https://hao-ai-lab.github.io/dsc204a-w24/

DSC 204A: Scalable Data Systems
Winter 2024

Machine Learning Systems
Big Data

Cloud

Foundations of Data Systems

Where We Are

Machine Learning Systems

Big Data

Cloud 2000 - 2016

Foundations of Data Systems 1980 - 2000

Recap: Collective Pros

®* A set of structured / well-defined communication primitives
®* Fasy to analyze and to understand its performance
* Extremely well-optimized (over the last 40 years)

®* Fasy to program

Collective Cons

* Lack of Fault Tolerance
* What if one node (in the ring) Is dead<
®* Requires Homogeneity
* What it one hode computes slower than all other nodese

* What if one link has lower bandwidth than the other node?¢

Real Cluster:
* Need Strong Fault tolerance

* Heterogeneous hardware setup

We will come back to this

* Next week: Parallelism and Big Data processing
* We will delve deep to study how we address the drawbacks of

Collectives — distributed computing with fault tolerance

Where we are

Motivations, Economics, Ecosystems, Trends

Networking Storage Part3: Compute

Detecenter Colective Distibuted) Fle Cloud storage Distributed Big data
pefworking communication Sys(’rems /DOT)C]bOSG S Computing processing

Next: File System, Database, Cloud Storage

* File system
* Database

®* Column Storage and Data Warehouse

Q: What Is a file?

10

Abstractions: File

and Directory

® File: A persistent sequence of bytes that stores a logically coherent
digital object for an application

®* Fle Format: An

application-specific standard that dictates how to

iIntferpret and process a file's bytes

* 100s of file formats exist (e.g., TXT, DOC, GIF, MPEG); varying data
models/types, domain-specific, etc.

* Metadata: Summary or organizing info. about file content (aka
payload) stored with file itself; format-dependent

®* Directory: A cato
and/or (recursive

oging structure with a list of references to files
y) other directories

* Typically freated as a special kind of file
¢ Sub dir., Parent dir., Rooft dir.

Fllesystem

® Filesystem: The part of OS that helps programs create, manage, and
delete files on disk (sec. storage)

®* Roughly split into logical level and physical level

®* Logical level exposes file and dir. abstractions and offers System
Call APIs for file handling

®* Physical level works with disk firmware and moves bytes to/from
disk fo DRAM

12

Fllesystem

®* Dozens of filesystems exist, e.9., ext2, ext3, NTFS, etc.

® Differ on how they layer file and dir. abstractions as bytes, what
metadata is stored, etfc.

* Differ on how data integrity/reliabillity is assured, support for
editing/resizing, compression/encryption, etc.

® Some can work with (*mounted” by) multiple OSs

14

Q: What Is a database? How Is it different
from just a bunch of files?

* Maintenance

Collection of files? ® Performance
Virtualization of Files ® Usobi\i’ry

Binary Representatfion on * Security & privacy

Disk storage

17

Files Vs Databases: Data Model

®* Every database is just an abstraction on top of data files!

* Logical level: Data model for higher-level reasoning

®* Physical level: How bytes are layered on top of files

* All data systems (RDBMSs,

Dask, Spark, TensorFlow, etc.)

are application/plattorm software that use OS System Call

APl for handling data files

18

Data as File: Structured

 Structured Data: A form of data with regular substructure

Relation

Relation variable Attribute (Column) {unordered}

(Table hame)
'/ / \‘ Heading
R A e

Value

Relation
Body (Table)

W

Tuple (Row) {unordered}

* Most RDBMSs and Spark
serialize a relation as binary
file(s), often compressed

Pname varcha
7 Pnumber 1!

Dnum !

Plocation: varchar

(¥ Essn: char(t
4§ Pno: int(11

Hours d=cimal

Relational Database

J

b

- =
department

Dname archar !

) Dnumber in!

Mgr_ssn char(®
Mgr_start_date <als

H—O<
PD——t11

J

Minit cha

Lname varchar
@ Ssn chz

Bdate daie

Adress: varcha

Sex cha
Salary dec|

Super_ssn: chari:

Dno: inti

1
employee

Fname: varchar

-)
] !

i

19

Data as File: Structured

® Structured

Matrix

Tensor

1d-tensor

|

4d-tensor

Data: A form of data with regular substructure

2d-tensor

3d-tensor

5d-tensor

6d-tensor

Columns
DataFrame |
! ! ! v
Name Score Attempts Qualify
- " Anastasia 12.5 1 yes H

SMOY

— 90 3 no ﬁ

Katherine !lﬂ— 2 yes ﬁ

EEEEE

‘Emily 90 | 2

r James NaN g!— no ﬁ

4

Data

* Typically serialized as

restricted ASCI| text file (TSV,

CSV, etc.)

