
DSC 204A: Scalable Data Systems

Winter 2024

1

https://hao-ai-lab.github.io/dsc204a-w24/

Foundations of Data Systems

Cloud

Machine Learning Systems

Big Data

Where We Are

Foundations of Data Systems

Cloud

Machine Learning Systems

Big Data

1980 - 2000

2000 - 2016

Recap: Collective Pros

• A set of structured / well-defined communication primitives

• Easy to analyze and to understand its performance

• Extremely well-optimized (over the last 40 years)

• Easy to program

Collective Cons

• Lack of Fault Tolerance

• What if one node (in the ring) is dead?

• Requires Homogeneity

• What if one node computes slower than all other nodes?

• What if one link has lower bandwidth than the other node?

Real Cluster:

• Need Strong Fault tolerance

• Heterogeneous hardware setup

We will come back to this

• Next week: Parallelism and Big Data processing

• We will delve deep to study how we address the drawbacks of

Collectives – distributed computing with fault tolerance

Where we are

Cloud

Networking

Collective
communication

Datacenter
networking

Storage

(Distributed) File

Systems / Database

Cloud storage

Part3: Compute

Distributed
Computing

Motivations, Economics, Ecosystems, Trends

Big data
processing

Next: File System, Database, Cloud Storage

• File system

• Database

• Column Storage and Data Warehouse

8

Q: What is a file?

9

10

Abstractions: File and Directory

• File: A persistent sequence of bytes that stores a logically coherent

digital object for an application

• File Format: An application-specific standard that dictates how to

interpret and process a file’s bytes

• 100s of file formats exist (e.g., TXT, DOC, GIF, MPEG); varying data

models/types, domain-specific, etc.

• Metadata: Summary or organizing info. about file content (aka

payload) stored with file itself; format-dependent

• Directory: A cataloging structure with a list of references to files

and/or (recursively) other directories

• Typically treated as a special kind of file

• Sub dir., Parent dir., Root dir.

11

Filesystem

• Filesystem: The part of OS that helps programs create, manage, and

delete files on disk (sec. storage)

• Roughly split into logical level and physical level

• Logical level exposes file and dir. abstractions and offers System

Call APIs for file handling

• Physical level works with disk firmware and moves bytes to/from

disk to DRAM

12

Filesystem

• Dozens of filesystems exist, e.g., ext2, ext3, NTFS, etc.

• Differ on how they layer file and dir. abstractions as bytes, what

metadata is stored, etc.

• Differ on how data integrity/reliability is assured, support for

editing/resizing, compression/encryption, etc.

• Some can work with (“mounted” by) multiple OSs

14

Q: What is a database? How is it different

from just a bunch of files?

15

Binary Representation on

Disk storage

Virtualization of Files

Collection of files?

• Maintenance

• Performance

• Usability

• Security & privacy

• …

17

Files Vs Databases: Data Model

• Every database is just an abstraction on top of data files!

• Logical level: Data model for higher-level reasoning

• Physical level: How bytes are layered on top of files

• All data systems (RDBMSs, Dask, Spark, TensorFlow, etc.)

are application/platform software that use OS System Call

API for handling data files

18

Data as File: Structured

• Structured Data: A form of data with regular substructure

Relation Relational Database

• Most RDBMSs and Spark

serialize a relation as binary

file(s), often compressed

19

Data as File: Structured

• Structured Data: A form of data with regular substructure

DataFrame

Matrix

Tensor

• Typically serialized as

restricted ASCII text file (TSV,

CSV, etc.)

• Matrix/tensor as binary too

• Can layer on Relations too!

20

Comparing Struct. Data Models

Q: What is the difference between Relation, Matrix, and DataFrame?

• Ordering: Matrix and DataFrame have row/col numbers; Relation is orderless

on both axes!

• Schema Flexibility: Matrix cells are numbers. Relation tuples conform to pre-

defined schema. DataFrame has no pre-defined schema but all rows/cols can

have names; col cells can be mixed types!

