
DSC-204A: Scalable Data Systems, Winter 2024

19: Streaming processing - 1

Lecturer: Hao Zhang Scribe: Ever Wong

1 Recap: Batch Processing

Batch processing is well-suited for tasks that are not sensitive to latency. The Map-reduce model fundamen-
tally comprises two components: the mapper and the reducer. This structure allows users to execute tasks
by customizing these two functions. To enhance performance, the Combiner and Partitioner are employed
as optimization tools. It is possible to orchestrate multiple Map-reduce jobs to construct a comprehensive
processing workflow, where communication between jobs is facilitated through disk I/O, leading to low
performance.

Some pros of this batch processing using Map-reduce:

• It is very expressive and scalable functional programming.

• It is fault tolerant because it is easy to build redundancy in Map-reduce systems since we use disks
to store data.

We aim to minimize disk writes due to their slow nature. The motivation for developing a new system stems
from the fact that the Map-reduce framework necessitates writing to file systems and utilizing distributed
storage, which can be inefficient.

2 Arithmatic Intensity

Arithmetic Intensity (AI) is a pivotal concept that fundamentally gauges the speed of our computations.
Before delving deeper, let’s briefly revisit the basics of AI.

2.1 Basics of processors

Q: How does a processor execute machine code?

A simple example of an add instruction is shown in Figure 1. Here we load from register rbx and add that
value to register rax. In general, there are three types of ISA commands to manipulate register contents:

• Memory access: load (copy bytes from a DRAM address to register); store (reverse); put constant

• Arithmetic & logic on data items in registers: add/multiply/etc.; bitwise ops; compare, etc.; handled
by ALU

• Control flow (branch, call, etc.); handled by CU

1

2 19: Streaming processing - 1

It’s important to note the disparity in speed between loading a value from a register versus loading it from
memory, with the latter being significantly slower. To decrease the frequency of direct main memory access
and thereby reduce latency, we utilize caches. These are compact, local memory units that act as buffers
for instructions and data, enhancing the overall efficiency of data retrieval.

Figure 1: An add instruction

2.2 I/O slows down computation

In the add example, operations such as load and store are executed within registers, which are integrated
into the processor and thus costly in terms of resources. Accessing memory is a necessity, but it’s crucial to
acknowledge that I/O operations can decelerate our workflow. Refer to Figure 2 for an illustration of the
memory hierarchy.

In summary, it’s imperative to take into account the impact of I/O operations in conjunction with the
computations we execute, to optimize overall performance.

2.3 Measure the impact of I/O

I/O operations can impede computation speeds at every level of the memory hierarchy. In the context of
Map-reduce, the practice of saving and loading results from distributed storage contributes to diminished
performance.

The concept of arithmetic intensity can be employed to quantify this slowdown:

AI =
#Compute Op

#I/O Op

Arithmetic Intensity (AI) is defined as the ratio of the number of compute operations to the number of
I/O operations. When compute operations significantly outnumber I/O operations, AI is high, indicating
an efficient system. Conversely, a low AI suggests inefficiency, as excessive time is devoted to reading or
writing rather than actual computation.

19: Streaming processing - 1 3

Figure 2: Memory hierarchy

2.4 Examples

Here are two programs: 1 and 2 , and we want to know which is better by computing the arithmetic intensity
of them.

Figure 3: Program 1 Figure 4: Program 2 (fusion)

In Program 1, we have two functions add and mul. In each function, there is a for loop. At each step we
perform four operations:

1. Read A[i]

2. Read B[i]

3. Add or multiply A[i] with B[i]

4. Store the result in C[i]

4 19: Streaming processing - 1

We perform 2 loads, 1 store per math op, thus AI=1/3. The overall AI is also 1/3.

In Program 2, we fuse the add and multiply operations together, and we save the times to access the array
since we perform computations in place. Now we have 4 loads, 1 store per 3 math ops, which makes AI =
3/5. Note that AI becomes larger, so computation fusion makes our program run faster!

There are numerous approaches to implementing the fusion technique across various operators and multidi-
mensional arrays. Modern compilers, such as LLVM, are designed to scrutinize your code and align it with
predefined fusion templates. This process of code fusion is a widespread optimization strategy.

To summarize why Map-reduce is slow in one sentence: it has low arithmetic intensity due to disk I/O.
This low AI simply means that the CPUs will be idle because the time is spent on reading and writing.

3 PageRank

PageRank is basically to rank the importance of each web page (or person) from the entire internet. We
want to know which person is very prominent and which web pages are more popular. We can construct a
graph to represent this, where each node has a floating point weight as shown in Figure 5.