* Martrix/tensor as binary f
® Can layer on Relations t

00O
ool

20

Comparing Struct. Data Models

Q: What Is the difference between Relation, Matrix, and DataFrame?

Columns

|
i m):}btim){ ordered} 1 9 oy | d Q&}_f
Heading 1 ~ = Nan core / p ualify
a a . a
R/ A / 5 1 12 In — @ (Anastasia 12.5 1 yes)
as a9 .o Aon
— (1) (DY 90 3 no |
Value | 3 a a ce.a W
fod ?ﬁ;lglt;?" 31 32 3n 2 1 (Katherine — 2 yes)
ody v
: — (J ames NaN %9 no)
v mlami @m2 .. Qn — (4 (Emily 90 | 2 m
Tuple (Row) {unordered} - -

Data

®* Ordering: Matrix and DataFrame have row/col numbers; Relation is orderless
on both axes!

* Schema Flexibility: Matrix cells are numbers. Relation tfuples conform to pre-
defined schema. DataFrame has no pre-defined schema but all rows/cols can
have names; col cells can be mixed types!

®* Transpose: Supported by Matrix & DataFrame, not Relation

’r d .more:
L\hn ﬁ o%volrl?jg%% ascience.com/preventing-the-death-of-the-dataframe-8bcal:

https://towardsdatascience.com/preventing-the-death-of-the-dataframe-8bca1c0f83c8

Data as File: Other Common Formats

* Machine Perception data layer on tensors and/or fime-series

* Myriad binary formats, typically with (lossy) compression, e.g., WAV
for audio, MP4 for video, etc.

® Text File (aka plaintext): Human-readable ASCIlI characters

* Docs/Multimodal File: Myriad app-specific rich binary formats

@
N
jupyter
\‘Illl"/

Adobe

ChatGPT

Q1: In What format are GPT-3 weights stored?¢

Q2: In what format are GPT-3 training data storese Structured or

Unstructurede

Rule of Thumb: unstructured data are way more difficult to manage

and deal with than structured data.

Next: File System, Database, Cloud Storage

® File system
* Database
* Strawman
* HashTable
* SSTable and LSM-Trees
* B-Tree (optional)

* Column Storage and Data Warehouse

24

The simplest database (demo)

#!/bin/bash
db set () {
echo "$1,52" >> database
}
db get () {
grep "~51," database | sed -e "s/*%1,//" | tail -n 1
}

1. Search the lines that start with a parameter.

2. Only output the value part.

3. Only output the last line.

25

The simplest database (write)

#!/bin/bash

db_set () {
echo "§1,52" >> database

}

db_get () {
grep ""%1," database | sed -e "s/*%1,//" | tail -n 1
}

* Append only.
* Writing Is efficient.
* Application:

* Database Log

* How to address the following
challenges?
® Concurrency
® Disk space

* Handling errors
®

26

The simplest database (read)

#!/bin/bash

db_set () {
echo "§1,52" >> database

}

db_get () {
grep ""%1," database | sed -e "s/*%1,//" | tail -n 1

}

* Always output the latest matched line.
® Read is super slow.
® Scan entire database.
®* The cost of lookup O(n).
* Double lines => Double time

27

Improvement: Index

* Keep some additional metadata on
the side, which acts as a signpost and
helps you to locate the data you want.

®* Faster to find the data.

* Update/remove/add the index is
cheap.

®* No free lunch!

* Slows down the write.
* Offten needs to update the index.
® Choose your index wisely!
®* [ndex speeds up read, but slow
down writes
®* Based on domain knowledge.
®* Balance the tradeoffs.