• Transpose: Supported by Matrix & DataFrame, not Relation

If interested in reading more:
https://towardsdatascience.com/preventing-the-death-of-the-dataframe-8bca1c0f83c8

https://towardsdatascience.com/preventing-the-death-of-the-dataframe-8bca1c0f83c8

21

Data as File: Other Common Formats

• Machine Perception data layer on tensors and/or time-series

• Myriad binary formats, typically with (lossy) compression, e.g., WAV

for audio, MP4 for video, etc.

• Text File (aka plaintext): Human-readable ASCII characters

• Docs/Multimodal File: Myriad app-specific rich binary formats

ChatGPT

Q1: In What format are GPT-3 weights stored?

Q2: In what format are GPT-3 training data stores? Structured or

Unstructured?

Rule of Thumb: unstructured data are way more difficult to manage

and deal with than structured data.

Next: File System, Database, Cloud Storage

• File system

• Database

• Strawman

• HashTable

• SSTable and LSM-Trees

• B-Tree (optional)

• Column Storage and Data Warehouse

24

The simplest database (demo)

1. Search the lines that start with a parameter.

2. Only output the value part.

3. Only output the last line.

25

The simplest database (write)

• Append only.

• Writing is efficient.

• Application:

• Database Log

• How to address the following

challenges?

• Concurrency

• Disk space

• Handling errors

• …

26

The simplest database (read)

• Always output the latest matched line.

• Read is super slow.

• Scan entire database.

• The cost of lookup O(n).

• Double lines => Double time

27

Improvement: Index

• Keep some additional metadata on

the side, which acts as a signpost and

helps you to locate the data you want.

• Faster to find the data.

• Update/remove/add the index is

cheap.

• No free lunch!

• Slows down the write.

• Often needs to update the index.

• Choose your index wisely!

• Index speeds up read, but slow

down writes

• Based on domain knowledge.

• Balance the tradeoffs.

28

Hash map/table

A hash table is a very fast approach to dictionary storage

• hash functions

• Search, insert, delete: ~ O(1).

See details in https://algs4.cs.princeton.edu/lectures/keynote/34HashTables.pdf

29

Hash map in Memory Hierarchy

• Keys: small and in memory

• Values: Large and in disk

• High performance reads

and writes.

• Capacity:

• All keys need to fit in the

available RAM.

• Values can be load from

a disk. Much larger!!!

30

An example application:

• Track the number of times a video has been played.

• Increment every time someone hits the play button.

• Memory capacity

• 64 GB

• URL: 2048 char = 2048 byte = 2KB

• 64 GB/2KB = 32 million.

• Problem: YouTube has over 800 million videos. Need to keep all the

keys in Memory?

• We’ll improve this later using SSTable

31

Run out of disk space? Segment compaction

• Segments of a certain size.

• Perform compaction.

• Throw away duplicate logs and keep only the most recent

update.

32

Concurrent R/W and Compaction?

• Frozen segments. Never modified.

• Only merge frozen segments and write the output to a new file.

• The read and write can work as normal using the old segment files.

• After the merging,

• Read requests from the merged file.

• Delete old segment files

33

How to delete a record?

34

Crash recovery

• Restart a database.

• Segments are often large.

• Loading is slow.

• Store the segments’ hash maps on disk.

• Partially written records. e.g., lose power?

• Checksums for each record.

• Detect and ignore corrupted parts.

35

Hash Table Index

• Advantages (Append-only & imputable):

• Very fast write.

• Recall how hard drive works.

• Simple concurrency and crash recovery.

• No need to worry about partially written records.

• Avoid the problems of fragmented data files.

• Disadvantage

• The hash table index must fit in memory.

• Can we put hash table index on disk?

36

Data indexes

• Straw-man design (bash script, get, set, append-only)

• Fast write

• Slow read

• Large storage space.