Figure 5: PageRank

The computation includes three parts:

• Initally we assign weight 1.0 to each page (node).

• We do updates iteratively by selecting an arbitrary node and try to update it using the weights from
its neighbors, e.g., R1 ← 0.1 + 0.9 · (12R2 +

1
4R3 +

1
3R5).

• A theory proves that this process will converge. All results will be unique, regardless of selection
ordering. The converged graph is called power graph.

We can use MapReduce to compute PageRank. We use Map function to generate values to pass along each
edge such as (1, 1

2R2), (1,
1
4R3) for node 1. We use Reduce function to combine edge values to get new rank,

like performing R1 ← 0.1 + 0.9 · (12R2 +
1
4R3 +

1
3R5) to update R1.

However, this will have low arithmetic intensity and we cannot optimize this with fusion because it is
computed in a distributed cluster and we cannot do things in place. Spark will help us handle this kind of
problems.

19: Streaming processing - 1 5

4 Spark

Spark supports in-memory, fault-tolerant distributed computing.

4.1 Goals

Spark was proposed by a former UC Grad student called Matei Zaharia who has won the Netflix Prize.

It is a programming model for cluster-scale computations where there is significant reuse of intermediate
datasets. These include iterative machine learning, graph algorithms and interactive data mining. We keep
the intermediates in memory rather than write them to persistent distributed file system.

While memory offers faster access times compared to storage, it is not as capacious, limiting our ability to
retain everything in memory. Additionally, relying solely on memory for storing intermediate results poses
a risk; in the event of a failure, these results could be lost. Therefore, it’s crucial to devise a strategy for
implementing fault tolerance, particularly for large-scale distributed in-memory computations.

4.2 Three necessary conditions

• Memory: large (cheap) enough

• Network: fast (cheap) enough

• fault tolerance: at least as good as map-reduce

In 2010s, the bandwidth (speed) of some hardware devices are shown in Figure 6.

Figure 6: Typical server node

From Figure 7, we can also see that the memory capacity grows sub-linearly. It increases almost 30% per
year, which is a crazy number.

SSD becomes cheaper than HDD after some crosspoint while SSD is also faster than HDD. Therefore, the
transition from HDD to SSD accelerates and for example, already most instances in AWS have SSDs. We
can predict that there will be SSD only clusters and SSD will eventually replace HDD.

6 19: Streaming processing - 1

Figure 7: Memory capacity

Ethernet Bandwidth also grows likw 33-40% per year and we put all the numbers together in Figure 8.

This growth means that memory hierarchy has shifted one layer up. A layer up from DRAM is high-
bandwidth memory (HBM), and the layer on top of that is SRAM (a smaller but faster memory). In
addition, HDD is virtually dead. We have unlimited space of SSD. Today’s RAM space is yesterday’s
SSD space. Today’s SSD space is yesterday’s HDD space. Ethernet may become faster than PCI/SATA
bandwidth. In the near future, maybe one more layer will be shifted up. Nvidia is dealing with HBM while
a new company called Groq is dealing with SRAM and they can do Llama-2 inference faster than Nvidia.
We can use our knowledge to predict the trend of the future.

4.3 Fault tolerance for in-memory calculations

Due to the growth of hardware performance, we now only have one condition to meet: fault tolerance. We
can do the following:

• Replicate all computations

– Expensive solution: decreases peak throughput

• Checkpoint and rollback

– Periodically save state of program to persistent storage

– Restart from last checkpoint on node failure

• Maintain log of updates (commands and data)

– High overhead for maintaining logs

4.4 Resilient distributed dataset (RDD)

Example query: ”What type of mobile phone are all the visitors using?”

19: Streaming processing - 1 7

Figure 8: Growth of different device

Figure 9: Using MapReduce

8 19: Streaming processing - 1

We can use MapReduce to handle this problem like in Figure 9. The code computes the count of page views
by each type of mobile phone.

In Figure 10, it is illustrated that Spark provides a suite of operators akin to those found in frameworks
like PyTorch. Unlike in MapReduce, where users are expected to implement core functions, Spark abstracts
these complexities, offering a more user-friendly interface. Within the Scala code presented, certain variables
are designated as RDDs, which are fundamental to Spark’s data handling capabilities. The diagram on the
right side visualizes the dataflow graph.

Figure 10: Using RDD

	Recap: Batch Processing
	Arithmatic Intensity
	Basics of processors
	I/O slows down computation
	Measure the impact of I/O
	Examples

	PageRank
	Spark
	Goals
	Three necessary conditions
	Fault tolerance for in-memory calculations
	Resilient distributed dataset (RDD)