28

Hash map/table

A hash table is a very fast approach to dictionary storage
®* hash functions
® Search, insert, delete: ~ O(1).

keys buckets entries
000 [%
— _w{ % | Lisa Smith | 521-8976
: ol | e
John Smith —
002 | =
: : : : . John Smith 521-1234
Lisa Smith
151 l
Sam Doe - | ! | Sandra Dee | 521-9655 |
153
154
Sandra Dee
I x| Ted Baker | 418-4165 |
233 | X
Ted Baker S :
— o4 Sam Doe 521-5030
oes] X | |

See details in https: / /algs4.cs.princeton.edu/lectures /keynote /34HashTables.pdf

Time Complexity

Average Case| Add Remove | Search
Array O(1) O(n) O(n)
Sorted Array | O(n) O(lg n) O(lg n)
Linked List O(1) O(n) O(n)
BST O(lgn) | O(lgn) | O(lgn)
Hash Table ~Q(1) ~0(1) ~0(1)

Note: For sorted array and BST, keys have o be ordered.
8

Hash map iIn Memory Hierarchy

key byte offset | In-memory hash map ® Keyg: small and in memory
53“55‘ 24 e Values: Large and in disk
Log-structured file on disk * High performance reads
(each box is one byte) and writes
1 2 3 456, {""name" : " London?",k6 " attra .CCIDCICH'Y°
/ .
ctiﬂ;'ﬁ”=["ﬁig Ben" ,"London Eye * All keys need to fit In the
"1 Y4 2 , { " nName?" : " S an F r ancisoco™" OVO”ObleRAM-
®
, " attractions?" : [" Golden G a t e B VOlueSCOanIOOdfrom

a disk. Much largerl!!
ridge™"™1] }\W\n

30

An example appl

* Track the number o

ication:

" times a video h

®* [Increment every -
* Memory capacity
* 64 GB

me someone h

® URL: 2048 char = 2048 byte = 2KB
* 64 GB/2KB = 32 million.

* Problem: YouTube has over 800 million videos. Need to keep all the

keys in Memory?

as been played.

Its the play button.

* We'll improve this later using SSTable

31

Run out of disk spacee Segment compaction

®* Segments of a certain size.

®* Perform compaction.

* Throw away duplicate logs and keep only the most recent

—

update.
Data file segment
mew: 1078 purr: 2103 purr: 2104 mew: 1079 mew: 1080 mew: 1081
purr: 2105 purr: 2106 purr: 2107 yawn: 511 purr: 2108 mew: 1082
@ Compaction process
Compacted segment
. yawn: 511 mew: 1082 purr: 2108

32

Concurrent R/W and Compactio

®* Frozen segments. Never modified.
* Only merge frozen segments and write

Nne

* After the merging,
® Read requests from the merged file.
®* Delete old segment files

Data file segment 1

Nng the old segm

‘he output to a new file.
* The read and write can work as normal usi

ent files.

mew: 1078 purr: 2103

purr: 2105 purr: 2106

purr: 2104 mew: 1079 mew: 1080 mew: 1081

purr: 2107 yawn: 511 purr: 2108 mew: 1082

Data file segment 2

purr: 2109 purr: 2110

mew: 1083 scratch: 252 mew: 1084 mew: 1085

purr: 2112 purr: 2113 mew: 108/ purr: 2114

Merged segments 1 and

purr: 2111 mew: 1086
+) Compaction and merging process

2

> yawn:511 scratch: 252 | mew: 1087 purr: 2114

33

How to delete a record?e

compaction

34

Crash recovery

®* Restart a database.
®* Segments are often large.
* Loading is slow.

CS'

* Partfio

ly wr

ore th
+

e segments’ hasr

‘en records. e.g.,

Maps on disk.
0se powere

® Checksums for each record.
®* Defect and ignore corrupted parts.

35

Hash Table Index

* Advantages (Append-only & imputable):
* Very fast write.
* Recall how hard drive works.
* Simple concurrency and crash recovery.

* No need to worry about partially wri

Ten

* Avold

‘he problems of fragmented dar

* Disadvantage
®* The hash table index must fit In memory.
* Can we put hash table index on diske

'a fi

records.
es.

36

Data indexes

Straw-man design (bash script, get, set, append-only)

® Fast write

* Slowread

* Large storage space.

Hashtable (all keys in the memory, all values on the disk, background
compaction)

* Fast write & read

® |essstorage space

* All keys need to fit iIn memory.

