DSC-204A: Scalable Data Systems, Winter 2024
19: Batch Processing

Lecturer: Hao Zhang Scribe: Leo Chen, Chenze Fan

1 Distributed Storage

In distributed systems, it is crucial to balance the workload and ensure that requests are processed by the
correct storage containing the queried data.

One approach is to randomly assign requests to nodes, checking if the key is present. If not, the request is
forwarded to the next node until a reply is received.

Another method is to route all requests to a routing tier first, which then directs them to the appropriate
storage.

A third approach involves clients being aware of partitioning and the assignment of partitions to nodes,
although this is uncommon as clients typically do not handle storage directly.

1.1 ZooKeeper

ZooKeeper plays a role in this process by having each storage node register itself with metadata. ZooKeeper
maintains this mapping in real-time, notifying subscribed actors of any changes in partition mapping.

ZooKeeper

client | Key range Partition ~ MNode IP address
T A-ak — Bayes node0 102030.100
Zookeeper | Bayeu — Ceanothus node 1 102030.101
L routing tier S Ceara — Deluc node? 102030102
SRR oo Celusion — Frenssen noded 102030100
node 1 102030.101
node 2 10.20.30.102
I 110 ‘ noded 102030100
noded) |nodel] |node2 node 1 10.20.30.101
T T o noded 102030.102
— = = noded 102030100
L { Solowyoy — Truick nodel 102030.101
— Trudeau — Zywiec partition 11 node2 102030102

s = the knowledge of which partition is assigned to which node

1.2 Remark

Regarding data distribution, replicating data improves fault tolerance but requires more disk space, making
it less scalable. The single-leader strategy is a common replication solution. Partitioning data allows for
scaling but can lead to hot partition issues. Methods like key range, hashing, and hybrid approaches aim to
mitigate hot partition problems.

2 19: Batch Processing

2 Distributed Computing

With the expansion of the Google search engine and increasing data processing workloads, there’s a shift
towards more complex and heavy computing on distributed storage. Deep learning algorithms, in particular,
demand significant compute resources due to their iterative nature during gradient updates, leading to the
rise of platforms like Spark and TensorFlow.

Basic Computing System Paradigm

Computing

Input, Requests, Queries QOutput, Responses, Results

S s

(Processing!)

As depicted in the figure above, computing systems process various user inputs and return results to the
user. Similar to network latency, computing also experiences processing latency, categorized into three main

types:

1. Batch-processing systems: Results are not required in real-time and typically take hours or overnight
to complete tasks. For example, ChatGPT scans documents with millions of words to generate a short
summary.

2. Stream processing: Near real-time systems, such as ChatGPT providing results in a streaming fashion
or the Google search engine displaying the first page while generating subsequent pages based on
relevance scores.

3. Online systems: Immediate feedback systems, like Bard providing entire results at once.

However, the boundaries between these three types of latency remain somewhat unclear.

2.1 I0/Unix Pipes
2.1.1 Batch processing
Terminal is a prototype of batch and stream processing system. Basic Unix commands includes ls, mkdir,

cat, cut,....

A pipe is the communication between commands. Pipe use | symbol to seperate different commands, like
cat dups.txt | sort | uniq do the commands sequentially and take the output of a command as the input
of the next command. Such pipe is a simple batch processing command.

Communication between commands can be achieved by several ways. One is to write the output to a file
and take the file as the input to the next command.

2.1.2 Unix philosophy

The Unix philosophy is a set of cultural norms that followed by Unix developers.

19: Batch Processing 3

1. Make each program do one thing well. To achieve a new task, start afresh rather than complicate old
programs by adding new features.

2. Expect the output of every program to become the input to another, as yet unknown, program.
Therefore, don’t clutter output with extraneous information. Avoid stringently columnar or binary
input formats. Don’t insist on interactive input.

3. Design and build software, even operating systems, to be tried early, ideally within weeks. Don’t
hesitate to throw away the clumsy parts and rebuild them.

4. Use tools in preference to unskilled help to lighten a programming task, even if you have to detour to
build the tools and expect to throw some of them out after you’ve finished using them.

2.1.3 Stream Processing

Unix also support stream processing. The command tail is a good example. When launching a program,
user can tail the log of the program with tail command.Tail processes data as a stream, it doesn’t need to
read the entire file into memory to operate. Whenever a new line is written, the tail command will update
the output in real-time.

The limitation of Unix is that it runs on a single machine. That’s where tools like Hadoop comes in.

2.2 MapReduce

MapReduce is a programming paradigm that enables massive scalability across hundreds or thousands of
servers in a Hadoop cluster. The MapReduce is built on GFS(Google File System) or HDFS(Hadoop Dis-
tributed File System). MapReduce is originally built on GFS. HDFS is an open source system that basically
a replication of GFS.

TensorFlow is an open source machine learning framwork produced by Google. While its a good project, it
failed eventually. Meta built Pytorch, which is a better framework and built by a more consolidated team.

2.3 Cluster

Typical cluster machine built by Google is constituted by nodes and network. Each node has medium-
performance processor, modest memory, and 1-2 slow disks. The network is around 100Gb/s across racks,
and 10Gb/s within racks.

Compute + Storage Nodes

88 6

Network

4 19: Batch Processing

The problem is how to build a system which support processing large data like 1 terabyte by commands like
Is.

