Key assumptions:

– We are using a distributed data or database system



15: Parallelism 3

– The computations are lightweight (like a SQL query or light computation)

– Core challenge - how to deal with distributed data

– These mainly apply to old fashioned systems before 2000

– Today, this isn’t as relevant due to ML systems

3.1.1 Replication

• Is it good?

– Scalability - bad at dealing with high data volume because it cannot scale, good read speed,
writing speed is also good but more complex (since each replication needs to write)

– Consistency/correctness - also complex due to writing being complex

– Fault tolerance/high availability - very good due to the redundancy

• Core challenge: How to handle changes to replicated data?

3.1.2 Single Leader Replication

Figure 3: Single Leader Replication

• Client sends requests to the leader to write to the db, which the leader saves locally

• The leader then sends the data change to all of its followers

• Clients read data from the leader or followers

• This leader-follower idea is one of the big ideas in Computer Science and distributed message brokers
such as Kafka

• Advantages - simplicity (easy to understand), easy to coordinate (making it consistent)

• Disadvantage - single point of failure (if the leader fails everything falls apart)



4 15: Parallelism

Figure 4: Multi Leader Replication

3.1.3 Multi Leader Replication (Multi Datacenter Operation)

• Avoids the single point of failure problem

• Consistency is now more complex because things need to be submitted to multiple leaders (making it
not very popular)

• Advantages - performance, tolerance of data center outages and network problems

• Disadvantages - harder to coordinate due to potential write conflicts (since the same data can be
concurrently modified in two different data centers)

• Example: google docs undo-redo, which needs to have many replicas since there can be multiple people
concurrently writing on a single document

3.1.4 Leaderless Replication

Figure 5: Leaderless Replication

• Client sends write operations to all data nodes

• Even more complex because we need to make distributed decision making



15: Parallelism 5

3.1.5 Concluding Replication

• Tradeoffs:

– Simplicity

– Conflict across nodes (consistency)

– Faulty nodes

– Network interruption

– Latency spikes

• Overall, replication is only good for small data since it cannot scale

3.1.6 Partitioning

• Can be combined with replication

Figure 6: Combining Replication and Partitioning

• Used when the dataset is too big for a single machine

• Used when a large dataset has to be distributed across many disks (the extra storage is needed)

• Used when the query load can be distributed across many processors (allows for more computing)

• Challenges: how to partition and index? How to add or remove nodes (rebalancing)? How to route
the requests and execute queries?

• How to partition - key metric = load balancing (and query efficiency)

• Query efficiency - ideally a system that is good at performing range queries

– In reality there are tradeoffs and need to find workarounds

• Load balancing - ideally hope to spread the data and query load evenly across nodes with all nodes
having balanced workloads

– In reality there will often be hot spots (a popular partition with a high load)



6 15: Parallelism

3.1.7 Partitioning by Key Range

Figure 7: Partitioning by Key Range

• Advantage - can do range queries

• Problems:

– ranges of keys are not necessarily evenly spaced (some ranges can have a lot more data, creating
unbalanced workloads)

– It is a manual process that requires domain expertise to build the semantic keys

– Hard to rebalance (what happens if you want to add or remove nodes? Requires new key ranges)

– Hot spot issues (ex: for a list of names, some letters like T are much more common)

• Common keys: name, titles, dates

3.1.8 Partition by hash of key

Figure 8: Partition by hash of key

• Advantage - automatic (only need to develop a good hash function), easy to balance (since the hash
does it for you)

• Problems - cannot efficiently perform range queries anymore (hash doesn’t preserve key values without
being called first)



15: Parallelism 7

Figure 9: Partitioning by hash of key + key range

3.1.9 Partitioning by hash of key + key range

• Trying to combine the best of both worlds of methods 1 and 2

• Makes the system more complicated, but it might enjoy the benefits of both (and suffer both the
weaknesses)

• Challenge: How to add or remove nodes?

• Rebalancing - move the load from one node in a cluster to another

– Motivations: when the query throughput increases we want to add more CPUs, when the dataset
size increases we want to add more disks and RAM, when a machine fails we want its workload
given to functional machines

– Goals: share the load fairly after rebalancing, service needs to still be live while rebalancing,
minimize data moving

• Strawman Solution: hash mod N (N = amount of nodes)

– Main issue: is very slow if lots of data is needed at once

Figure 10: Hash mod N



8 15: Parallelism

• Better solution: consistent hashing ring (hashing data keys and node names)

Figure 11: Hashing ring

• Done by hashing both machines and objects in the same range

– To assign an object to a machine, you first computer the object’s hash and then traverse right
until you find a machine mash. That object is then assigned to that machine.

• This means you only have to move data from one server instead of all servers

• Searching can be done in log(n) time when using binary trees

• Used to address technical challenges that arise in peer to peer networks (helps deal with the issue of
finding file locations)