37

SSTable (sorted string table)

handbag: 8786 handful: 40308 | handicap: 65995 | handkerchief: 16324

/ handlebars: 3869 handprinted: 11150

handcuffs: 2729 handful: 42307 | handicap: 67884 @ handiwork: 16912

/ handkerchief: 20952 handprinted: 15725

handful: 44662 @ handicap: 70836 @ handiwork: 45521 | handlebars: 3869

handoff: 5741 | handprinted: 33632

Compaction and merging process

handbag: 8786 | handcuffs: 2729 handful: 44662 | handicap: 70836
handiwork: 45521 | handkerchief: 20952 | handlebars: 3869 handoff: 5741

handprinted: 33632

Segment2 Segment 1

Segment 3

Merged 1, 2, 3

* Change the format of the
segment files
®* Sorted by keys

33

SSTable

* Merging segments
* Merge sort: In yo

®* NO
* |

® Simi

onger n

ump 1o

Is simple and efficient

Jr PA

Sparse index

ash table.

 Sorted segment file (SSTable) on disk

In memory
;'key byte offset
hammock 100491
 handbag 102134
'handsome 104667
' hangout 106812

N

......... hand: 91541

handbag: 8786 handcuffs: 2729 handful: 44662
handicap: 70836 handiwork: 45521 handkerchief: 20952

handlebars: 3869 handoff: 5741 handprinted: 33632

handsome: 86478 handwaving: 44005 handwriting: 22846

eed to keep an index of all the keys In memory.
‘he range.
aridea as |

compressible block

39

SSTable iImplementation

® Sparse In-memory iIndex
* Fach segment file for a few KB-MB.

* “Betterideq”:

* Assume that the keys and values had a fixed size, use binary
search on a segment file and avoid the in-memory index.
* Only useful in special applications.

* Compressible blocks.

Sparse index

. Sorted segment file (SSTable) on disk

In memory

'key byte offset
hammock 100491
handbag 102134
handsome 104667
hangout 106812

i\

......... hand: 91541

handbag: 8786 handcuffs: 2729 handful: 44662
handicap: 70836 handiwork: 45521 handkerchief: 20952

handlebars: 3869 handoff: 5741 handprinted: 33632

handsome: 86478 handwaving: 44005 handwriting: 22846

compressible block

40

How do you get your data to be sorted
by key In the first placee

41

Memtable: Sorted structure In memory

®* Easier fo manipulate data in memory than disk.
* Whye
* Maintain a sorted data structure In memory.

42

Selt-balanced trees

®* Any node-based binary search tree that au

heigh

I (max

face of arbr
®* £.g., Red-black frees or AVL trees
* Height O(log n})

rary itfem insertions and deletions.

/ 177
TR

@ ;’_ {.w,_ __.f-‘:f . _‘_{:_

/ 9 1419

omatically keeps its

mal number of levels below the root) small in the

Complexity Comparison of Various Structures

Operation Sequential List
(Sorted Array)

Search for x O(log n)
Search for Ath item O(1)

Delete x O(n)
Delete kth item O(n — k)
Insert x O(n)
Output in order O(n)

'Doubly linked list and position of x known.

“Position for insertion known
10-16

44

AVL v.s Binary Search Tree

AVL tree

Tvpe

Tree

Invented

1962

Invented by

.M. Adelson-Velskil and E.M. Landis

Time complexity

in hig () notation

Average Worst case
Space Oin) in}
Search (Xlog n) (Mlog n)
Insert Oilog n) Oilog n)
Delete Oilog n) Oilog n)

Binary search tree
Type tree
Invented 1960

Invented PF. Windley, A.D. Booth, A_LT.

by Colin, and T.M. Hibbard

Time complexity in big O notation

Algorithm Average Worst case
Space O O)
Search Oflog n) Oin)
Insert Oflog n) Oi(n)
Delete Oflog n) O(n)

45

How a LSM (Log-structured merged-iree) storage engine
WOrKS

* Write:
* When a write comes in, add It to the memtable.
* |[f the memtable > a threshold, save the memtable as the most
recent segment.
® Reqd:
* Checkif the key In the memtable.
®* Then go through the segments.
®* Background:
* Merge and compact.

46

One I1ssue of LSM

* What will happen it we want 1o look up keys that do not exist in the
database<
* Check the memtable
* Check the segments all the way back to the oldest
* Optimization:
®* Use a bloom filter to test whether a key exist.

47

Bloom filters

®* A space efficient probabilistic data sfructure
® |t can fest whether an element is a member of a set.
* Computation: O(k) and Space: O(m).
® Cost: probabilistic?
* False positive:
* [t might tell that an element is a member of a set while it is nof.