• Hashtable (all keys in the memory, all values on the disk, background

compaction)

• Fast write & read

• Less storage space

• All keys need to fit in memory.

• ????

37

SSTable (sorted string table)

• Change the format of the

segment files

• Sorted by keys

38

SSTable

• Merging segments is simple and efficient

• Merge sort: in your PA1

• No longer need to keep an index of all the keys in memory.

• Jump to the range.

• Similar idea as Hash table.

39

SSTable implementation

• Sparse in-memory index

• Each segment file for a few KB-MB.

• “Better idea”:

• Assume that the keys and values had a fixed size, use binary

search on a segment file and avoid the in-memory index.

• Only useful in special applications.

• Compressible blocks.

40

How do you get your data to be sorted

by key in the first place?

41

Memtable: Sorted structure in memory

• Easier to manipulate data in memory than disk.

• Why?

• Maintain a sorted data structure in memory.

42

Self-balanced trees

• Any node-based binary search tree that automatically keeps its

height (maximal number of levels below the root) small in the

face of arbitrary item insertions and deletions.

• E.g., Red-black trees or AVL trees

• Height O(log n)

43

44

AVL v.s Binary Search Tree

45

How a LSM (Log-structured merged-tree) storage engine

works

• Write:

• When a write comes in, add it to the memtable.

• If the memtable > a threshold, save the memtable as the most

recent segment.

• Read:

• Check if the key in the memtable.

• Then go through the segments.

• Background:

• Merge and compact.

46

One issue of LSM

• What will happen if we want to look up keys that do not exist in the

database?

• Check the memtable

• Check the segments all the way back to the oldest

• Optimization:

• Use a bloom filter to test whether a key exist.

• A space efficient probabilistic data structure

• It can test whether an element is a member of a set.

• Computation: O(k) and Space: O(m).

• Cost: probabilistic?

• False positive:

• It might tell that an element is a member of a set while it is not.

47

Bloom filters

Initialization (m):

Three hashing functions (k): h1, h2, h3

48

Bloom filters (read and write)

h1(“geeks”) % 10 = 1

h2(“geeks”) % 10 = 4

h3(“geeks”) % 10 = 7

h1(“nerd”) % 10 = 3

h2(“nerd”) % 10 = 5

h3(“nerd”) % 10 = 4

A set of words: {“geeks”, “nerd”}

49

Bloom filters - False positive

h1(“geeks”) % 10 = 1

h2(“geeks”) % 10 = 4

h3(“geeks”) % 10 = 7

h1(“nerd”) % 10 = 3

h2(“nerd”) % 10 = 5

h3(“nerd”) % 10 = 4

h1(“cat”) % 10 = 1

h2(“cat”) % 10 = 3

h3(“cat”) % 10 = 7

50

Data indexes

• Straw-man design (bash script, get, set, append-only)

• Fast write

• Slow read

• Large storage space.

• Hashtable (all keys in the memory, all values on the disk, background

compaction)

• Fast write & read

• Less storage space

• All keys need to fit in memory.

• SSTable (HashTable + Sorted Segment + Sparse keys in the memory)

• Works even if the size of keys in dataset is bigger than the memory.

• Good performance for ranging queries as well.

• Further compression

51

B-tree

Self-balanced BST
B-Tree

52

B-tree

B-Tree

• Corresponds more closely to the underlying

hardware, as disks are also arranged in fixed-

size blocks.

• Root = kept in main memory.

• Loaded into memory when needed.

• Not append only.

• Search for the leaf page containing the

target key

• Change the value in that page

• Write the page back to disk.

• Do not change the references.

53

Recall Lecture 4 (Memory hierachy):

What’s Inside A Disk Drive?
SpindleArm

Actuator

Platters

Electronics
(including a
processor
and memory!)SCSI

connector

Image courtesy of Seagate Technology

54

B-tree

B-Tree

• Branching factors:

• The number of references to child

pages.

• Typically several hundred.

• I/O is proportional to tree height.