Initialization (m):

Three hashing functions (k): h1, h2, h3

48

n1("geeks”) % °
n2("geeks”) % °

n3("geeks”) %

N1 ("
N2("
N3("

A set of words: {“geeks

nerd”) %
nerd”) %

nerd”) %

0=1

0=4

0=7
0=3
0=5
0=4

Bloom filters (read and write)

nerd’}

10

Bloom filters - False positive

N1 ("geeks”) % 10 = 1
n2("geeks”) % 10 = 4
n3("geeks”) % 10 =7
N1 ("nerd”) % 10 =3
n2("nerd”) % 10 =5
N3(“nerd”) % 10 =4
cat
q‘l(“CO..”)%-O: -l /\
n2("cat”) % 10 =3 11‘:3 1‘1‘1 0‘1 u‘n‘n
N3(Ycat’) % 10=7 . ' o ' |

50

Data indexes

Straw-man design (bash script, get, set, append-only)

Fast write
Slow read
Large storage space.

Hashtable (all keys in the memory, all values on the disk, background

CcO
°

mpaction)

~ast write & read

_ess storage space

All keys need to fit In memory.

SSTable (HashTable + Sorfed Segment + Sparse keys in the memory)

Works even if the size of keys in dataset is bigger than the memory.
Good performance for ranging queries as well.
Further compression

ol

B-Tree

Pl
| I'w. _[;]JI
a "
! j | I
a7 2
P~ e o e
2 @ 6 G
i | r L

Selt-balanced BST

“Look up user_id =251"

ref | 100 | ref | 200 | ref | 300 | ref {400 | ref [500 | ref
---------- ' ! oo TTt»key 2500
key <100 4 TN el T » 400 < key < 500
+*"100 < key < 200 200 <key <300 ™NU TTteeememeoon.. > 300 < key < 400
\ 4
ref | 111 | ref | 135 ref | 152 | ref | 169 | ref | 190 | ref
’ 9 » < P A
ref |210 | ref | 230 | ref [250 | ref | 270 | ref | 290 | ref
A 9) P “A
50 <key < 270
250 | val [2571 | val | 252 | val | 253 | val | 254 | val

B-Tree

52

B-Tree

Corresponds more closely to the underlying

hardware, as disks are also arranged in fixed-
size blocks.

Root = kept iIn main memory.

Not append only.

Loaded info memory when needed? '™ *

“Look up user_id =251"

ref

100

ref

200

ref | 300

ref

-“
-

++"100 < key < 200

\4

200 < key < 300

~ o
e
-~
~ -
-~
-

ref [111 | ref

135

ref

152

ref

169

ref

190

ref

Search for the leaf page confaining-the »
target key

Change the value in that page
Write the page back to disk.
Do not change the references.

»

€

P

|]
“A

400 | ref

Su
-
-
-
-
-
- -

-n..‘
~ -

-» key > 500
--------- » 400 < key < 500
........... » 300 < key < 400

ref

210 | ref

2

30

ref | 250

ref | 270

ref | 290

ref

A 9 p P “A
250 < key < 270

250

val | 251

val

252

val

253

val

254

val

B-Tree

53

Recall Lecture 4 (Memory hierachy):

What's Inside A Disk Drivee

Arm Spindle

Actuator

SCSI
connector

Platters

Electronics
(including a
processor

and memory!)

Image courtesy of Seagate Technology

B-Tree

® Branching factors:
* The number of references to child

pQgeS. “Look up user_id = 251"
* Typically several hundred. rof [100] ref |200] of |300] ref [400] ref [300 ref
* 1/Os proportional fo tree height. ey <100 47 sy e T o
. . < key < <key <300 N_ 00 Tttt > 300 < key <
* Height can be less than BST. v 300 = key <400
® Fi-l- more VOlUme Of dO.l.O in.l.o .I.he r;:f 111 r?f 135 re'f 152 r(::f 169 r(zf 190 r(?f
A IS 5 ¥ Y\ A
memory.
o MOS'I' DBS qare 3 Or4 |eve|s deep. rc:rf 210 re:-f 230 re;f 250 | ref | 270 rc::'f 290 re‘f

e A fourlevel tree of 4KB pages with a X x 1,

branching factor of 512 can store

250 < key < 270

Up .|.O 256 TB. 250 | val | 257 | val | 252 val [253 | val [254 | val
o (512A4) x 4kb = 256 TB (Disk|
* Memorye B-Tree

® B-free was invented in 1970s.