• Height can be less than BST.

• Fit more volume of data into the

memory.

• Most DBs are 3 or 4 levels deep.

• A four-level tree of 4KB pages with a

branching factor of 512 can store

up to 256 TB.

• (512^4) x 4kb = 256 TB (Disk)

• Memory?

• B-tree was invented in 1970s.

55

Page splitting in B-tree

• What if we want to add a key and

there is not enough space?

• Split a page in a B-tree.

• B-tree is also a self-balance tree.

56

LSM-trees v.s. B-trees

• LSM-Trees

• Faster for writes

• Append-only

• Slower for reads

• Need to check multiple data structures

• At different stages of compactions

• Better compression

• Higher CPU usages

• What if write too fast? => Compaction configuration.

• B-trees

• Faster for reads

• Consistent data structure.

• Slower for writes

• Need to write to a log to address the implications of append-only.

• Storage Fragmentation

57

In-memory database

• Why so much complexity?

• Magnetic Disks and SSDs are awkward to deal with.

• Slow, Donot support random address access.

• But they are durable/persistent and cheap.

• New trends

• RAM becomes cheaper and larger.

• Battery powered RAM.

• In-memory database

• Memcached, Memsql, Oracle TimesTen, Redis

58

In-memory database

• Multiple implementations.

• Use in-memory database for caches only

• Use disks as an append-only log only.

• Advantages

• Counter intuitive!

• Not because disk is slower.

• Modern OSs do caching well.

• Because of the data serialization.

• Data representations in the memory and the disk

• Simpler implementations.

• Cost: Disk < Memory < Developers

	Slide 1: DSC 204A: Scalable Data Systems Winter 2024
	Slide 2: Where We Are
	Slide 3: Recap: Collective Pros
	Slide 4: Collective Cons
	Slide 5: We will come back to this
	Slide 6: Where we are
	Slide 7: Next: File System, Database, Cloud Storage
	Slide 8
	Slide 9
	Slide 10: Abstractions: File and Directory
	Slide 11: Filesystem
	Slide 12: Filesystem
	Slide 14
	Slide 15
	Slide 17: Files Vs Databases: Data Model
	Slide 18: Data as File: Structured
	Slide 19: Data as File: Structured
	Slide 20: Comparing Struct. Data Models
	Slide 21: Data as File: Other Common Formats
	Slide 22: ChatGPT
	Slide 23: Next: File System, Database, Cloud Storage
	Slide 24: The simplest database (demo)
	Slide 25: The simplest database (write)
	Slide 26: The simplest database (read)
	Slide 27: Improvement: Index
	Slide 28: Hash map/table
	Slide 29: Hash map in Memory Hierarchy
	Slide 30: An example application:
	Slide 31: Run out of disk space? Segment compaction
	Slide 32: Concurrent R/W and Compaction?
	Slide 33: How to delete a record?
	Slide 34: Crash recovery
	Slide 35: Hash Table Index
	Slide 36: Data indexes
	Slide 37: SSTable (sorted string table)
	Slide 38: SSTable
	Slide 39: SSTable implementation
	Slide 40: How do you get your data to be sorted by key in the first place?
	Slide 41: Memtable: Sorted structure in memory
	Slide 42: Self-balanced trees
	Slide 43
	Slide 44: AVL v.s Binary Search Tree
	Slide 45: How a LSM (Log-structured merged-tree) storage engine works
	Slide 46: One issue of LSM
	Slide 47: Bloom filters
	Slide 48: Bloom filters (read and write)
	Slide 49: Bloom filters - False positive
	Slide 50: Data indexes
	Slide 51: B-tree
	Slide 52: B-tree
	Slide 53: Recall Lecture 4 (Memory hierachy): What’s Inside A Disk Drive?
	Slide 54: B-tree
	Slide 55: Page splitting in B-tree
	Slide 56: LSM-trees v.s. B-trees
	Slide 57: In-memory database
	Slide 58: In-memory database