99

Page splitting In B-free

What if we want to add a key and
there is not enough space@e

* Splitapagein a B-t

B-tree Is also a self-ba

ree.
ance tree.

ref | 310 | ref | 333 | ref | 345 ref (spare space)
g Y \ P\
"' 333 <key<345
333 | val | 335 | val [337 | val | 340 | val | 342 | val
After adding key 334:
ref | 310 ref [333 | ref |337| ref | 345 | ref (spare)
e

333 < key < 33

333

val

334

val

335

val

(spare space)

4 P
7 337 < key < 345

337

val

340

val

342

val

(spare space)

956

LSM-trees v.s. B-tfrees

LSM-Trees

Faster for writes
* Append-only
Slower for reads
* Need o check multiple data structures
* At different stages of compactions
Better compression
Higher CPU usages
What if write too faste => Compaction configuration.

B-frees

Faster for reads

* Consistent data sfructure.

Slower for writes

* Need to write to a log to address the implications of append-only.
Storage Fragmentation

S/

INn-mMmemory database

* Why so much complexitye
* Magnetic Disks and SSDs are awkward to deal with.
* Slow, Donot support random address access.
* But they are durable/persistent and cheap.
* New trends
* RAM becomes cheaper and larger.
* Baffery powered RAM.
* |n-memory database
* Memcached, Memsqgl, Oracle TimesTen, Redis

53

INn-mMmemory database

* Multiple Implementations.
* Use in-memory database for caches only
® Use disks as an append-only log only.
* Advantages
® Counter intuitive!
® Not because disk is slower.
® Modern OSs do caching well.
® Because of the data serialization.
® Data representations in the memory and the disk
® Simplerimplementations.
® (Cost: Disk < Memory < Developers

	Slide 1: DSC 204A: Scalable Data Systems Winter 2024
	Slide 2: Where We Are
	Slide 3: Recap: Collective Pros
	Slide 4: Collective Cons
	Slide 5: We will come back to this
	Slide 6: Where we are
	Slide 7: Next: File System, Database, Cloud Storage
	Slide 8
	Slide 9
	Slide 10: Abstractions: File and Directory
	Slide 11: Filesystem
	Slide 12: Filesystem
	Slide 14
	Slide 15
	Slide 17: Files Vs Databases: Data Model
	Slide 18: Data as File: Structured
	Slide 19: Data as File: Structured
	Slide 20: Comparing Struct. Data Models
	Slide 21: Data as File: Other Common Formats
	Slide 22: ChatGPT
	Slide 23: Next: File System, Database, Cloud Storage
	Slide 24: The simplest database (demo)
	Slide 25: The simplest database (write)
	Slide 26: The simplest database (read)
	Slide 27: Improvement: Index
	Slide 28: Hash map/table
	Slide 29: Hash map in Memory Hierarchy
	Slide 30: An example application:
	Slide 31: Run out of disk space? Segment compaction
	Slide 32: Concurrent R/W and Compaction?
	Slide 33: How to delete a record?
	Slide 34: Crash recovery
	Slide 35: Hash Table Index
	Slide 36: Data indexes
	Slide 37: SSTable (sorted string table)
	Slide 38: SSTable
	Slide 39: SSTable implementation
	Slide 40: How do you get your data to be sorted by key in the first place?
	Slide 41: Memtable: Sorted structure in memory
	Slide 42: Self-balanced trees
	Slide 43
	Slide 44: AVL v.s Binary Search Tree
	Slide 45: How a LSM (Log-structured merged-tree) storage engine works
	Slide 46: One issue of LSM
	Slide 47: Bloom filters
	Slide 48: Bloom filters (read and write)
	Slide 49: Bloom filters - False positive
	Slide 50: Data indexes
	Slide 51: B-tree
	Slide 52: B-tree
	Slide 53: Recall Lecture 4 (Memory hierachy): What’s Inside A Disk Drive?
	Slide 54: B-tree
	Slide 55: Page splitting in B-tree
	Slide 56: LSM-trees v.s. B-trees
	Slide 57: In-memory database
	Slide 58: In-memory database

